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Orbital angular momentum dynamics of Bose-Einstein condensates trapped in two stacked rings
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We investigate the stability and dynamics of the orbital angular momentum modes of a repulsive Bose-Einstein
condensate trapped in two tunnel-coupled rings in a stack configuration. Within mean-field theory, we derive a
two-state model for the system in the case in which we populate both rings equally with a single orbital angular
momentum mode and include small perturbations in other modes. Analyzing the fixed-point solutions of the
model and the associated classical Hamiltonian, we characterize the destabilization of the stationary states and
the subsequent dynamics. By populating a single orbital angular momentum mode with an arbitrary population
imbalance between the rings, we derive analytically the boundary between the regimes of Josephson oscillations
and macroscopic quantum self-trapping and study numerically the stability of these solutions.
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I. INTRODUCTION

Ultracold atoms trapped in ring potentials are one of the
most promising systems in the emerging field of atomtronics
[1,2]. They have been considered for quantum sensing ap-
plications such as rotation sensing [3,4], magnetometry [5],
Sagnac interferometry [6–11], and the atomic analog to super-
conducting quantum interference devices (SQUIDs) [12–20].
Rings are the simplest geometries that lead to nontrivial
loop circuits, in which the superfluidity of Bose-Einstein
condensates (BECs) gives rise to persistent currents [21,22].
One can transfer orbital angular momentum (OAM) to the
trapped BEC either by rotation of a weak link [13] or by
coherent transfer of angular momentum from the photons to
the atoms [23]. Regarding the implementation of the ring
trapping potential, several techniques have been implemented
or proposed: magnetic traps [24–26], conical refraction [27],
pairs of optical fibers [28], static Laguerre-Gauss Beams [29],
and time-averaged [3,4,30] or painting [31,32] potentials.

On the other hand, the Josephson effect is a fundamental
phenomenon in quantum mechanics that has been widely
explored in superconductors, and its study has recently
been extended to bosonic ultracold atomic systems [33–38].
Josephson oscillations can arise in weakly coupled BECs
trapped in a double-well potential: when there is a nonzero
population imbalance, quantum tunneling allows the particles
to oscillate periodically from one well to the other. However,
repulsive interactions can suppress tunneling such that the
atoms remain mostly trapped in one of the wells, a regime
known as macroscopic quantum self-trapping [35]. Weakly
coupled condensates have been proposed as basic building
blocks for quantum technologies [39–42]. In particular, the
dynamics of BECs in tunnel-coupled ring potentials have been
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thoroughly explored in a variety of geometries such as stacked
rings with [43,44] or without [45–53] lattices, concentric rings
[54,55], and coplanar rings [56,57].

In this work, we investigate a BEC trapped in two rings
in a stack configuration to study the interplay between the
OAM, the tunneling dynamics, and the repulsive nonlinear
interactions. First, we consider an initial state with a single
OAM mode equally populated in both rings, which gives
rise to symmetric and antisymmetric stationary states. The
stability conditions of these states against OAM perturba-
tions were derived within the mean-field theory and using
Bogoliubov analysis in [46]. Here, we revisit the problem and
demonstrate that the system can be described by a two-state
model with fixed-point solutions. In particular, one can derive
a classical Hamiltonian that characterizes the dynamics of
the system in terms of the orbits around the critical points.
Second, we consider an initial state where a single OAM mode
is populated with a nonzero population imbalance between
rings, such that tunneling and interactions give rise to differ-
ent dynamical regimes. We derive analytically the boundary
condition between Josephson oscillations and self-trapping
and study numerically the stability of these regimes against
perturbations in higher-order OAM modes.

The paper is organized as follows. In Sec. II, we de-
scribe the physical system and introduce the few-state model
of OAM modes derived from the Gross-Pitaevskii equation
(GPE). Section III deals with the stability of the stationary
states: after briefly presenting the Bogoliubov analysis, we
derive a two-state model, find its critical points, and analyze
its associated classical Hamiltonian. The model is then com-
pared against numerical simulations of the complete system
of equations derived in Sec. II. Section IV focuses on the dy-
namical regimes of Josephson oscillations and self-trapping:
we first study the case of populating a single mode in each ring
and then explore the role of higher-order OAM perturbations.
Finally, the conclusions are presented in Sec. V.
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FIG. 1. Schematic of the geometry of the system. The trapping
potential consists of two ring traps—up, u, and down, d—that are
located in the planes ±z0, centered at ρ = 0, and have radius ρ0.

II. PHYSICAL SYSTEM

The system under consideration is shown in Fig. 1. It con-
sists of two coaxial annular traps around the z axis separated
by a distance 2z0, where a BEC of N atoms is trapped. The
BEC is described within the mean-field theory by the Gross-
Pitaevskii equation, which in cylindrical coordinates reads

ih̄
∂�(r, t )

∂t
=

[
h̄2

2M

(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− ∂2

∂z2
+ L2

z

h̄2ρ2

)

+ V (r) + g|�(r, t )|2
]
�(r, t ), (1)

where V (r) is the external potential, M is the atomic mass,
Lz = −ih̄ ∂

∂φ
is the z component of the angular momentum,

and g = 4π h̄2as/M accounts for the contact interactions char-
acterized by the s-wave scattering length as. The wave func-
tion, �(r, t ), is normalized to the total number of particles,
N . Henceforth, we consider exclusively repulsive interactions,
g > 0, and rings with large enough radii so that the term 1

ρ
∂
∂ρ

can be neglected in Eq. (1). The trapping potential in (1) is
defined as V (r) = Vz(z) + Vρ (ρ), where Vz is a symmetric
double-well harmonic potential with minima at ±z0, and Vρ

is a harmonic radial potential centered at ρ0. We assume weak
coupling between the rings and that Vz and Vρ are steep enough
so that the BEC only presents azimuthal excitations. Then the
wave function can be factorized as

�(r, t ) = �(ρ)[�u(z)χu(φ, t ) + �d (z)χd (φ, t )], (2)

where �(ρ) is the ground state of the radial harmonic po-
tential and the functions χu(φ, t ) and χd (φ, t ) contain the
dependence of the BEC wave function with respect to time.
The functions �u(z) and �d (z) are two modes localized in
the wells up (u) and down (d) constructed as a superposition
of the ground and first excited stationary solutions of
the GPE. The total number of particles in each ring is∫

dφ|χu/d (φ, t )|2 = Nu/d (t ) and the functions �(ρ), �u(z),
and �d (z) are normalized to 1. The functions χu(φ, t ) and
χd (φ, t ) for the upper and lower rings can be written as a

linear combination of the angular momentum eigenstates,

χu/d (φ, t ) = 1√
2π

∞∑
m=−∞

αu/d
m (t )eimφ, (3)

with amplitudes αu/d
m (t ). For each eigenstate, the condensate

has a quantized angular momentum mh̄. The angular mode
coefficients are normalized to the number of particles in the
mth angular mode in each ring, |αu/d

m (t )|2 = Nu/d
m (t ), such

that Nu/d (t ) = ∑
m Nu/d

m (t ). Henceforth, we omit the explicit
time dependence in αu/d

m (t ). The evolution equations for the
amplitudes of each OAM mode, αu/d

m , read [45,46]

i
∂αu/d

m

∂τ
= m2αu/d

m − καd/u
m + γ

∑
nn′

αu/d
n

(
α

u/d
n′

)∗
α

u/d
m−n+n′ ,

(4)

where τ = h̄t/(2MR2) is the scaled time, κ = R2
∫

dz (�d (z))∗[ ∂2

∂z2 − 2M
h̄2 Vz]�u(z) is the tunnel-

ing rate between the two rings, and γ =
MR2g/(π h̄2)

∫
dρρ|�(ρ)|4 ∫

dz|�u(z)|4 is the interatomic
interaction parameter with R−2 = ∫

dρρ−1|�(ρ)|2. The first
term on the right-hand side in (4) corresponds to the kinetic
energy of the mth mode; the second term, to the tunneling
between the two rings, which only couples OAM modes with
the same m; and the third term is the nonlinear interaction
that couples different OAM modes within each ring. The
parameters τ , κ , γ and the other magnitudes appearing in the
figures in this work are dimensionless.

III. STABILITY OF THE STATIONARY STATES

Let us consider that only one OAM mode n is initially pop-
ulated in both rings: |αu/d

n (τ = 0)|2 �= 0, |αu/d
m �=n(τ = 0)|2 =

0. Then stationary solutions only exist for equal numbers
of particles between rings, Nu

n = Nd
n = N/2, and Eq. (4)

simplifies to

iα̇u/d
n = n2αu/d

n − καd/u
n + εαu/d

n , (5)

where ε = γ N/2 and the overdot indicates the derivative with
respect to τ . By diagonalizing this system of equations, we
find the following symmetric and antisymmetric stationary
solutions with energies μ±:(

αu
n, α

d
n

)
s
=

√
Ne−iμ+τ (1, 1), μ+ = n2 + ε − κ; (6a)(

αu
n, α

d
n

)
a =

√
Ne−iμ−τ (1,−1), μ− = n2 + ε + κ. (6b)

A. Bogoliubov analysis

In order to study the stability of states (6a) and (6b), we
fix n = 0 and add a small-amplitude symmetric perturbation
in an arbitrary mode m �= 0, of the form

αu/d
m = e−iμ±τ

(
uu/d

m e−iωτ + (
vu/d

m

)∗
eiωτ

)
. (7)

By introducing this ansatz together with (6) into (4) and
linearizing for small amplitudes of uu/d

m and (vu/d
m )∗, we obtain

the following Bogoliubov–de Gennes equations:

ωuu/d
m = (m2 − μ± + 2ε)uu/d

m + εv
u/d
−m − κud/u

m , (8a)

−ωv
u/d
−m = (m2 − μ± + 2ε)vu/d

−m + εuu/d
m − κv

d/u
−m . (8b)
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FIG. 2. Real (white) and imaginary (patterned) regions of ω

for the antisymmetric state with n = 0 and perturbations in the
modes m = ±1, ±2, ±3 in the parameter space [κ, ε]. The rhom-
bus, square, circle, and triangle correspond to the parameter values
used in Fig. 3, with the circle also being used in Fig. 4.

By diagonalizing (8), one finds that only the antisymmetric
state can be unstable against perturbations in higher-order
modes. The corresponding excitation branch, ω, determines
the regions of the parameter space for which the antisymmet-
ric state is unstable [46]:

ω =
√

(m2 + ε − 2κ )2 − ε2. (9)

For real values of ω, the perturbations, (7), remain periodic
and thus bounded, while for imaginary values, the pertur-
bations in mode m increase exponentially, destabilizing the
stationary state. Figure 2 shows the real (white) and imaginary
(patterned) regions of ω for the stationary state with n = 0
and perturbations in m = ±1, ±2, ±3 as a function of κ and
ε. Interactions increase the instability regions of the antisym-
metric state. The spectrum in (9) also holds for stationary
solutions with n �= 0; in that case, the perturbation m is the
OAM difference with respect to n.

B. Two-state model

The Bogoliubov analysis predicts the stability regions of
the stationary solutions in the parameter space. However, it
does not describe the dynamics once the stationary state has
been destabilized. In order to gain insight into the excitation
process, we derive the simplest model that captures these
dynamics: a two-state model that includes the antisymmetric
stationary state mode and a pair of perturbation modes ±m.

We take for simplicity the mode n = 0 for the stationary state,
with |αu

0 |2 = Nu
0 and |αd

0 |2 = Nd
0 .

We impose the initial condition αu
0 = −αd

0 and add small-
amplitude symmetric perturbations in the high-order modes
±m such that δαu

±m = δαd
±m. Due to angular momentum con-

servation and the fact that the stationary state is in the mode
n = 0, the conditions |αu

m|2 = |αu
−m|2 and |αd

m|2 = |αd
−m|2

are fulfilled. Assuming that the phase difference between the
perturbed modes stays approximately constant during the time
evolution and that |αd

±m| ≈ |αu
±m|, we can define αm ≡ αu

±m =
αd

±m. We also assume that the initial condition αu
0 = −αd

0 ≡
α0 is maintained during the temporal evolution, so that we
can use Nu ≈ Nd = N/2, where Nu/d = |αu/d

0 |2 + |αu/d
m |2 +

|αu/d
−m |2. Taking these approximations (see Appendix A), the

resulting system of equations can be simplified in its matrix
form to the following two-state model:

iα̇0 =
[
γ

(
N − |α0|2

(
1 − 2

(
αm

α0

)2
))

+ κ

]
α0, (10a)

iα̇m =
[
γ

(
N − |αm|2

(
1 −

(
α0

αm

)2
))

− κ + m2

]
αm.

(10b)

In order to understand the oscillatory dynamics of the
system, we define α0 = |α0|eiφ and αm = |αm|eiθ . By using
particle conservation, 2|α0|2 + 4|αm|2 = N , and defining the
phase difference ζ = θ − φ, the system reduces to two cou-
pled real equations:

˙|αm|2 = 2γ |αm|2
(

2|αm|2 − N

2

)
sin 2ζ , (11a)

ζ̇ = 2κ − m2 + γ

(
3|αm|2 − N

2

)

+ γ

(
4|αm|2 − N

2

)
cos 2ζ . (11b)

1. Critical points

The critical points of this system fulfill ˙|αm|2 = ζ̇ = 0.
Imposing these conditions in Eqs. (11), we find four critical
points and the range of values of κ for which they exist. Table I
summarizes the critical points and their existence conditions
and Appendix B contains their derivation. By studying the
eigenvalues of the Jacobian at the critical points, the first two

TABLE I. Critical points of the two-state model and corresponding existence conditions.

ζ |αm|2 κmin κmax

A = cos 2ζ = −m2+2κ−ε

ε
0 m2

2
m2+2ε

2

B = cos 2ζ = −m2+2κ+ ε
2

ε

N
4

m2− 3ε
2

2
m2+ ε

2
2

aπ C = 2ε+m2−2κ

14ε/N

m2− 3ε
2

2
m2+2ε

2

(2a + 1) π

2 D = 2κ−m2

2ε/N
m2

2
m2+ ε

2
2
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FIG. 3. Lines of constant H (|α1|2, ζ ) for m = 1, γ = 1/2000,
and N = 4000 (thus, ε = 1) and (a) κ = 0.3, (b) κ = 0.6, (c) κ =
1, and (d) κ = 1.7. In dashed blue lines, orbits corresponding to
the stationary-state excitations for the unstable cases, (b) and (c).
Parameter values of the plots correspond to the rhombus, square,
circle, and triangle in Fig. 2, respectively.

solutions can be shown to be saddle points while the other
solutions are centers (see Appendix C).

2. Two-state model Hamiltonian

Assuming that the variables |αm|2 and ζ are canonical con-
jugates, they fulfill ∂H/∂ (|αm|2) = ζ̇ and ∂H/∂ζ = − ˙|αm|2,
and thus the corresponding classical Hamiltonian H reads

H (|αm|2, ζ ) = |αm|2
[

2κ − m2 − γ N

2
+ 3

2
γ |αm|2

+ γ

(
2|αm|2 − N

2

)
cos 2ζ

]
. (12)

Figure 3 shows lines of constant H (|α1|2, ζ ) for various
initial conditions and γ = 1/2000, N = 4000 (thus, ε = 1),
m = 1, and different values of κ . According to the existence
conditions of the critical points, Eqs. (B3), (B4), (B6), and
(B7), there are four possible types of phase diagrams as a
function of the tunneling κ:

(i) (m2 − 3ε/2)/2 < κ < m2/2. There are saddle points at
(B, |αm|2 = N/4) and centers at (ζ = aπ , C) [e.g., Fig. 3(a)].
The orbits around the centers are not accessible for the initial
conditions |αm|2/N 	 0 and ζ = 0, thus, the stationary state
is stable.

(ii) m2/2 < κ < (m2 + ε/2)/2. There are saddle points at
(A, |αm|2 = 0) and (B, |αm|2 = N/4) and centers at (ζ = aπ ,
C) and [ζ = (2a + 1)π/2, D] [e.g., Fig. 3(b)]. Given Eq. (B5),
the value of |αm|2 corresponding to the centers at ζ = aπ

diminishes with the tunneling κ , while the one for the centers
at ζ = (2a + 1)π/2 increases with κ . For the values of κ

when the |αm|2 value of the centers at ζ = aπ is equal to
or lower than those of ζ = (2a + 1)π/2, the system orbits
around (ζ = aπ , C). For lower values of κ , the contrary oc-
curs, and the system performs open orbits around the centers
[ζ = (2a + 1)π/2, D] [e.g., Fig. 3(b)].

(iii) (m2 + ε/2)/2 < κ < (m2 + 2ε)/2. There are saddle
points at (A, |αm|2 = 0) and centers at (ζ = aπ , C) [e.g.,
Fig. 3(c)], which allows the system to perform orbits around
these centers.

(iv) For all other values of κ , i.e., (m2 + 2ε)/2 < κ <

(m2 − 3ε/2)/2, there are neither saddle points nor centers
[e.g., Fig. 3(d)], such that the stationary state is stable.

Combining all these conditions we find that the antisym-
metric stationary state is unstable for m2/2 < κ < (m2 +
2ε)/2, which coincides with the stability conditions predicted
by the Bogoliubov analysis (see Fig. 2). The Bogoliubov
excitations correspond to the open and closed orbits around
the centers given the initial conditions ζ = 0 and |αm|2/N 	
0, as the ones shown in dashed blue lines in Figs. 3(b) and
3(c).

The population transfer between the states with n = 0
and the perturbations m during the excitation is determined
by the corresponding orbit. One can find an upper bound to
the population transfer, |αm|2max/N , by considering the ini-
tial conditions ζ (τ = 0) = 0 and |αm(τ = 0)|2/N = 0, which
correspond to the orbit with H (|αm|2, ζ ) = 0. Taking into
account the different possible orbits, either open or closed,
and particle conservation in Eq. (12), one reaches

|αm|2max

N
=

⎧⎨
⎩

2κ−m2

ε
, m2

2 � κ � m2+ε/4
2 ;

2
7

m2−2κ+2ε
2ε

,
m2+ε/4

2 � κ � m2+2ε
2 .

(13)

The upper bound of the population transfer increases linearly
with the tunneling κ and reaches its maximum for κ = ε/4+m2

2 ,
when the centers at ζ = (2a + 1)π/2 and ζ = aπ have the
same |αm|2. Then the upper bound of the population transfer
decreases linearly with κ down to 0.

For an initial state with n �= 0, one observes dynamics
analogous to the ones described above, where the pairs of
excited modes have an OAM difference ±m with respect to
n. For example, for κ = 1, ε = 1, and the stationary state with
n = 0, the states that form the excitation are m = ±1, whereas
for n = 1, the excited modes are m = 0 and m = 2.

C. Numerical simulations

In this section, we compare numerically the predictions
of the two-state model, (10), and the complete system of
equations (4), for the stationary state with n = 0, κ = 1, and
ε = 1 (corresponding to the circle in Fig. 2). Figure 4 shows
the time evolution of the populations according to the two-
state model (black curve) and by numerical integration of the
system of equations (colored curves).

023331-4



ORBITAL ANGULAR MOMENTUM DYNAMICS OF … PHYSICAL REVIEW A 102, 023331 (2020)

FIG. 4. Temporal evolution of the populations, Ñu/d
m = Nu/d

m /N ,
for N = 4000, κ = 1, and ε = 1 (circle in Fig. 2) of the two-
state model (TSM) with m = 1 (black) and the complete system of
equations up to m = ±15 (color or gray). Initial conditions: αu

0 =
−αd

0 = α0 = √
N/2 with perturbations of order

√
N/2 × 10−4 [up to

m = ±5 for the complete system of equations (4)].

For the two-state model, we initially set the amplitudes
to α0 = √

N/2 and α1 = √
N/2 × 10−4 in the system of Eqs.

(10). The population of the perturbation α1 increases exponen-
tially, in agreement with Eq. (9) of the Bogoliubov analysis.
Then the growth of the perturbation slows down, the popula-
tion reaches a maximum closely bounded by Eq. (13), and the
transfer of population is inverted; the population returns to α0.
This population transfer pattern is repeated periodically, and
for small τ , it precisely captures the dynamics predicted by
the complete set of equations.

For the full model, we populate equally the n = 0 modes,
αu

0 = −αd
0 = √

N/2, and introduce perturbations of order√
N/2 × 10−4 for m �= 0 up to m = ±5 in Eq. (4). We include

the first m = ±15 modes in the simulation, thus truncating
the system of equations well above the highest relevant mode.
In this case, the excitation is formed by the pair of modes
m = ±1, which evolve with the same population within each
ring, thus conserving the angular momentum. For long times,
the periodic pattern in the evolution of the populations is no
longer accurately described by the two-state model since the
system does not keep the same population in the n = 0 modes
of the two rings. However, the variations in the period and
amplitude of the oscillations could be explained using the two-
state model, which suggests that the dynamics of the system
are highly sensitive to perturbations (see Fig. 3), i.e., a small
perturbation can cause the system to change the orbit. Thus,
by analogy, the perturbations appearing during the evolution
in the full model would lead to oscillations presenting small
changes in their period and amplitude. Also, the maximum
population that the excitations reach is lower than that of the
two-state model due to secondary excitations: the higher-order
modes that are also excited modify the dynamics of the main
excitation, m = ±1. In this case, the mode m = ±2 (yellow
line) reaches populations of order O(10−3), while higher-
order modes have smaller contributions.

IV. DYNAMICAL REGIMES

Thus far, we have studied the destabilization of the station-
ary states, which have a single OAM mode n populated with
the same number of particles in both rings. However, when
the initial population in each ring is not the same, tunneling

and interactions give rise to different dynamical regimes in
the system.

The dynamics of BECs trapped in double-well potentials
are known to present either Josephson oscillations or self-
trapping, depending on the ratio between the tunneling and
the nonlinear interactions [36]. In the Josephson oscillations
regime, the population performs complete oscillations be-
tween the two wells, while in the self-trapping regime, the
population remains mostly trapped in one well. In order to
find the self-trapping condition for our system, we initially
populate a single mode n and factorize the amplitudes as

αu/d
n =

√
Nu/d

n eiβu/d
n . The system of equations (4) can then

be rewritten in terms of the population imbalance, zm =
(Nu

m − Nd
m )/N , and the phase difference, δφn = βd

n − βu
n , as

a set of two coupled equations:

żn = −
√

1 − z2
n sin δφn,

δφ̇n = �zn + zn√
1 − z2

n

cos δφn, (14)

where � = γ N/(2κ ) = ε/κ and τ has been scaled to 2κτ .
Assuming that zn and δφn are canonically conjugate variables,
then ∂H/∂zn = δφ̇n and ∂H/∂δφn = −żn, and the correspond-
ing classical Hamilonian reads

H = 1
2�z2

n − cos δφn

√
1 − z2

n. (15)

Note that the Hamiltonian is equal for all n. Thus, the system
presents identical dynamics for all OAM modes. In order
to find the boundary between the regimes of self-trapping
and Josephson oscillations, we impose zn(τ ) = 0, which is
only fulfilled in the Josephson oscillations regime. Using en-
ergy conservation in (15) and denoting the initial parameters
zn(τ = 0) ≡ zn(0) and |δφn(τ = 0)| ≡ δφn(0), one reaches

�c = 2

(
cos δφn(0)

√
1 − z2

n(0) + 1

z2
n(0)

)
, (16)

which defines the phase boundary between the two regimes in
terms of the initial population imbalance, the phase difference,
and the ratio �. This condition is a generalization of the one
found in [35] for a BEC in a double-well potential. In addition,
analogous dynamics are obtained for the total imbalance and
phase difference in a system of stacked lattice rings in the deep
superfluid limit [16,43]. In this limit, the potential barriers
between the sites of the lattices are small enough that the
system resembles a couple of free rings. Figure 5 shows the
boundary given by (16) for different values of the initial phase
difference δφn(0) as a function of � = ε/κ and the initial pop-
ulation imbalance zn(0). The self-trapping regime occurs for a
sufficiently large imbalance and ratio � = ε/κ . As the phase
difference increases from 0 to π , the region of parameters for
which self-trapping occurs increases, and as one approaches
the limit δφn(0) → π , the minimum population imbalance to
obtain self-trapping approaches zn(0) = 0.

The inset in Fig. 5 shows the temporal evolution of the
population imbalance, z0, for z0(0) = 0.6, δφn(0) = 0, and
different values of �: � = 4 [Fig. 5(e)], � = 10 [Fig. 5(f)],
and � = 24 [Fig. 5(g)]. As the ratio � = ε/κ increases, the
oscillations become anharmonic until the average population
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FIG. 5. Boundary between the self-trapping and the Joseph-
son oscillations regimes as predicted by (16) for (a) δφn(0) = 0,
(b) δφn(0) = π/2, (c) δφn(0) = 3π/4, and (d) δφn(0) → π . Inset:
Time evolution of z0 for z0(0) = 0.6, δφ0(0) = 0, N = 4000, κ = 1,
and (e) � = 4, (f) � = 10, and (g) � = 24.

imbalance becomes nonzero. If one further increases �, the
amplitude of the remaining oscillations decreases and they
are eventually suppressed; then the population remains at the
initial imbalance.

Stability of the dynamical regimes

In this section we study numerically the stability of the dy-
namical regimes, Josephson oscillations, and self-trapping, in
the presence of perturbations in higher-order modes. Initially,
we populate the mode n = 0 with a certain imbalance z0(0)
between the rings and a phase difference of π and introduce
low-amplitude perturbations in higher-order modes of order√

N/2 × 10−4 for m �= 0 up to m = ±3. Then we also discuss
the case where the initial phase difference between the modes
with n = 0 is 0.

Figure 6 shows the different dynamics in the parameter
space [κ, ε] for z0(0) = 0.1 [Fig. 6(a)], z0(0) = 0.4 [Fig.
6(b)], and z0(0) = 0.75 [Fig. 6(c)]. Black and blue regions
indicate stable and unstable self-trapping, respectively, white
regions indicate stable Josephson oscillations, and green and
yellow regions indicate unstable Josephson oscillations. The
simulations run up to τ = 100, and the color gradients indi-
cate the decay times. The boundary between Josephson oscil-
lations and self-trapping is not modified by the perturbations,
and thus it is determined by Eq. (16) taking δφ0(0) = π .
For a small initial imbalance, Eq. (9) predicts accurately the
regions of stability of the dynamical regimes, as the initial
state resembles the stationary state [see Figs. 2 and 6(a)]. As
the initial imbalance gets larger, the structure of the unstable
regions becomes more involved [Figs. 6(b) and 6(c)].

The criteria for classification are the following. The stable
regimes are those for which the population of the perturbed
modes remains below 0.01. For stable Josephson oscillations,
the population imbalance of the main mode becomes 0 at
some point during time evolution, whereas in the stable self-
trapping regime it does not. The decay time of the unstable
regimes is defined as the time for which the total mode
populations, Nm, of the main mode and the perturbation modes
cross.

FIG. 6. Dynamical regimes in the parameter space [κ, ε] up
to τ = 100 with N = 4000 for (a) z0(0) = 0.1, (b) z0(0) = 0.4,
(c) z0(0) = 0.75, (d) z0(0) = 0.75, and (e) z0(0) = 0.9. Initial phase
difference π for (a)–(c) and 0 for (d) and (e). The square corresponds
to the parameters in Fig. 7(a); the circle, to those in Fig. 7(b); the
triangle, to those in Fig. 8; and the white rhombus, to those in Fig. 9.
For the semistable cases, the dynamics do not decay up to τ = 100.

The Josephson oscillations and self-trapping dynamics de-
cay into unstructured oscillations when higher-order modes
get excited. The system then remains in a state of nonperiodic
oscillations between the two rings that involves several modes.
Figure 7 presents examples of these dynamics for unstable
Josephson oscillations [Fig. 7(a)] and unstable self-trapping
[Fig. 7(b)], corresponding to the square in Fig. 6(c) and the
circle in Fig. 6(b), respectively.

Close to the boundary between the stable and the unstable
regimes, the system presents semistable Josephson oscilla-
tions and self-trapping. In these cases, the population of a
single excited mode ±m increases and decays periodically,
without destabilizing the dynamics of the main mode, n = 0.
Figures 8(a) and 9(a) show an example of semistable Joseph-
son dynamics and semistable self-trapping dynamics, respec-
tively. Figures 8(b) and 9(b) show the corresponding total
mode populations Ñu

m + Ñd
m = (Nu

m + Nd
m )/N , which present a

pattern analogous to those shown by Bogoliubov excitations
of the stationary state (see Fig. 4). Therefore, the semistable
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FIG. 7. Temporal evolution of the populations, Ñu/d
m = Nu/d

m /N
with N = 4000, for unstable Josephson oscillations (a) κ = 4, ε = 3,
z0(0) = 0.75 [square in Fig. 6(c)] and unstable self-trapping (b) κ =
1.5, ε = 3.5, z0(0) = 0.4 [circle in Fig. 6(b)]. The modes that grow
from τ = 5 onwards include m = ±1, ±2, ±3.

dynamics can be understood as Bogoliubov excitations of the
dynamical states modulated by tunneling.

Figures 6(d) and 6(e) show the different dynamics in the
parameter space [κ, ε] for initial imbalance z0(0) = 0.75 and
z0(0) = 0.9, respectively. For these cases, the initial phase
difference between the modes with n = 0 is 0. In these
cases the boundary between Josephson oscillations and self-
trapping is given by Eq. (16) taking δφ0(0) = 0 (see Fig. 5).
Consequently, the Josephson oscillations regimes are much
larger than those with an initial phase difference equal to
π [see Figs. 6(a)–6(c)]. As the initial phase difference is 0,
which corresponds to the symmetric state in the stationary
case, there is no mechanism of Bogoliubov destabilization
and the unstable regimes do not resemble the spectrum in

...

(a)

(b)

FIG. 8. Temporal evolution of semistable Josephson oscillations
for κ = 4.5, ε = 1, N = 4000, and z0(0) = 0.4 [triangle in Fig. 6(b)]
for (a) the populations in each mode and ring, Ñu/d

m = Nu/d
m /N , and

(b) the total mode populations, Ñu
m + Ñd

m . Note that the time axis has
a gap between τ = 0 and τ = 15 to show the relevant dynamics.

(a)

(b)

FIG. 9. Temporal evolution of semistable self-trapping for κ =
0.35, ε = 1.25, N = 4000, and z0(0) = 0.75 [rhombus in Fig. 6(c)]
for (a) the populations in each mode and ring, Ñu/d

m = Nu/d
m /N , and

(b) the total mode populations, Ñu
m + Ñd

m . The populations of the
modes αu

±1 remain below 0.01.

Fig. 2. Instead, there is an interactions threshold that depends
mainly on the imbalance above which the Josephson oscilla-
tions become unstable. For an initial imbalance z0(0) = 0.4,
both regimes are stable and the Josephson oscillations regime
occupies the vast majority of the considered parameter space.

The time scales considered in this section, which go up
to τ = 100, reach the order of 8 s for 87Rb, a ring radius of
ρ0 = 5 × 10−6 m, and an oscillator length of the harmonic
potentials a = 1 × 10−6 m. Within a time scale up to τ = 10,
which corresponds to 0.8 s, one would observe several Joseph-
son oscillations, as shown in Figs. 7(a) and 8(a). Therefore,
the described dynamics are within reach in state-of-the-art
experiments.

V. CONCLUSIONS

In this work, we have investigated a Bose-Einstein conden-
sate with repulsive interactions trapped in two rings in a stack
configuration. The stability and dynamics of the BEC have
been studied within mean-field theory and in terms of its OAM
modes. For the case of a single mode equally populated in
both rings and including small perturbations in other modes,
we have derived a two-state model that predicts the regions
of the parameter space supporting stable stationary states.
This model also describes the dynamics of the system after
destabilization and characterizes accurately the features of
the excitations. The analytical results of the two-state model
have been contrasted with the numerical integration of the full
model, finding a good qualitative and quantitative agreement.

Also, we have analyzed the dynamics of the system when
a single OAM mode is populated with an arbitrary population
imbalance between the two rings: the dynamical regimes of
Josephson oscillations and self-trapping. The boundary con-
dition between the two regimes has been analytically derived
in terms of the population imbalance and the corresponding
phase difference. We have found that the dynamics are equal
for all OAM modes and resemble the dynamics of a double-
well system. By numerical analysis, we have characterized
these dynamical regimes against perturbations in higher-order
OAM modes.
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APPENDIX A: TWO-STATE MODEL DERIVATION

In order to derive the two-state model in Sec. III B, Eq. (10), we take for simplicity the mode n = 0 for the stationary state,
with |αu

0 |2 = Nu
0 and |αd

0 |2 = Nd
0 . Then the system of equations (4) reduces to a set of six equations that can be expressed in

matrix form as

i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α̇u
0

α̇u
m

α̇u
−m

α̇d
0

α̇d
m

α̇d
−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Â ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αu
0

αu
m

αu
−m

αd
0

αd
m

αd
−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where the matrix Â reads
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ
(
2Nu−∣∣αu

0

∣∣2)
γαu

−m

(
αu

0

)∗
γαu

m

(
αu

0

)∗ −κ 0 0

γαu
0

(
αu

−m

)∗
m2+γ

(
2Nu−∣∣αu

m

∣∣2)
0 0 −κ 0

γαu
0

(
αu

m

)∗
0 m2+γ

(
2Nu−∣∣αu

−m

∣∣2)
0 0 −κ

−κ 0 0 γ
(
2Nd−∣∣αd

0

∣∣2)
γαd

−m

(
αd

0

)∗
γαd

m

(
αd

0

)∗

0 −κ 0 γαd
0

(
αd

−m

)∗
m2+γ

(
2Nd−∣∣αd

m

∣∣2)
0

0 0 −κ γαd
0

(
αd

m

)∗
0 m2+γ

(
2Nd−∣∣αd

−m

∣∣2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

with Nu/d = |αu/d
0 |2 + |αu/d

m |2 + |αu/d
−m |2 being the total number of particles in the u and d rings. We impose the initial condition

αu
0 = −αd

0 and add small-amplitude symmetric perturbations in the high-order modes ±m such that δαu
±m = δαd

±m. Due to
angular momentum conservation and the fact that the stationary state is in the mode n = 0, the conditions |αu

m|2 = |αu
−m|2 and

|αd
m|2 = |αd

−m|2 are fulfilled. Assuming that the phase difference between the perturbed modes stays approximately constant
during the time evolution and that |αd

±m| ≈ |αu
±m|, we can define αm ≡ αu

±m = αd
±m. We also assume that the initial condition

αu
0 = −αd

0 is maintained during the temporal evolution, so that we can also use Nu ≈ Nd = N/2. Applying all these conditions,
expression (A1) can be simplified to a set of three equations for αu

0 , αm, and αd
0 , which in matrix form reads

i

⎛
⎜⎝

α̇u
0

α̇m

α̇d
0

⎞
⎟⎠=

⎛
⎜⎜⎝

γ
(
N − ∣∣αu

0

∣∣2(
1 − 2

(
αm
αu

0

)2))
0 −κ

0 −κ + m2 + γ
(
N − ∣∣αm

∣∣2(
1 − ( αu

0
αm

)2))
0

−κ 0 γ
(
N − ∣∣αu

0

∣∣2(
1 − 2

( αm
αu

0

)2))
⎞
⎟⎟⎠

⎛
⎜⎝

αu
0

αm

αd
0

⎞
⎟⎠. (A3)

This system can be reduced further by noting that the first and last diagonal elements are equal. Then, defining α0 ≡ αu
0 , we

obtain the following two-state model:

i

(
α̇0

α̇m

)
=

(
γ
(
N − ∣∣α0

∣∣2(
1 − 2

(
αm
α0

)2)) + κ 0

0 −κ + m2 + γ
(
N − ∣∣αm

∣∣2(
1 − (

α0
αm

)2))
)(

α0

αm

)
. (A4)

APPENDIX B: CRITICAL POINTS DERIVATION

The critical points of the two-state model, discussed in Sec. III B, fulfill ˙|αm|2 = ζ̇ = 0. Imposing ˙|αm|2 = 0 in Eq. (11a),
we find

|αm|2 = 0, |αm|2 = N

4
, sin 2ζ = 0, (B1)
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where the first two trivial solutions correspond to the minimum and maximum values of |αm|2 that are due to particle
conservation. The critical points can then be found by imposing ζ̇ = 0 in Eq. (11b). For the trivial cases, the critical points
are (

cos 2ζ = 2κ − m2 − ε

ε
≡ A, |αm|2 = 0

)
, (B2a)

(
cos 2ζ = m2 − 2κ − ε/2

ε
≡ B, |αm|2 = N

4

)
. (B2b)

Due to the boundedness of the cosine in (B2a), the solution with |αm|2 = 0 exists if

m2

2
� κ � m2 + 2ε

2
, (B3)

and similarly, the solution with |αm|2 = N/4, Eq. (B2b), exists if

m2 − 3ε/2

2
� κ � m2 + ε/2

2
. (B4)

By studying the eigenvalues of the Jacobian at the critical points, these trivial solutions can be shown to be saddle points (see
Appendix C).

For the nontrivial solution, for which |αm|2 takes values different from 0 or N/4, the critical points are(
ζ = aπ, |αm|2 = m2 − 2κ + 2ε

14ε/N
≡ C

)
, (B5a)

(
ζ = (2a + 1)

π

2
, |αm|2 = 2κ − m2

2ε/N
≡ D

)
, (B5b)

where a ∈ Z. Taking into account the minimum and maximum values of |αm|2 due to particle conservation, the solutions with
ζ = aπ exist if

m2 − 3ε/2

2
� κ � m2 + 2ε

2
, (B6)

whereas those with ζ = (2a + 1)π/2 exist if

m2

2
� κ � m2 + ε/2

2
. (B7)

Note that the second set of solutions, Eq. (B5b), has a more restrictive condition than the first, Eq. (B5a). Similarly as before,
these solutions can be shown to be centers, with the trajectories orbiting around them (see Appendix C).

APPENDIX C: PROPERTIES OF THE CRITICAL POINTS

For the two-state model derived in Sec. III B, the behavior of the system around the critical points can be obtained by studying
the eigenvalues of the Jacobian at the critical points. The Jacobian reads

DF =

⎛
⎜⎜⎜⎝

∂ ( ˙|αm|2)

∂ (|αm|2)

∂ζ̇

∂ (|αm|2)

∂ ( ˙|αm|2)

∂ζ

∂ζ̇

∂ζ

⎞
⎟⎟⎟⎠ =

(
γ
(
8|αm|2 − N

)
sin 2ζ 3γ + 4γ cos 2ζ

4γ |αm|2(2|αm|2 − N
2

)
cos 2ζ −2γ

(
4γ |αm|2 − N

2

)
sin 2ζ

)
. (C1)

For the critical point (A, |αm|2 = 0),

DF (A, |αm|2 = 0) =
(−γ N sin 2ζ 3γ + 4γ cos 2ζ

0 γ N sin 2ζ

)
. (C2)

The corresponding eigenvalues are real and have opposite sign, λ = ±γ N sin 2ζ , thus, the critical point is a saddle point. For
the limiting values of κ in the existence condition of the critical point, Eq. (B3), m2/2 and (m2 + 2ε)/2, ζ takes the values
(2a + 1)π/2 and aπ , respectively. In those cases, the eigenvalues become 0 and the behavior around the critical point cannot be
inferred from this method.

Similarly, for (B, |αm|2 = N/4),

DF

(
B, |αm|2 = N

4

)
=

(
γ N sin 2ζ 3γ + 4γ cos 2ζ

0 −γ N sin 2ζ

)
, (C3)
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and the eigenvalues are real numbers of opposite sign, λ = ±γ N sin 2ζ . Thus, this critical point is a saddle point, except for the
limiting cases in Eq. (B4).

For the critical point (ζ = aπ , C),

DF (ζ = aπ, C) =
(

0 7γ

4γ |αm|2(2|αm|2 − N
2

)
0

)
, (C4)

and the eigenvalues are

λ = ±
√

28γ 2|αm|2
(

2|αm|2 − N

2

)
. (C5)

Using the |αm|2 value of the critical point in Eq. (B5a), these eigenvalues are imaginary, thus the stationary point is a center, and
the trajectories precede around it. For the limiting values of κ in Eq. (B6), (m2 − 3ε/2)/2 and (m2 + 2ε)/2, |αm|2 becomes N/4
and 0, respectively, in which case both eigenvalues are 0 and the behavior around the critical point cannot be determined.

For (ζ = (2a + 1)π
2 , D),

DF
(
ζ = (2a + 1)

π

2
,D

)
=

(
0 −γ

−4γ |αm|2(2|αm|2 − N
2

)
0

)
, (C6)

with eigenvalues

λ = ±
√

4γ 2|αm|2
(

2|αm|2 − N

2

)
. (C7)

As before, these stationary points are centers, and the trajectories precede around them, except for the limiting values of κ in
Eq. (B7).
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