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Simulation of a nodal-line semimetal in amplitude-shaken optical lattices

Tanji Zhou ,1,2 Zhongcheng Yu,1,2 Zhihan Li,1 Xuzong Chen,1 and Xiaoji Zhou1,3,*

1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics,
Peking University, Beijing 100871, China

2School of Physics, Peking University, Beijing 100871, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

(Received 7 March 2020; accepted 6 August 2020; published 26 August 2020)

As the research of topological semimetals develops, semimetals with nodal-line rings have come into people’s
vision as a new platform for studying electronic topology. We propose a method that uses ultracold atoms in
a two-dimensional amplitude-shaken bipartite hexagonal optical lattice to simulate the nodal-line semimetal,
which can be achieved in the experiment by attaching one triangular optical lattice to a hexagonal optical
lattice and periodically modulating the intensity and position of the triangular lattice. By adjusting the shaking
frequency and well depth difference of the hexagonal optical lattice, a transformation from Dirac semimetal to the
nodal-line semimetal is observed in our system. This transformation can be demonstrated by the Berry phase and
Berry curvature, which guides the measurement. Furthermore, the amplitude shaking and C3 symmetry generate
a time-reversal-symmetry-unstable mode, and the proportion of the mode and the trivial mode of the hexagonal
lattice controls the transformation. This proposal paves a way to study nodal-line semimetals in two-dimensional
systems, and it contributes to the application of nodal-line semimetals.
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I. INTRODUCTION

Since Hermann Weyl found a massless solution to the
Dirac equation [1] in 1929, research into Weyl fermions has
attracted intense attention. Last century, the neutrino was con-
sidered as a strong candidate for the Weyl fermion, until the
observation of neutrino oscillation showed that the neutrino
is not massless [2]. Recently, a breakthrough about Weyl
fermions has been achieved—a gapless semimetal, named
a Weyl semimetal, was realized in photonics, in condensed
matter, and with cold atoms [3–7]. In a Weyl semimetal,
low-energy excited electrons, at Weyl points, behave as Weyl
fermions [8–10]. Two Weyl points with opposite chirality can
be considered as splitting from a Dirac point by breaking time-
reversal symmetry or inversion symmetry [10,11]. During this
research, a new topological semimetal was discovered, which
is called a nodal-line semimetal [12].

As one kind of nontrivial topological semimetals, the
nodal-line semimetal is different from a Weyl semimetal and
a Dirac semimetal [13–16]. In a Weyl semimetal and a Dirac
semimetal, the bands cross at points. However, the valence
and conduction bands cross and form a ring-shaped nodal
line in nodal-line semimetals [17–19]. In bulk states, the
unusual electromagnetic and transport response of nodal-line
semimetals have attracted intense attention [20–23]. In terms
of surface states, Weyl semimetal has the Fermi arc, which
is the intersection of the two-dimensional (2D) surface of the
Brillouin zone and stretches between two Weyl points. While
in nodal-line semimetals, the so-called drumhead-like states
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are the flat bands nestled inside of the circle on the surface
projected from the bulk nodal line [24,25], which is different
from the Fermi arc and may demonstrate the presence of inter-
actions [23]. Furthermore, a nodal-line semimetal is expected
to have high fermion density at the nodal-line ring due to the
crossing of two bands, which may contribute to filling the
gap between fundamental physics of topological materials and
practical applications in quantum devices [26].

On the other hand, the development of the artificial gauge
field has paved the way for simulating topological materi-
als by using ultracold atoms [27–35]. Furthermore, due to
their high controllability, ultracold atoms in optical lattices
are widely used to simulate unique topological phenomena,
including the measurement of the second Chern number [36],
the observation of topologically protected edge states [37,38],
and the chiral interaction of Weyl semimetals [39–41]. With
the development of corresponding technologies, recently,
three-dimensional (3D) spin-orbit coupled ultracold atoms
in an optical lattice have been used in the simulation of
nodal-line semimetals [42]. In condensed-matter systems, due
to its complexity, detection of the nodal-line ring is always
influenced by other bulk bands [23–25]. In comparison, op-
tical lattices are more controllable and can greatly remove
influence from other bulk bands to directly observe nodal-line
ring.

In this paper, we propose a method to simulate a nodal-line
semimetal based on ultracold atoms in an amplitude-shaken
bipartite hexagonal optical lattice. By periodically changing
the lattice depth of the bipartite hexagonal optical lattice, a
time-reversal-symmetry-unstable mode is imported into the
system, which corresponds to the nodal-line phase. As the
frequency and shaking amplitude change, the energy spectrum
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FIG. 1. Schematic diagram of 2D bipartite hexagonal lattice. (a) The lattice depth at point A and B of the bipartite hexagonal lattice are
different and can be modulated periodically. �v j are lattice vectors, �uj are vectors connecting nearest-neighbor points ( j = 1, 2, 3). a is the
distance between nearest-neighbor points. (b) We change the amplitude shaking of the lattice depth at A and B as the form of cosine function
with a phase difference π , where the orange solid line and green dotted line denote points A and B, respectively. d is the difference of the
average lattice depth between points A and B. ω and T denote the frequency and period of shaking, respectively. VA and VB are the lattice depth
of a trivial hexagonal optical lattice, and δ = VB − VA is the well difference between points A and B. � is the shaken amplitude of well depth.

of the optical lattice transforms from a Dirac semimetal
to a nodal-line semimetal. Then we discuss the symmetry
of the system which causes the transformation and analyze
the topological characteristics of the shaking optical lattice.
The Berry curvature and Berry phase are demonstrated in the
transformation process, which provides a method to detect the
transformation in further experiments. Finally, the influence
of the well-depth difference of the hexagonal optical lattice on
the nodal-line phase is specifically discussed, which indicates
the effect of crystalline symmetries on the nodal-line phase.
Combining with the advantages of ultracold atoms, it is likely
to pioneer a new approach to nodal-line semimetal in two-
dimensional systems. Moreover, it may serve as an impor-
tant basis for future studies of the symmetry of nodal-line
semimetals. Different from existing works [42], our system
has three distinguishing features: (1) We used amplitude-
shaken optical lattice to simulate nodal-line semimetal, which
is effective and easy to be implemented, while a great majority
of previous methods use spin-orbit coupling (SOC) in an
optical lattice. (2) Our method can simulate a two-dimensional
nodal-line semimetal, while the existing works mainly focus
on three-dimensional systems. (3) The band structure in our
system takes the form of a semiconductor, where the conduc-
tion and valence bands touch at the nodal-line ring without
crossing each other, while existing works about nodal-line
semimetals are mainly of semimetal form, which means the
existence of an overlap between the bottom of the conduction
band and the top of the valence band. This difference directly
influences the distribution of the density of states, which may
cause unusual electromagnetic and transport responses. Here
we use the common name “nodal-line semimetal” to describe
our system, while the name “nodal-line semiconductor” may
be more suitable in practical terms.

The remainder of this paper is organized as follows: In
Sec. II, we introduce a particular model which is called the

amplitude-shaken bipartite hexagonal optical lattice and pro-
pose its feasible experimental scheme. In Sec. III, we describe
the calculation to get effective Hamiltonian and derive the
energy dispersion of our system. The band structure during
the transformation process from Dirac semimetal to nodal-line
semimetal is shown and explained by symmetry in Sec. IV.
The discussion about topological properties by calculating
Berry curvature and Berry phase in a certain area and the study
of nodal-line phase with well depth difference are shown in
Sec. V. Then we give a conclusion in Sec. VI.

II. MODEL DESCRIPTION AND FEASIBLE
EXPERIMENTAL SCHEME

A. Model description

In this model, the amplitude shaking is applied to a
trivial honeycomb optical lattice, and the relationship be-
tween well depth Vi and time t is shown in Fig. 1,
where i = A, B. In this figure, A and B are different points
which are inequivalent in a honeycomb lattice structure
with a difference of well depth d . tNN and tNNN denote
the nearest-neighbor hopping coefficient and next-nearest-
neighbor hopping coefficient, respectively. And �v j are lattice
vectors, where �v1 = (−3a/2,−√

3a/2), �v2 = (0,
√

3a), and
�v3 = (3a/2,−√

3a/2). �u j are vectors connecting nearest-
neighbor points, where �u1 = (−√

3a/2, a/2), �u2 = (a, 0),
and �u3 = (−√

3a/2,−a/2). a = 2
√

3λ/9 is the distance be-
tween nearest-neighbor points, which is the side length of the
smallest hexagon, where λ is the wavelength of the lattice
laser beam.

The amplitude-shaken model is shown in Fig. 1(b).The
lattice depths of points A and B shake periodically in the
form of a cosine function at a fixed phase difference π . In
the physical image, the hexagonal lattice can be divided into
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two sets of amplitude-shaking triangular lattices, where the
amplitudes of each shake has a phase difference π between
them. In the figure, ω is the angular frequency of the periodic
shaking, and � is the shaking amplitude, which is small
enough to be considered as a perturbation compared with VA,B,
where VA,B is the lattice depth of points A and B.

Considering ultracold atoms, we neglect the weak atomic
interactions, as demonstrated in typical experiments [43], and
start with a single-atom model in the honeycomb lattice. The
Hamiltonian Ĥ of the system can be written as the zeroth-
order Hamiltonian of the honeycomb lattice Ĥ0 adding a first-
order perturbation Ĥ1 caused by amplitude shaking,

Ĥ = Ĥ0 + Ĥ1. (1)

According to the single-particle two-band tight-binding
model, Ĥ0 can be written as

Ĥ0 =
∑

i

Vi0c†
i ci +

∑
i �= j

t ′
i jc

†
i c j, (2)

where i represents each node of the honeycomb lattice, Vi0

equals VA0 and VB0 for A and B sites, respectively, with a
difference VB0 − VA0 = d . The operators c†

i and ci denote the
creation and annihilation operator at node i. t ′

i j denotes the
hopping coefficient between point i and j. And

∑
i �= j denotes

summation over all pairs of different points.
Next, we give the expression Ĥ1 when the shaking of the

lattice depth takes the following form as:

Vi(t ) = Vi0 + χ (i)
�

2
cos (ωt ), (3)

where ω denotes the frequency of shaking. χ (i) at point A
equals 1, and at point B equals −1. So Ĥ1 reads

Ĥ1 =
∑

i

χ (i)
�

2
cos (ωt )c†

i ci +
∑
i �= j

δti j (t )c†
i c j, (4)

where δti j (t ) is the change in the hopping coefficient due to
amplitude shaking.

Therefore, the Hamiltonian Ĥ of the system can be written
as

Ĥ =
∑

i

Vi(t )c†
i ci +

∑
i �= j

ti jc
†
i c j, (5)

where ti j (t ) = t ′
i j + δti j (t ) is the hopping coefficient between

point i and j as a function of time. In subsequent calculations,
we only keep the nearest and the next-nearest hopping coeffi-
cient.

During the shaking process, since each pair of next-nearest
sites belong to the same category of points, which follows the
identical rule of changing in the lattice depth, the difference in
well depth between them is always zero. Thus we can consider
the next-nearest hopping coefficient tNNN as a constant. And
the nearest hopping coefficient tNN equals one constant t0,
adding one term which is proportional to the lattice depth
difference between point A and B (see Appendix A), so we
define tNN as

tNN = t0 + t1 cos ωt, (6)

where t1 is a constant which has units of energy.

FIG. 2. Diagram of proposed experimental scheme. (a) Using
three intersecting elliptical polarized laser beams with the enclosing
angle of 120◦, the bipartite hexagon is formed. Each laser beam
is formed by combining two linearly polarized laser beams with
polarization directions in the lattice plane (Vin) and perpendicular
to the lattice plane (Vout). (b) Hexagonal lattice corresponds to
Vout and triangular lattice corresponds to Vin. (c) By changing the
relative phases of the three lasers, two different methods of overlying
hexagonal lattice and triangular lattice are formed. In situation (c1),
the lattice depth of point B is higher than at point A. When the
intensity of the triangular decreases to 0, we move the triangular
lattice instantaneously in order to let the lattice depth at point A
become higher than at point B, as is the situation in panel (c2).

B. Feasible experimental scheme

The above 2D amplitude-shaking model can be constructed
with the following experimental scheme: This scheme is easy
to expand to the 3D system by adding a laser beam perpen-
dicular to the lattice plane [44]. As shown in Fig. 2(a), we use
three elliptical polarized laser beams with an enclosing angle
of 120◦ to each other to form a bipartite optical hexagonal
lattice, which has been demonstrated in recent works [45,46].
The total potential of the optical lattice is written as

V (�r ) = −Vout

∑
i′, j′

cos[( �ki′ − �k j′ ) · �r − (θi′ − θ j′ )]

+ 1

2
Vin

∑
i′, j′

cos[( �ki′ − �k j′ ) · �r], (7)

where i′, j′ = 1, 2, 3 represent the three directions of laser
wave vectors, and �k1 = (

√
3π,−π )/λ, �k2 = (−√

3π,−π )/λ,
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�k3 = (0, 2π )/λ are the three wave vectors. λ is the wave-
length of the laser beam, Vout and Vin denote the components
perpendicular and parallel to the lattice plane, which can
be controlled independently. And the three angles θ1, θ2, θ3

represent the relative phases of the elliptical polarization of
the laser beams.

It can be considered as a triangular optical lattice adding
to a hexagonal one, where Vout corresponds to the triangular
optical lattice and Vin corresponds to the hexagonal optical
lattice, as shown in Fig. 2(b). Through adjusting the phase θi,
the position of the triangular optical lattice can be modulated.
At first, the position of two sets of lattices is as shown in
Fig. 2(c1), where θ1 = θ2 = θ3 = (2π/3, 4π/3, 0). So, the
lattice depth at point A is the superposition of potential wells
of two sets of optical lattices, while at point B the lattice depth
is the superposition of the potential well of the hexagonal
optical lattice and the potential barrier of the triangular optical
lattice. Then, by modulating Vout in the form of the cosine
function, the lattice depth at points A and B can change in
the form of the function | cos |. But in this way, VB is always
higher than VA. So, to get the shaking curve as shown in
Fig. 1(b), we need to adjust the position of the triangular
optical lattice to make the lattice depth at point A and B
reverse, by modulating θ1, θ2, θ3 to (2π/3, 4π/3, 0) when the
intensity of the triangular lattice reduces to zero. Figure 2(c2)
shows the position of the triangular optical lattice in this
situation. The time of reversion, in theory, can be reached
within several microseconds, and the shaking period in our
protocol is around 500 μs. As long as the time of reversion
is short enough compared with the oscillating period, the
continuity of this process remains intact.

III. EFFECTIVE HAMILTONIAN AND ENERGY
DISPERSION RELATION OF THE FLOQUET SYSTEM

To study a nodal-line semimetal, we first calculate the band
structure of the system. In the above section, we derive the
Hamiltonian of the system as a function of time in Eq. (5).
In this section, we introduce the method to drive the effective
Hamiltonian and get the band structure of the system, which
can be considered as averaging Ĥ over time.

To start with, we act a unitary transformation on Ĥ . Define
unitary operator Û

Û = exp

(
i

h̄

∑
i

∫ t

0
dτVi(τ )c†

i ci

)
. (8)

Through this unitary transform, we get the e-index form Ĥ ′
(see Appendix B)

Ĥ ′ = Û

(
Ĥ (t ) − ih̄

∂

∂t

)
Û † −

(
−ih̄

∂

∂t

)

= −d

2

∑
i

(a†
i ai − b†

i bi ) −
∑
i �= j

ti je
izi j sin ωt c†

i c j, (9)

where zi j = �
2ωh̄ [χ (i) − χ ( j)] characterizes the responses of

amplitude shaking at different sites.
Next, the effective Hamiltonian can be obtained by using

high-frequency expansion. We only keep up to first-order
terms, and the effective Hamiltonian takes the form (for more

details see Appendix C)

Heff = H (0)
eff + 1

h̄ω
H (1)

eff = Hf 0 +
∞∑

n=1

[Hn, H−n]

nh̄ω
, (10)

where Hf 0 is the zeroth-order term, and Hn means the einωt

term Fourier expansion coefficients of the Hamiltonian in
Eq. (9). Then we get the kernel of the effective Hamiltonian:

Heff = Heff,0 Î + Heff,xσ̂x + Heff,yσ̂y + Heff,zσ̂z, (11)

where

Heff,0 = −2tNNN

3∑
j=1

cos(�k · �v j ),

Heff,x = −t0J0(β )
3∑

j=1

cos(�k · �u j ),

Heff,y = −t0J0(β )
3∑

j=1

sin(�k · �u j ),

Heff,z = 8t0t1
�

J 2
1 (β )

⎛
⎝ 3∑

j=1

cos(�k · �v j ) + 3

2
− δ

⎞
⎠.

σ̂x, σ̂y, σ̂z are Pauli matrices, and �k is the wave vector of the
atomic state function. Jn means the nth-order Bessel function
of the first kind. Here we define the shaking factor β and δ to
describe the shaking as:

β ≡ �

h̄ω
, (12)

δ ≡ d/2

8t0t1J 2
1 (β )/�

. (13)

β and δ are the main parameters affecting the effective
Hamiltonian since they include the shaking frequency ω,
the shaking amplitude �, and the difference of well depth
d . By solving for eigenvalues of the kernel of the effective
Hamiltonian [Eq. (11)], the energy dispersion relation E (�k) of
lowest two bands can be gotten

E±(�k) = Heff,0 ±
√
H2

eff,x + H2
eff,y + H2

eff,z. (14)

Here we set δ = 3/2 to eliminate the constant term in
the bracket of Heff,z, which makes this system better reflect
the effects of shaking. Then, the energy dispersion relation
in Eq. (14) mainly depends on the parameter β = �/h̄ω,
and hopping coefficients t0 and t1 also depend on � (see
Appendix A). Further discussion about the different values of
δ are given in Sec. VI.

IV. THE TRANSFORMATION FROM DIRAC SEMIMETAL
TO NODAL-LINE SEMIMETAL

The value of Jn(β ) will change as one of the shaking
factors β changes, as shown in Fig. 3(a), where the different
value of J0 and J1 correspond to β. With J1(β ) = 0, Heff,z is
zero, but Heff,y has a finite quantity. E+(�k) and E−(�k) equals
to each other at six Dirac points, which performs as a Dirac
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FIG. 3. Band structure of the system. Panel (a) shows the varia-
tion curve of J0(β ) and J1(β ), when β changes from one of zeros of
the zeroth-order Bessel function J0 (β = 2.4048) to one of zeros
of the first-order Bessel function J1 (β = 3.8317). And the four
dot-dashed red lines mark four characteristic points during the trans-
formation, at β = 2.43, 2.50, 2.60, 2.90, which is to show the main
character of the transformation process later in Fig. 4. (b) The band
structure of a Dirac semimetal. (b1) When J1(β ) = 0, the optical
lattice performs as a Dirac semimetal. (b2) is the sectional view of
over-momentum zero corresponding to panel (b1), where ky has been
set to zero and we focus on the change of energy with kx . (c) The
band structure of the nodal-line semimetal. (c1) When J0(β ) = 0,
the optical lattice performs as a nodal-line semimetal. Panel (c2)
shows the sectional view of the over-momentum zero corresponding
to panel (c1). In this situation, conduction band and valence band
touch at ring k2

x + k2
y = ( 4π

9 )2/a2. In the figure, k0 = 4π

3
√

3a
is the

distance from the center of the first Brillouin zone to the Dirac point.

semimetal, as shown in Fig. 3(b1). It is worth mentioning
that, although shaking breaks the inversion symmetry, the gap
between the upper and lower band is still closed at the Dirac
point. Figure 3(b2) is the sectional view of Fig. 3(b1). In the
figure, the blue line means the upper band and the dashed red
line represents the lower band, which touches the former at
the edge of the Brillouin zone.

In another situation for J0(β ) = 0, Heff,x and Heff,y are
zero, but Heff,z is nonzero. E+(�k) and E−(�k) equals each
other at the ring k2

x + k2
y = ( 4π

9 )2/a2. This energy disper-
sion relation performs as a nodal-line semimetal, as shown
in Fig. 3(c1). The upper and lower band touch inside the
first Brillouin zone, which differs from the case in a Dirac
semimetal where the touching point is at the vertices of the
first Brillouin zone. The most noteworthy feature of the nodal-
line semimetal is that nodes of two bands are continuous and
form a so-called nodal-line ring, wherein our model locates

FIG. 4. The transformation of band structure as β changes. The
band structure for the intermediate states of Dirac and node-line
semimetal, at β = 2.43, 2.50, 2.60, 2.90 for panels (a)–(d), respec-
tively, which show the intermediate states of two modes, which
correspond to the four lines in Fig. 3(a). Other parameters are chosen
to be the same as in Figs. 3(b) and 3(c).

at k2
x + k2

y = ( 4π
9 )2/a2. Figure 3(c2) is a sectional view of

Fig. 3(c1). The two bands touch at the nodal-line ring, and at
the edge of the Brillouin zone, the gap between the two bands
is open.

When β changes from J0(β ) = 0 to J1(β ) = 0, the system
transforms from a Dirac semimetal to a nodal-line semimetal.
Figure 4 shows the band structure for the other value between
J0(β ) = 0 and J1(β ) = 0 corresponding to the four vertical
dot-dashed red lines and two colorful curves in Fig. 3(a).
When the energy spectrum gradually varies from nodal-line
semimetal to Dirac semimetal, the touching ring gradually
opens as the Dirac points gradually close, as shown in
Figs. 4(a)–4(d). In the experiment, β can be changed continu-
ously by fixing the amplitude of the lattice-depth shaking and
adjusting the rotating frequency continuously to observe the
transformation from Dirac semimetal to nodal-line semimetal.

In Figs. 3 and 4, the parameters are chosen from the experi-
mental parameters of 87Rb: V0 = 10.0Er , t0 = 0.1538Er , t1 =
0.0118Er , tNNN = 7.689×10−4Er , and � = 0.50Er , where Er

is the atomic recoil energy of an electron in our honeycomb
lattice.

The transformation from Dirac semimetal to nodal-line
semimetal can be explained by symmetry as follows: The
impact of amplitude shaking is reflected in the Hamiltonian,
so we first study the Hamiltonian Ĥ ′. Through Jacobi-Anger
expansion (ignoring terms unrelated to β), the Hamiltonian Ĥ ′
can be written in the following form

Ĥ ′ = −
∑

〈i, j〉 and i �= j

ti je
izi j sin ωt c†

i c j

= −
∑
〈i j〉

J0(β )tNN c†
i c j − (eiωt + e−iωt )

×
∑
〈i j〉

J1(β )tNN c†
i c j − o (tNN c†

i c j ), (15)
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FIG. 5. Two shaking modes of the system. The result of Fourier
transform of Hamiltonian Ĥ ′ reflects two shaking modes of the
system, where Mode I is a bipartite hexagonal lattice mode and Mode
II is a nontrivial time-reversal-symmetry-unstable mode, which cor-
responds to a nodal-line semimetal.

where
∑

〈i j〉 means the sum of nearest-neighbor lattice nodes,

and o(tNN c†
i c j ) represents the higher-order infinitesimal term

considering the pairs of sites with farther distance between
them than the next-nearest-neighbor term compared with
tNN c†

i c j . So the system mainly is composed of two modes, the
weights of which are J0(β ) and J1(β ).

As shown in Fig. 5, the expanding term of Hamiltonian Ĥ ′
can be divided into two terms. The first term corresponds to
Mode I, which is a bipartite hexagonal lattice Mode. When
J1(β ) = 0, only Mode I exists in the system, so the system
performs like an ordinary Dirac semimetal. In the situation,
Dirac points are closed due to the spatial-inversion-symmetric
potential energy in Mode I.

The second term of Hamiltonian Ĥ ′ corresponds to Mode
II, which consists of two symmetrical rotating lattices. Mode
II is the same as Mode I, both of which have time-reversal
symmetry, but as opposed to Mode I, the time-inversion
symmetry of Mode II is unstable. In our system, the phase
difference is π , so the difference of well depth can be written
as a cosine function, and the amplitude of two submodes
are equivalent to each other. If we change the phase differ-
ence, the form of the well depth difference between points
A and B change consequently, which causes the two sub-
modes of Mode II to be asymmetric and leads to broken
time-reversal symmetry. When J0(β ) = 0, Mode I vanishes
while Mode II remains existing in the system, so its va-
lence and conducting band touch at a ring, performing as
a nodal-line semimetal. When β is between the zeros of
J0 to J1, the system is in the intermediate state of two
modes.

V. BERRY CURVATURE AND BERRY PHASE

Considering that this is a two-dimensional system, in this
section, we calculate the Berry curvature and Berry phase
rather than winding number to provide a measurable quan-
tity in the experiment during the transformation from Dirac
semimetal to nodal-line semimetal.

From Eq. (11), we can define �h as

�h = Heff,xêx + Heff,yêy + Heff,zêz, (16)

where êx, êy, êz are the basis vectors in the x, y, z directions
of momentum space. The role that �h plays is similar to a
magnetic-field coupling with the vector of Pauli matrices
(σ̂x, σ̂y, σ̂z ). By solving the eigenequations of the effective
Hamiltonian, we get

ψ+ = 1√
2h(h + h3)

(
h3 + h

h1 − ih2

)
, (17)

ψ− = 1√
2h(h − h3)

(
h3 − h

h1 − ih2

)
, (18)

where �h = h1êx + h2êy + h3êz, h = (h2
1 + h2

2 + h2
3)1/2.

Two components Ai (i = 1, 2) of Berry connection �A of
the lowest band can be calculated from ψ− as

Ai(�k) = i〈ψ−|∂ki |ψ−〉 = −h2∂ki h1 − h1∂ki h2

2h(h − h3)
. (19)

Then the Berry curvature of the lowest band can be calculated
as

��(�k) = −∇ × �A(�k). (20)

The z component of the Berry curvature is

�3 = −∂A2

∂k1
+ ∂A1

∂k2
. (21)

Hence the Berry phase can be calculated from the Berry
curvature

γ =
∫

S
d �S · ��(�k) =

∫
S

dS �3(�k). (22)

Here S denotes the area in reciprocal space. Figure 6
shows the Berry curvature in the transformation from the
nodal-line semimetal to the Dirac semimetal. In the figure,
the values of β are selected according to the intersections of
four vertical dot-dashed red lines and two colorful curves in
Fig. 3(a). When β is near 2.4048 (one of the zeros of J0), the
system is nearly a nodal-line semimetal, the Berry curvature
of which is nontrivial at the nodal-line ring. The distribution
of Berry curvature can naturally divide into six parts, where
the numerical values of adjacent parts are of opposite sign,
and the sum of the six parts equals to zero, which is protected
by time-reversal symmetry. With the system transforming to
Dirac semimetal, while β increases from 2.4048 to 3.8317
(the nearest zero of J1), those positive and negative parts of
Berry curvature respectively become closer together. Finally,
those parts converge on six Dirac points and keep shrinking
to approach the distribution in the case of Dirac semimetal.
Because the shrinking of Berry curvature into one point makes
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FIG. 6. The change of Berry curvature during the transformation
process. (a)–(d) Berry curvature in the reciprocal space in the process
of the system transforming from nodal-line semimetal to Dirac
semimetal. β = 2.43, 2.50, 2.60, 2.90, which is correspond to the
four lines in Fig. 3(a), respectively. The dashed equilateral triangle
denotes the integral region S of the Berry phase, which goes around
one vertex of the first Brillouin zone.

it difficult to distinguish in the figure, here we only show the
result up to β = 2.90 in Fig. 6.

The red dashed equilateral triangle which connects the
center of one site and two adjacent sites in Fig. 6 shows the
path around one Dirac point, and we study the change of
the Berry phase along the path in the transformation. Gener-
ally the path to calculate berry phase should avoid the passing
Berry-curvature singularities [47], but in our system, Berry-
curvature singularities will change from Dirac points to nodal-
line ring during the transformation. It is impossible to choose a
path along a Dirac point disjointing with any singularities in a
transformation. Hence we choose the equilateral triangle path
which is along a Dirac point and passes the high-symmetry
point of the Brillouin zone. Figure 7 shows the result of
the Berry phase as β increases from 2.408 to 3.70 (between
zeros of J02.4048 to J13.8317). When the system is nearly
a nodal-line semimetal, the Berry phase becomes close to
π/3, which corresponds to the situation in Fig. 6(a). When
the system is near a Dirac semimetal, our Floquet system
gets the same result as in a bipartite hexagonal lattice, and
the Berry phase around the Dirac point comes close to π .
In the transformation procession, as is shown in Figs. 6(a)–
6(d), the Berry phase around the Dirac point increases
continuously, with the Berry curvature shrinking into one
point.

Above, we focus δ = 1.5 and adjust β to observe the
transformation from Dirac semimetal to nodal-line semimetal.
Next, we set β = 2.4048 and study the change of the nodal-
line phase while the value of δ changes. The band structure of

FIG. 7. Berry phase around a Dirac point during the transforma-
tion. Here we set δ = 3/2. In the figure, the red circles are simulated
data points, and the red line is the fitted curve. The two black dotted
lines mark the start and end Berry phase during the transformation.
When the system is a Dirac semimetal, the Berry phase is equal to
π . And when the system transforms to a nodal-line semimetal, the
Berry phase changes continuously to π/3.

the nodal-line phase with different δ is shown in Fig. 8(a). In
the figure, by changing the well difference δ, different band
structures of the nodal-line phase are gotten. When δ < 0,
the upper and lower bands do not intersect with each other;
when δ ∈ (0, 0.5), the nodal line appears in the first Brillouin
zone, they are six discrete curves with C6 symmetry; when
δ ∈ (0.5, 1.5), the nodal line becomes a closed unrounded
loop around the center of the first Brillouin zone; when
δ ∈ (1.5, 4.5), the nodal line is a circle, the radius of which
decreases as δ increases. When δ = 4.5, there is a single node
at the center of the first Brillouin zone, and two bands will be
gapped for δ > 4.5.

The change of the Berry phase around the closed path in
Fig. 6 with the change of δ and symmetry analysis are studied
for fixed β = 2.4048 in nodal-line phases (see Appendix D).

In our system, the Chern number is not a good measurable
quantity because, in our system, the Chern number is always
zero. The integral of Berry curvature along the edge of the
first Brillouin zone gives the Chern number. Due to the
protection of time-reversal symmetry, the integral is always
zero.

Recently, many experiments implemented with ultracold
atoms in an optical lattice system have focused on studying
the Berry curvature or other topological invariant [40,48,49],
and some researchers among them have developed mature
technology to map the Berry curvature [50]. So our result
of Berry curvature and Berry phase can be verified in future
experiments using existing technology.

VI. CONCLUSIONS

In summary, we propose a feasible scheme to simulate
nodal-line semimetals with ultracold atoms in an amplitude-
shaken optical lattice. We derive the effective Hamiltonian of
the Floquet system and, by calculating the band structure, the
transformation from Dirac semimetal to nodal-line semimetal
is observed. When the shaking factor β, which is determined
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FIG. 8. The band structure of the nodal-line phase with δ

changes. (a1)–(a6) The front view of the band structure for the
nodal-line phase at β = 2.4048, where δ = −0.5, 0.3, 0.5, 1.5, 4.5,
5.0 from (a1) to (a6), respectively. (b1)–(b6) The top view of the band
structure for the nodal-line phase at β = 2.4048, where δ = −0.5,
0.3, 0.5, 0.7, 1.5, 4.5 from (b1) to (b6), respectively. The red solid
hexagon denotes the boundary of the first Brillouin zone.

by the shaking amplitude and frequency, is at the zeros of
the first-order Bessel function of the first kind, the band
structure performs as a Dirac semimetal, and when shaking
factor is at the zeros of the zeroth-order Bessel function, the
band structure performs as a nodal-line semimetal. Through
a Fourier transform, we divide the shaking into two modes,
which explains the above transformation. The change of Berry
curvature and Berry phase during the transformation process
shows the topological characteristics of our system. However,
if we set the phase difference of amplitude oscillation of sites
A and B to not be π exactly, the time-reversal symmetry of
the system will be broken, which may lead to the research of
new topological semimetals.
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FIG. 9. The theoretical calculation of the nearest-neighbor hop-
ping coefficient J as the difference in well depth changes. The
nearest-neighbor hopping coefficient in a hexagonal optical lattice
nearly changes linearly as the well depth difference between the
lattice depth of points A and B changes. The correlation coefficient r
is 0.9995, which proves the good linearity. In the figure, the red circle
is the calculated data and the line is the fitting line. The well depth
at point A is about 10Er , where Er means the atomic recoil energy in
our honeycomb lattice.

APPENDIX A: HOPPING COEFFICIENT

We estimate the nearest-neighbor hopping coefficient in
our Floquet system, taken the 87Rb atom as an example. For a
hexagonal optical lattice with different well depths at points A
and B, the overlapping integral of the Wannier function helps
us to calculate the nearest-neighbor hopping coefficient tNN ,
which renders the result consistent with Eq. (6).

Figure 9 shows the change of the nearest-neighbor hopping
coefficient as the difference of well depth, (VA − VB)/VA,
changes. As a result, the nearest-neighbor hopping coefficient
tNN equals one constant t0 adding one term which is nearly
proportional to the lattice-depth difference between points A
and B in a large range (correlation coefficient is 0.9995). In
the process of changing the lattice depth, the change of well
depth at point A VA is less than 20%, and the difference of well
depth (VA − VB)/VA is about 35%. The linearity will be better
if the process happens in a smaller range. So the static process
can be used to estimate our dynamic perturbation process. In
our system, the lattice depth difference between points A and
B changes over time as a cosine function, which leads to the
conclusion that the nearest-neighbor hopping coefficient also
changes as a cosine function, so we use tNN = t0 + t1 cos(ωt )
to estimate it in the calculation. Using the fitting result, we can
calculate that

t1 = 0.2363
�

VA
Er, (A1)

t0 = 0.1656Er − 0.2363
�

VA
Er, (A2)

where Er means the atomic recoil energy of electrons
in our honeycomb lattice. By substituting � = 0.5Er and
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VA = 10Er , we get

t0 = 0.1538Er, t1 = 0.0118Er . (A3)

As for the next-nearest-neighbor hopping coefficient, be-
cause the lattice depth of the next neighbor point is always
zero, we use a constant to replace the next-neighbor hopping
coefficient

tNNN = 0.0050Er . (A4)

In addition, according to Eq. (10), the high-frequency
expansion requires the shaking frequency ω to be far greater
than Hf 0/h̄. In our system, it requires that the difference �

in lattice depth is larger than 0.15VA, which meets the linear
range.

APPENDIX B: UNITARY TRANSFORMATION
OF HAMILTONIAN

The unitary operator Û can be obtained by substituting
Eq. (3) into Eq. (8):

Û (t ) = exp

[
i

h̄

∑
i

∫ t

0
dτχ (i)

�

2
cos (ωτ )c†

i ci

]

= exp

[
i

h̄

∑
i

χ (i)
�

2ω
sin (ωτ )c†

i ci

]
. (B1)

Then we get

Û

(
−ih̄

∂

∂t

)
Û † = −ih̄

∂

∂t
−

∑
i

�

2
cos (ωt )χ (i)c†

i ci. (B2)

Define Û ′
k (t ) as

Û ′
k (t ) = exp

[(
i

h̄

�

2ω
sin ωtχ (k)

)
c†

kck

]
. (B3)

According to the Baker-Campbell-Hausdorff formula,

eÂB̂e−Â = B̂ + [Â, B̂] + 1

2!
[Â, [Â, B̂]] + · · · · (B4)

We can get

Û (−ti jc
†
i c j )Û

† =
∑

k

Û ′
k (−ti jc

†
i c j )

∑
k

Û ′†
k

= −ti je
i
h̄

�
2ω

sin ωt[χ (i)−χ ( j)]c†
i c j . (B5)

The transformed Hamiltonian is finally obtained as

Ĥ ′ = Û

(
Ĥ (t ) − ih̄

∂

∂t

)
Û † −

(
−ih̄

∂

∂t

)

=
∑

i

Vi(t )c†
i c j −

∑
i �= j

ti je
izi j sin ωt c†

i c j

− ih̄
∂

∂t
−

∑
i

�

2
cos(ωt )χ (i)c†

i ci + ih̄
∂

∂t

= −d

2

∑
i

(a†
i ai − b†

i bi ) −
∑
i �= j

ti je
izi j sin ωt c†

i c j, (B6)

where the first term in Eq. (2) is neglected since the zero point
of energy has been set at V0, and zi j ≡ �

2ωh̄ [χ (i) − χ ( j)].

APPENDIX C: FOURIER EXPANSION AND DERIVATION
OF EFFECTIVE HAMILTONIAN

By a Jacobi-Anger expansion eiz sin θ = ∑+∞
n=−∞ Jn(z)einθ ,

we expand Ĥ ′ in Eq. (9), by taking both nearest-neighbor and
next-nearest-neighbor hopping into consideration, then

Ĥ ′(t ) = −d

2

∑
i

(a†
i ai − b†

i bi )

−
+∞∑

n=−∞
einωt

⎛
⎝∑

〈i j〉

{
t0Jn(zi j ) + t1

2
[Jn−1(zi j )

+ Jn+1(zi j )]

}
c†

i c j

+
∑
〈〈i j〉〉

Jn(0)tNNN c†
i c j

⎞
⎠, (C1)

where
∑

〈i j〉 denotes the summation over the nearest-neighbor
nodes, and

∑
〈〈i j〉〉 denotes the summation over the next-

nearest-neighbor nodes. Then we can obtain the Fourier ex-
pansion coefficients of Hamiltonian for n > 0

Hn = −
∑
〈i j〉

(
t0 + t1

n

zi j

)
Jn

(
zi j

)
c†

i c j

−
∑
〈〈i j〉〉

Jn(0)tNNN c†
i c j . (C2)

From the Floquet theory, we can derive the formula to calcu-
late the effective Hamiltonian [51,52]

Heff = H0
eff + 1

h̄ω
H1

eff = Hf 0 +
∞∑

n=1

[Hn, H−n]

nh̄ω
, (C3)

where higher-order terms which consider the pairs of sites
with the farther distance between them than the next-nearest-
neighbor term have been neglected due to the high-frequency
approximation. The calculation of substituting Eq. (C2) into
Eq. (C3) is shown below.

For the n = 0 term,

Hf 0 = −
∑
〈i j〉

t0Jn(zi j )c
†
i c j −

∑
〈〈i j〉〉

tNNN c†
i c j

− d

2

∑
i

(a†
i ai − b†

i bi )

= H0,1 + H0,2 + H0,3, (C4)

where H0,1 denotes the summation over the nearest-neighbor
nodes, and H0,2 denotes the summation over the next-nearest-
neighbor nodes. For H0,1, because J0(−zi j ) = J0(zi j ), we can
get

H0,1 = −t0Jn(β )
∑

i

(a†
�ri
b�ri+ �u1 + a†

�ri
b�ri

+ �u2 + a†
�ri
b�ri+ �u3 ) + H.c. (C5)

where β ≡ �
h̄ω

, ai, b j denote the annihilation operators of
lattice sites Ai, Bj . The first term describes hopping from Bj

to Ai, while the second term is the Hermitian conjugate of

023328-9



ZHOU, YU, LI, CHEN, AND ZHOU PHYSICAL REVIEW A 102, 023328 (2020)

FIG. 10. The change of Berry phase with shaking factor δ. Here
we set β = 2.4048. When δ < 0.5, γ is always equal to 2π . When
δ > 0.5, γ continuously decreases from 2π to zero.

the former one and describes hopping from Ai to Bj . �ri is the
lattice vector for the bipartite hexagonal lattice, and the �ui is
the nearest-neighbor vector.

Considering the creation and annihilation operators as
periodic functions in real space, we can take the Fourier
transformation to get the corresponding creation and annihila-
tion operators in momentum space, ai = 1√

N

∑
k ake−i�k·�r and

bi = 1√
N

∑
k bke−i�k·�r , where N is the number of lattice sites.

By substituting these equations into the effective Hamiltonian
in Eq. (C5) and using δ�k �k′ = 1

N

∑
i ei(�k−�k′ )· �ri , we obtain

H0,1 = −t0Jn(β )
∑

k

a†
kbk (e−i�k· �u1 + e−i�k· �u2 + e−i�k· �u3 ) + H.c.

=
∑

k

(
a†

k b†
k

)( 0 H01(k)
H�

01(k) 0

)(
ak

bk

)
, (C6)

where H01(k) = −t0J0(β )
∑3

j=1 e−i�k· �u j .
For H0,2, we denote the lattice constant of bipartite hexag-

onal lattice as �v j , as shown in Fig. 1(a). Fourier transform and
direct calculation gives

H0,2 = −
∑
〈〈i j〉〉

tNNN c†
i c j

= −2tNNN

3∑
j=1

∑
k

(a†
kak + b†

kbk ) cos (�k · �v j )

=
∑

k

(a†
kb†

k )

(
H02(k) 0

0 H02(k)

)(
ak

bk

)
, (C7)

where H02 = −2tNNN
∑3

j=1 cos(�k · �v j ).

As for H0,3,

H03 = −d

2

∑
i

(a†
i ai − b†

i bi )

= −d

2

∑
k

(a†
kak − b†

kbk )

=
∑

k

(a†
kb†

k )

(
H03 0

0 −H03

)(
ak

bk

)
, (C8)

where H03 = −d/2.
For n > 0 terms,

Hn = −
∑
〈i j〉

(
t0Jn(zi j ) + t1

2
[Jn−1(zi j )

+Jn+1(zi j )]

)
c†

i c j . (C9)

According to Eq. (C3),

H (1)
eff =

∞∑
n=1

[Hn, H−n]

n

= 4t0t1
β

J1(β )2

⎧⎨
⎩3

∑
i

[a†
i ai − b†

i bi]

+
∑
〈〈i j〉〉

[a†
i a j − b†

i b j]

⎫⎬
⎭

=
∑

k

(a†
kb†

k )

(
H1 0
0 −H1

)(
ak

bk

)
, (C10)

which uses the commutation relationship [c†
kcl , c†

pcq] =
δl pc†

kcq − δkqc†
pcl . And

H12 = 8t0t1
J1(β )2

β

⎛
⎝ 3∑

j=1

cos(�k · �v j ) + 3

2

⎞
⎠. (C11)

Combining the results of Eqs. (C6), (C7), and (C10), we
can draw the conclusion that

Heff = H (0)
eff + 1

h̄ω
H (1)

eff

=
∑

k

(a†
kb†

k )

(
Heff,11(�k) Heff,12(�k)
Heff,21(�k) Heff,22(�k)

)(
ak

bk

)
, (C12)

where

Heff,11 =
[
−2tNNN + 8t0t1

h̄ω

J1(β )2

β

] 3∑
j=1

cos (�k · �v j )

+ 12t0t1
h̄ω

J1(β )2

β
, (C13)

Heff,22 =
[
−2tNNN − 8t0t1

h̄ω

J1(β )2

β

] 3∑
j=1

cos(�k · �v j )

− 12t0t1
h̄ω

J1(β )2

β
, (C14)
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and

Heff,12 = −t0J0(β )
3∑

j=1

e−i�k· �u j − d

2
, (C15)

Heff,21 = −t0J0(β )
3∑

j=1

ei�k· �u j + d

2
. (C16)

The 2×2 matrix in the above equation is the so-called
kernel of Hamiltonian, denoted as Heff , which can be spanned
by the two-ranked identity matrix and three 2D Pauli matrices
according to linear algebraic theory. The final result is exactly
Eq. (11) in the article.

APPENDIX D: THE BERRY PHASE AND SYMMETRY
ANALYSIS OF NODAL-LINE PHASE

The change of the Berry phase around the closed path
in Fig. 6 with the change of δ is calculated and studied for
fixed β = 2.4048 in nodal-line phases. From Fig. 10, we can
observe that, for all δ < 0.5, the Berry phase γ is always equal

to 2π , and a mutation of the Berry phase occurs at δ = 0.5.
The nodal-line in the first Brillouin zone at δ = 0.5 is shown in
Fig. 8(b3) by the red dashed hexagon. For δ > 0.5, the area of
the nodal line lies completely inside the first Brillouin zone, so
the nodal-line is a complete closed unrounded loop. However,
when δ < 0.5, the solution (kx, ky) satisfying E+ − E− = 0
will go beyond the scope of the first Brillouin zone, so the
nodal-line becomes incomplete. Hence δ = 0.5 point can be
considered as a phase transition point between the complete
nodal-line phase and the incomplete nodal-line phase.

The well depth different δ is connected to the symmetry of
the lattice. When δ = 0, point A is equivalent to point B, the
lattice satisfies sixfold rotational symmetry. When the lattice
satisfies sixfold rotational symmetry, nodal lines degenerate
into points at the six vertices of the Brillouin zone. When
δ > 0, the sixfold rotational symmetry breaks and nodal lines
appear. If we fixed β at 2.4048, the nodal-line phase would be
present for a range of parameter δ, which is δ ∈ (0, 4.5). There
is an interesting phenomenon that the situations for δ > 0 and
δ < 0 are asymmetric. One possible reason is that, in Eq. (3),
we artificially stipulate the initial state of point A and B, and
it makes points A and B asymmetric.
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