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Properties of a nematic spin vortex in an antiferromagnetic spin-1 Bose-Einstein condensate
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A spin-1 condensate with antiferromagnetic interactions supports nematic spin vortices in the easy-plane
polar phase. These vortices have a 2π winding of the nematic director with a core structure that depends
on the quadratic Zeeman energy. We characterize the properties of the nematic spin vortex in a uniform
quasi-two-dimensional system. We also obtain the vortex excitation spectrum and use it to quantify its stability
against dissociating into two half-quantum vortices, finding a parameter regime where the nematic spin vortex is
dynamically stable. These results are supported by full dynamical simulations.
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I. INTRODUCTION

Spinor Bose-Einstein condensates are superfluid quantum
gases with spin degrees of freedom. These can exist in var-
ious spin-ordered phases, depending on the nature of the
interparticle interactions and quadratic Zeeman shift [1–5].
Quantized vortices are regarded as a hallmark of superfluidity
and often play a unifying role in nonequilibrium dynam-
ics [6–9]. The rich order parameter symmetries of spinor
condensates give rise to an array of different spin vortices.
Emerging experimental capabilities to produce and monitor
the dynamics of spin vortices [10–12] motivate the need for a
better understanding of their properties and interactions (e.g.,
see Refs. [13–16]).

In this paper, we consider a spin-1 antiferromagnetic con-
densate with polar (nematic spin) order which can be charac-
terized by a director, i.e., a preferred unoriented axis in spin
space [17,18]. When the quadratic Zeeman energy is negative,
the condensate is in the easy-plane polar (EPP) phase where
the director lies in the plane transverse to the magnetic field.
In this case, the director breaks the continuous rotational
symmetry and the order-parameter manifold supports various
spin vortices as topological defects (e.g., see Refs. [19,20]). A
significant amount of attention has been given to half-quantum
vortices (HQVs) [21], which consist of mass and nematic
spin-current circulation and have recently been prepared in
experiments [10,11]. The role of HQVs in postquench dynam-
ics [18,22–24] and the interactions between HQVs [11,14,16]
have been studied. Here we focus on a second type of vortex in
the EPP phase: a pure spin-vortex (i.e., without mass current),
which we refer to as the nematic spin vortex (NSV) (also
see Refs. [20,25–27]). These NSVs can decay by splitting
into a pair of HQVs and thus an important consideration is
their stability. We note previous work has considered NSVs in
a harmonically trapped system, and explored their energetic

stability under external rotation and varying magnetization
[20,25].

In this paper, we develop theory for a NSV in an infinite
uniform quasi-two-dimensional (quasi-2D) EPP condensate.
This allows us to describe the core structure and excitation
spectrum using two parameters: the quadratic Zeeman energy
scaled by the chemical potential, and the ratio of the spin-
dependent to spin-independent interactions. We determine a
critical value qc of the quadratic Zeeman energy where the
NSV undergoes a continuous transition from having a normal
(unfilled) core to having a core filled by an easy-axis polar
(EAP) component. We quantify the dissociation instability of
the NSV by solving the Bogoliubov-de Gennes (BdG) equa-
tions and by performing dynamical simulations. Importantly,
we find that at small negative values of the quadratic Zeeman
energy, the NSV is dynamically stable.

The structure of the paper is as follows. In Sec. II, we
introduce the background theory for the spin-1 system and
overview the vortices in the EPP phase. In Sec. III, we
specialize the theory to NSV stationary states in a quasi-2D
system and present numerical results for the vortex properties.
In Sec. IV, we formulate the BdG equations for the NSV
and present a phase diagram characterizing the strength of
dynamic instabilities. Using dynamical simulations of the
spin-1 system in a flat-bottomed trap, we verify the splitting
instability emerging from the dynamic instability in Sec. V.
We conclude in Sec. VI.

II. BACKGROUND THEORY

A. General formalism for spin-1 BECs

A spin-1 condensate is described by the spinor field

� ≡ [�1, �0, �−1]T, (1)
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with the three components representing the condensate ampli-
tude in the spin levels m = 1, 0,−1, respectively, where m is
the quantum number associated with the z component of spin.
In weak fields, the short-ranged contact interactions between
atoms are rotationally invariant with a Hamiltonian density:

Hint = c0

2
n2 + c1

2
| �F |2. (2)

Here the first term, with coupling constant c0, describes the
density-dependent interactions, where n ≡ �†� is the total
density. The second term describes the spin-dependent inter-
actions, where c1 is the spin-dependent coupling constant,
�F ≡ �† �f � is the spin density, and �f ≡ ( f̌x, f̌y, f̌z ) are the
spin-1 matrices. In addition, we consider the presence of a
(uniform) quadratic Zeeman shift. Taking the field to be along
z this is described by

HQZ = q�† f̌ 2
z � = q(|�1|2 + |�−1|2). (3)

In practice, the coefficient q is readily changed in experiments
using microwave dressing (e.g., see Refs. [28,29]). We note
that the uniform linear Zeeman term can be removed using a
gauge rotation, and can be neglected. The spin properties also
depend on the (conserved) z-magnetization Mz = ∫

dV Fz of
the system. Here we consider only Mz = 0.

The case of antiferromagnetic interactions, where c1 > 0,
is realized with 23Na atoms in their lowest hyperfine manifold.
Here the condensate prefers to minimize the spin density to re-
duce the spin-dependent interaction energy. For a condensate
of uniform density nb and spin-density �F = �0, the spinor is in
a polar state,

�P =
⎡
⎣ �1

�0

�−1

⎤
⎦ = √

nbeiθ

⎡
⎢⎣

−dx+idy√
2

dz
dx+idy√

2

⎤
⎥⎦, (4)

where the real unit vector �d = (dx, dy, dz ) is the nematic direc-
tor and θ is the global phase. Noting that �P is invariant under
θ → θ + π and �d → −�d , we see that �d defines a preferred
axis in spin space but not a preferred direction along that
axis. The ground-state orientation of �d is determined by the
quadratic Zeeman energy, which is given by HQZ = qnb(1 −
d2

z ). Thus, for q > 0, the system maximizes d2
z by being in the

EAP phase, i.e., �EAP = √
nbeiθ (0, 1, 0)T. The case of interest

in this paper is the EPP phase for q < 0 where �d = (dx, dy, 0).
In addition to the global phase, the EPP ground state also
breaks a U(1) symmetry in spin space. This can be seen from
the director, which can be written as �d = (cos ϕ, sin ϕ, 0),
i.e. �EPP = √ nb

2 eiθ (−e−iϕ, 0, eiϕ )T, where ϕ is the angle the
director takes with respect to the x-axis.

Note that in the EPP phase we have �0 = 0 and the
system is effectively a two-component condensate. Indeed,
several studies of the relevant EPP vortices we present in the
next subsection have been performed in a two-component (or
binary) condensate. For completeness, we briefly mention the
mapping of the spinor parameters onto an equivalent binary
system. To do this, we note that interaction Hamiltonian
density Hint may be expressed in the binary form,

Hint = 1

2

∑
i, j=−1,1

gi j |�i|2|� j |2, (5)

with intraspecies coupling constant gii = c0 + c1 (identical
for both components) and interspecies coupling constant
g1,−1 = c0 − c1. For the antiferromagnetic case, g1,−1 < gii

and the components are miscible [30].

B. EPP phase vortex classification by winding numbers

Here we consider a quasi-2D spinor gas where the order
parameter manifold of the EPP phase permits vortices as point
defects. To give the basic structure of such vortex states, we
write the wave function on the xy plane with the vortex core
taken at the origin. Sufficiently far from the core, the general
vortex state is of the form

�V =
√

nb

2
eiσMφ

⎡
⎣−e−iσSφ

0
eiσSφ

⎤
⎦, (6)

where φ is the azimuthal angle in the xy plane [i.e., from �EPP,
taking θ and ϕ to vary as σMφ and σSφ in space, respectively].
Here σM and σS are the winding numbers associated with the
mass and spin current around the vortex, respectively (e.g.,
see Ref. [8]). Combining the circulations for the m = ±1
components, we see that σM ± σS must both be integers for
the field to be single valued. There are eight nontrivial cases
with |σM ± σS| � 1 which define the elementary vortices of
interest.

1. HQV

The HQVs come in four types with (σM, σS) = (± 1
2 ,± 1

2 )
and (± 1

2 ,∓ 1
2 ), thus exhibiting both spin and mass currents.

In these vortices, the director completes a π winding around
the vortex core. These vortices have recently been studied in
experiments and observed to be long-lived topological defects
[10,11]. Indeed, HQVs are expected to be stable topologi-
cal defects of the EPP phase and have been the focus of
studies of nonequilibrium dynamics in this phase (e.g., see
Refs. [18,22,24]). Experiments have also observed annihila-
tion events between suitable pairs of HQVs [11], e.g., the
pair {( 1

2 , 1
2 ), (− 1

2 ,− 1
2 )} or {( 1

2 ,− 1
2 ), (− 1

2 , 1
2 )} can mutually

annihilate.

2. Mass vortex

The mass vortex has (σM, σS) = (±1, 0), with mass current
but no spin current. These vortices have been prepared in
the EPP phase [10] but were observed to rapidly decay by
dissociation into two HQVs, i.e.,

(±1, 0) → (± 1
2 ,± 1

2 ) + (± 1
2 ,∓ 1

2 ), (7)

as anticipated by theoretical studies [14,31,32].

3. NSV

The NSV has (σM, σS) = (0,±1), thus exhibits a spin
current but no mass current. Similar to the mass vortex, the
NSV can potentially dissociate into two HQVs [33] as

(0,±1) → (± 1
2 ,± 1

2 ) + (∓ 1
2 ,± 1

2 ). (8)

We consider the stability to this dissociation process
in Sec. IV.
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FIG. 1. The basic structure of the NSV at the origin in a quasi-
2D EPP phase condensate. (a) Normal-core NSV and (b) a polar-
core NSV. Cylindrical rods indicate the orientation of the nematic
director �d . Far from the vortex core, the director lies in the plane and
undergoes a 2π rotation as we complete a closed loop around the
core. The background shaded colors indicate the total density.

III. STATIONARY NSV SOLUTIONS

Here, we investigate the structure of the NSV core. Exam-
ples of the two types of NSVs are shown in Fig. 1. We see that
completing a loop around the core (at a radius sufficiently far
from the core), the director remains in the easy-plane manifold
and completes a 2π winding. The two examples differ in their
structure near the vortex core. The case in Fig. 1(a), which
we refer to as the normal-core NSV, has the total density
vanish at the vortex core, with the director always remaining
in the plane (i.e., dz = 0). The case in Fig. 1(b), which we
refer to as the polar-core NSV, instead has a finite density
at the vortex core.1 Here the director moves out of the EPP
order parameter manifold (i.e., tilts out of the plane near the
core) showing the emergence of the EAP state within the core.
We adopt the name polar core for this case, with polar being
a conventional name for the EAP phase. Here we show that
there is a continuous transition between these two types of
NSVs as q changes.

1This case is also also be referred to as half Skyrmion or Meron
(see Refs. [34,35]).

A. Spin-1 Gross-Pitaevskii equation

The evolution of a spin-1 condensate is described by the
Gross-Pitaevskii equation (GPE),

ih̄
∂�

∂t
= Ľ�, (9)

where Ľ is the nonlinear GPE operator,

Ľ = − h̄2∇2

2M
1 + q f̌ 2

z + c0n1 + c1

∑
α

Fα f̌α, (10)

with α ∈ {x, y, z}. Here 1 denotes the identity matrix in spin
space. The nonlinear terms n and �F are determined using �.
Here we focus our attention on a quasi-2D system with spatial
coordinates �ρ = (x, y), where c0 and c1 are the quasi-2D
coupling constants.

Stationary solutions of the form �m(�ρ, t ) =
ψm(�ρ)e−i(μ+mλ)t/h̄ satisfy the time-independent GPE,

(μ1 + λ f̌z )ψ = Ľψ, (11)

with nonlinear terms in Ľ now evaluated with ψ. Here μ and
λ are the chemical and magnetic potentials introduced as a
Lagrange multipliers to conserve norm N and z-magnetization
Mz, respectively.2 For a uniform EPP phase condensate of bulk
density nb and magnetization density Fz,b, we have

μ = c0nb + q, (12)

and λ = c1Fz,b (e.g., see Ref. [4]).

B. Radial Spin-1 GPE

An EPP phase vortex stationary state takes the form [gen-
eralizing Eq. (6)]

ψV(ρ, φ) = eiσMφ

⎡
⎣e−iσSφχ1(ρ)

χ0(ρ)
eiσSφχ−1(ρ)

⎤
⎦ = Č(φ)χ(ρ), (13)

where we have used the radial coordinate ρ =
√

x2 + y2.
Here we take χ = [χ1, χ0, χ−1]T as real, and have ex-
plicitly imposed the circulation on each component using
Č = diag{ei(σM−σS )φ, eiσMφ, ei(σM+σS )φ}. Substituting (13) into
Eq. (11) gives a radial equation for the χ:

μ̃χ = Ǩχ, (14)

with

Ǩ = Tρ1 + p̃ f̌z + q̃
(

f̌ 2
z − 1

) + c0n1 + c1

∑
α

(χT f̌αχ) f̌α.

(15)

Here

Tρ ≡ − h̄2

2M

1

ρ

d

dρ

(
ρ

d

dρ

)
, (16)

2These are defined by the thermodynamic relations μ = ( ∂E
∂N )

S,V
,

and λ = ( ∂E
∂Mz

)
S,V

. For the bulk EPP phase at T = 0 (with entropy

S = 0) E = N (q + 1
2 c0nb) + 1

2 c1Fz,bMz [from (3) and (2)], with N =
V nb and Mz = V Fz,b for the appropriately dimensioned volume V .
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μ̃(ρ) ≡ μb − h̄2(σ 2
M + σ 2

S )

2Mρ2
, (17)

p̃(ρ) ≡ −λ − h̄2σMσS

Mρ2
, (18)

q̃(ρ) ≡ q + h̄2σ 2
S

2Mρ2
, (19)

are the radial part of the kinetic energy operator, the effective
chemical potential, and the effective linear and quadratic
Zeeman shifts, respectively. We have also subtracted q off the
single particle energy [see Eq. (15)] for convenience, so the
adjusted chemical potential appearing in Eq. (17) is given by

μb ≡ μ − q = c0nb, (20)

and is independent of q [cf. Eq. (12)]. Here we take μb =
c0nb as a useful characteristic energy scale of the system, with
associated healing length

ξb = h̄√
Mμb

. (21)

C. Phases of a NSV

In this paper, we consider a NSV with (σM, σS) = (0, 1).
From our choice of μb being fixed [Eq. (20)], far away from
the vortex core the system will approach the bulk value for
number density, i.e., nb. Additionally, we focus on the case
λ = 0 (and thus p̃ = 0), for which the bulk spin density is
Fz,b = 0. In this case, the NSV is completely unmagnetized3

with χ1 = −χ−1, and the boundary conditions on the χm are

χ ′
0(0) = 0, χ0(ρ → ∞) = 0, (22)

χ±1(0) = 0, χ±1(ρ → ∞) = ∓
√

nb

2
, (23)

where the prime denotes a derivative with respect to ρ. We
solve for the stationary-state solutions numerically using a
gradient flow technique (e.g., see Ref. [36]) with a finite
difference implementation of the derivative operators and
boundary conditions. We use an equally spaced radial grid of
Nρ points ρ j = ( j − 1

2 )�ρ with 1 � j � Nρ . We choose the
point spacing �ρ to be much smaller than ξb and typically
use a maximum radius of ρmax ≈ 410ξb, with Nρ = 8192.
We choose to implement the outer boundary conditions in
Eqs. (22) and (23) as χ ′

m(ρmax) = 0.
Because the NSV stationary solutions are completely un-

magnetized, they are independent of the strength of the spin-
dependent interaction. However, they depend on the quadratic

3The discrete symmetry associated with the operation f̌z → − f̌z is
explicitly broken for the “biased” case with λ �= 0, where a magne-
tization (Fz �= 0) is generally preferred. In this paper, we consider
the “unbiased” case with λ = 0. Even for λ = 0, a spontaneous
magnetization can occur locally, e.g., Fz �= 0 in the core of a HQV. In
this case, the spinor field is no longer represented by the real vector
�d like Eq. (4).

FIG. 2. Stationary-state component densities |χm(ρ )|2 of a NSV
with (a) a normal core and (b) a polar core. (c) The central (peak)
density of the m = 0 component. (d) The core radius ρcore defined as
the radius where |χ±1(ρcore )|2 = 1

4 nb [see arrow in subplot (a)]. The
red dotted line shows 1√

2
ξq. (e) The effective potential c0|χv|2 for the

core localized state ψcore used to identify the critical point (see text).

Zeeman energy, and we find that there is a critical value,

qc ≈ −0.2545μb, (24)

[or qc ≈ −0.3414μ, see Eq. (20)], which separates the
normal-core and polar-core forms of the vortex.

1. Normal-core NSV

For q < qc, the stationary state has χ0 = 0 and is otherwise
independent of q [e.g., see Fig. 2(a)]. In this regime, the vortex
profile is χ−1(ρ) = 1√

2
χv(ρ), where χv is the radial profile4

4Defining the scalar vortex state as ψv(�ρ ) = eiφχv(ρ ).
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of a single component (scalar) vortex in a uniform system
satisfying

μbχv =
(

Tρ + h̄2

2Mρ2
+ c0|χv|2

)
χv, (25)

with chemical potential μb used to ensure that |χv|2 goes to nb

as ρ → ∞.

2. Polar-core NSV

When q > qc the χ0 component is non-zero, and consti-
tutes a polar core of the vortex [e.g., see Fig. 2(b)]. As q
further increases the density of the χ0 component and the core
radius of the NSV both increase, with |χ0(0)|2 → nb and the
core radius diverging as q → 0 [see Figs. 2(c) and 2(d)].

We can qualitatively understand this behavior by noting
that the effective quadratic Zeeman energy for the system q̃(ρ)
is spatially dependent due to the vortex kinetic energy. Within
a local density approximation, the sign of q̃ determines local
nematic spin order: the EPP phase occurs where q̃ < 0 and
EAP phase occurs where q̃ > 0 (see Sec. II A). We see that
the effect of the vortex kinetic energy is to transition a central
region of radius ρcore ∼ ξq = h̄/

√
2M|q| into the EAP phase,

where ξq is defined by q̃(ξq) = 0. In Fig. 2(d), we observe that
ξq provides a good estimate of the core size for q > qc, noting
that for q < qc the local density approximation breaks because
of finite-size effects in the vortex core.

3. Identifying the critical point

Near the critical point, χ0 is small (i.e., |χ0|2 � nb) and a
single-particle treatment of this component can be employed.
In this regime, the m = 0 component of the GPE (14) reduces
to (neglecting the nonlinear terms in χ0)

μbχ0 = (Tρ + c0|χv|2 − q)χ0, |χ0|2 � nb, (26)

where we have set n = |χv|2 (i.e., the normal-core NSV den-
sity, see Sec. III C 1) in the interaction term. The lowest energy
eigenstate of the linear operator Tρ + c0|χv|2 − q is a core
localized state of energy5εcore = 0.7455μb − q. The system
will “condense” into this state when the chemical potential,
μb, exceeds εcore. Thus we take μb = εcore to define the critical
value of the quadratic Zeeman energy, yielding a value of qc in
agreement with the value identified from the GPE calculations
for the NSV [Eq. (24)].

IV. LINEAR STABILITY OF THE NSV

We now examine the excitations of the NSV by directly
solving the BdG equations. We begin by deriving the BdG
equations for an EPP phase vortex. We then use numerical
solutions of these equations to quantify NSV stability.

5The lowest energy eigenstate of Tρ + c0|χv|2 is ψcore with a nu-
merically determined energy of ε0 = 0.7455μb. This state is bound
within the vortex core [see Fig. 2(e)]. Note that the harmonic approx-
imation to c0|χv|2, i.e., Uharm = μb(�ρ/ξb)2, with � = 0.8249 [37],
is inaccurate and predicts ε0 = 1.14μb, which exceeds the core well
depth of μb.

A. Bogoliubov-de Gennes equations

To derive the BdG equations, we introduce a time-
dependent fluctuation δψ(�ρ, t ) = ψ(�ρ, t ) − ψV(�ρ ) on the
vortex stationary state ψV [see Eq. (13)],

δψ(�ρ, t ) = Č(φ)
∑
ν,η

[βν,ηuν,η − β∗
ν,ηv

∗
ν,η], (27)

where βν,η are arbitrary (small) linearization amplitudes and

uν,η(�ρ, t ) = e−iEν,ηt/h̄+iηφ ũν,η(ρ), (28)

vν,η(�ρ, t ) = e−iEν,ηt/h̄+iηφ ṽν,η(ρ). (29)

Here we have introduced the radial quasiparticle amplitudes
{ũν,η(ρ), ṽν,η(ρ)} and eigenvalues Eν,η, with η being the
quantum number associated with the z-component of angular
momentum (relative to the condensate) and ν representing the
remaining quantum numbers. Linearizing the time-dependent
GPE (9), we obtain that the quasiparticle amplitudes satisfy
the BdG equation,[

Ǩ+
η + X̌1 −X̌2

X̌ ∗
2 −(Ǩ−

η + X̌1)∗

][
ũν,η

ṽν,η

]
= Eν,η

[
ũν,η

ṽν,η

]
, (30)

where nonlinear terms in

Ǩ±
η = Ǩ + h̄2

2Mρ2

[(
η2 ± 2σMη

)
1 ∓ 2σSη f̌z

] − μ̃1 (31)

are evaluated with ψV, and

X̌1 = c0χχT + c1

∑
α

f̌αχχT f̌α, (32)

X̌2 = c0χχT + c1

∑
α

f̌αχχT f̌ ∗
α . (33)

Because of the symmetry of the radial BdG equation, for
a solution (i) (E , η, ũ, ṽ) there are potentially three additional
solutions, which relate to the first as: (ii) (−E ,−η, ṽ, ũ), (iii)
(E∗, η, ũ∗, ṽ∗), and (iv) (−E∗,−η, ṽ∗, ũ∗). If the eigenvalue
is real, then ũ and ṽ can also be taken to be real (see Ref. [38])
and only (i) and (ii) are unique solutions. Furthermore, quasi-
particle amplitudes with real nonzero eigenvalues can be
normalized to ±1 as∫ ∞

0
2πρ dρ (u†

ν,ηuν ′,η′ − v†
ν,ηvν ′,η′ ) = ±δν,ν ′δη,η′ . (34)

In the description of equilibrium condensates, only positively
normalized quasiparticles are considered to be physical. We
note that the partner (ii) to a positively normed quasiparticle
(i) has negative norm.

Here we are particularly interested in quasiparticles with
complex eigenvalues where all the symmetries (i)–(iv) furnish
unique solutions. If Im(E ) > 0, then the solution (i) is dy-
namically unstable (exponentially growing in time) and so is
the partner solution (iv), while (ii) and (iii) are exponentially
decaying solutions. Examining the effect of the unstable mode
perturbation δψ (27), we see modes (i) and (iv) are identical
perturbations, so here we can choose to focus on solution (i).

B. Dynamic instability phase diagram

The BdG results can reveal two types of instabilities for the
NSV: (i) A dynamic instability revealed by a solution with a
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complex eigenvalue indicating that the respective eigenmode
will exponentially grow with time. (ii) A Landau instability
marked by a (positively normed) solution with a negative real
eigenvalue, such that the system could reduce its energy if
some dissipative mechanism allowed transfer of population
into this state.

We have numerically calculated the BdG spectrum of the
NSV over a wide parameter regime.6 We find that for q <

0 the NSV only exhibits dynamic instabilities which occur
in excitations with η = ±1, arising from modes that are
localized in the vortex core7 [see Fig. 3(d)]. The growth of
these unstable modes causes the m = ±1 cores of the NSV to
separate [see Fig. 3(e)], thus initiating the dissociation of the
NSV into two HQVs (see Sec. II B 3).

In Fig. 3(a), we present a stability phase diagram quanti-
fying the dynamic instability of the NSV (i.e., showing the
imaginary part of the eigenvalue of the dynamically unstable
mode) as q and c1 vary. In general, the imaginary part is al-
ways relatively small (� 10−1μb), so we expect the instability
to manifest slowly in the system dynamics (see Sec. V). The
dynamic instability is seen to depend on both q and c1. It is
independent of q for the normal-core NSV (i.e., q < qc), but
reduces with increasing q in the polar-core regime [Fig. 3(b)].
The instability also decreases with increasing c1 [Fig. 3(c)].

1. q-dependence of instability: Pinning effect of polar core

For the polar-core NSV, the magnitude of the dynamic
instability decreases with increasing q. We interpret this as
a pinning effect of the polar core that helps bind the two
component vortices together, and thus stabilize the NSV. The
effects of pinning (e.g., due to an external potential, the other
superfluid component, or thermal component) has previously
been considered as a mechanism for stabilizing vortices (e.g.,
see Refs. [19,39–41]).

To quantify the pinning effect, we consider a polar-core
NSV solution χPC = [−χ−1, χ0, χ−1]T. From this, we can
project out the m = 0 component to arrive at an effective
normal-core NSV χENC = [−χ−1, 0, χ−1]T that is a stationary
solution for the same q value if we add the scalar potential
Upin = c0|χ0|2 to the GPE.8 The unstable modes in the BdG
analysis of χENC (including the pinning potential) have larger
imaginary parts than those obtained for χPC. This demon-
strates that there is an intrinsic spin-dependent aspect to the
pinning stabilization, i.e., while the vortex state has zero
spin-density, the excitations generally cause spin fluctuations
and are thus sensitive to the spin-dependent interactions. If we
artificially increase the strength of the pinning potential (i.e.,
set Upin → γUpin, with γ > 1), then eventually the dynamical
instability is suppressed.

6For q > qc, we increase the grid range proportional to q−1/2 to
accommodate the changing core size [cf. Fig. 2(d)].

7The centrifugal term in the m = −η (m = η) component of the
operator Ǩ+

η (Ǩ−
η ) vanishes for η = ±1, allowing the corresponding

component of the uν,η (vν,η) amplitude to develop amplitude in the
NSV core.

8That is, add a term Upin1 to Lρ to compensate for the reduction of
c0n by the removal of the χ0 component.

FIG. 3. Unstable (splitting) mode of the NSV. (a) Phase diagram
showing the imaginary part of the eigenvalue of the unstable mode
with η = ±1. Dotted line indicates the simple model for instabil-
ity boundary based on countersuperflow instability. Several slices
through the phase diagram showing the strength of instability as
(b) q varies and (c) as c1 varies. In (b), the dashed line shows the
zero mode for c1 = 0.15c0. The inset shows the behavior of the c1 =
0.15c0 modes near where the instability vanishes. (d) The nonzero u
components of the η = −1 unstable mode for q = −0.3μb and c1 =
0.05c0. Note for q > qc the m = 0 component of the unstable mode
is also nonzero. (e) The z component of the spin density of the NSV
after the unstable mode shown in (d) is added to the stationary vortex
state, revealing that the vortices of the two components spatially
separate.

2. c1-dependence of instability: Counter-superflow instability

Countersuperflow instability involves the breakdown of
spin superfluidity when the relative velocity of two misci-
ble superfluids exceeds a critical value [42–51] and affords
a qualitative understanding of the dependence of the NSV
instability on c1. For a uniform spinor condensate in the
EPP phase, the critical relative velocity for the onset of the

023326-6



PROPERTIES OF A NEMATIC SPIN VORTEX IN AN … PHYSICAL REVIEW A 102, 023326 (2020)

instability is vcrit = 2
√

c1n/M [50]. We can apply this criteria
to NSV using the local density approximation (similar to the
treatment presented in Ref. [33]). The relative velocity arises
from the counter-rotating vortices in the m = ±1 components
and varies radially as vrel(ρ) = 2h̄

Mρ
. Approximating the NSV

density by the background value nb, we identify the critical

radius ρcrit =
√

c0
c1

ξb, from the condition vrel(ρcrit ) = vcrit. For

ρ < ρcrit, the relative velocity exceeds vcrit and countersuper-
flow instability is activated. This analysis suggests that the
instability will be stronger closer to the core, consistent with
unstable modes being localized near the core [see Fig. 3(d)].
Also, as c1/c0 and hence the critical velocity increases, ρcrit

decreases, suggesting that the instability should be weaker.
This analysis does not apply to the core region as here the

density varies rapidly so the local density approximation is
inapplicable. If we assume that the instability is suppressed
once the critical radius is comparable to the vortex core size,
we can quantify a stability boundary for the system. In the
polar-core regime, we estimate the core radius as ξq/

√
2 [see

Fig. 2(d)], and obtain the boundary as
c1

c0
= − q

μb
= − q

μ − q
(stability boundary) (35)

by taking ρcrit = 2ρcore. This is shown as a dotted line in
Fig. 3(a) and is seen to reasonably characterize the boundary
of instability in the polar-core regime.

C. Zero-energy modes from broken translational symmetry

For η = ±1, we find that in addition to the unstable modes
there are also zero-energy modes. These modes often reveal
a broken symmetry in the system. These new zero modes are
in addition to the usual η = 0 zero energy mode, which can
be written in terms of the condensate mode as {u0,0, v0,0} =
{χ,−χ} and is associated with the breaking of the gauge
symmetry. The new zero energy modes with η = ±1 are
associated with the breaking of translational symmetry in our
uniform system by the presence of the NSV. These modes are
localized in the core, similar to the unstable modes, but have
a flat phase profile [see Fig. 4 and cf. Fig. 3(d)]. Whereas
the unstable mode causes the m = ±1 component vortices
to separate, the zero-energy mode causes both to translate
together. For a scalar condensate, a similar zero mode emerges
and in the case of a vortex line (i.e., finite z-extent), it is
associated with the Kelvin-wave spectrum of helical modes
that propagate along the vortex line.

We can develop an analytic expression for these zero-
energy modes that we compare to the numerical solution of
the BdG equations. We restrict our attention to a normal-core
NSV (σM, σS) = (0, 1), which has the form [see Eq. (13)]
ψV = [−χ−1(ρ)e−iφ, 0, χ−1(ρ)eiφ]T. Considering the vortex
to be displaced by a small amount d �ρ such that the change in
the condensate wave function is δψ = d �ρ · �∇ψV , we obtain
for the change in the nontrivial m = ±1 components,

δψ±1 = e∓iφ[(dx + idy)�∓e−iφ − (dx − idy)�±eiφ], (36)

where

�±(ρ) = 1

2

(
χ−1

ρ
± dχ−1

dρ

)
. (37)

FIG. 4. The nontrivial u components of a η = −1 zero energy
mode and the functions �±. The same scaling factor is applied to the
u amplitudes. Note the nontrivial v components for the zero-energy
mode are given by ṽ± = ũ∓. Parameters are as in Fig. 3(d).

By inspecting the form of the BdG linearization
[Eqs. (27)–(29)], we see that the vortex shift can be mapped
to quasiparticle amplitudes with η = ±1. For definiteness,
we consider a zero-energy mode of the BdG solution with
η = −1, which we denote as {ũ, ṽ}, with amplitude β, such
that

δψ±1 = e∓iφ[βũ±1e−iφ − β∗ṽ∗
±1eiφ]. (38)

In comparison to Eq. (36), we observe ũ±1 ∼ �∓, and ṽ±1 ∼
�±, with the complex amplitude β determining the vortex
displacement. In Fig. 4, we show the numerically calculated
BdG zero-energy mode result and the functions �± (obtained
from the vortex solution), showing they coincide.

D. Numerical considerations

It is challenging to numerically calculate the η = ±1 unsta-
ble and zero modes accurately. One issue is that our grids are
of finite spatial extent ρmax = 410ξb. This is problematic for
the zero-energy mode which decays rather slowly [noting that
�± ∼ ρ−1, see Eq. (37)]. Additionally, the 2D radial Lapla-
cian is difficult to evaluate accurately with finite differences,
particularly near ρ = 0 [52,53]. In the BdG equations for η =
±1, the unstable and zero-energy modes are particularly sen-
sitive to these issues. We have found that second-order finite-
difference schemes (including the improved schemes pre-
sented in Refs. [52,53]) require an impractically large number
of grid points to obtain accurate results. This motivated us to
implement an eighth-order finite-difference scheme, which is
the basis of the results we present. With this scheme, small
artifacts are still apparent such as the zero mode having a
small imaginary part [e.g., see Fig. 3(b) and inset], causing
it to couple to the unstable mode. These artifacts reduce as the
range and point density of the numerical grid increase.
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FIG. 5. (a)–(f) Time-evolution of the z component of the spin
density of a normal-core NSV in a circular flat-bottomed trap.
The vortices in the m = 1 (white cross) and m = −1 (black cross)
components are indicated. Subplots (a) and (b) zoom in to reveal
the vortex dynamics in the central region, whereas (c)–(f) show the
full simulation domain and indicate the trap boundary (black dashed
line). In (f), the vortex trajectories are also shown for the vortices in
the m = 1 (white line) and m = −1 (black line) components. Other
simulation parameters are q = −0.3μb, c1 = 0.05c0, U0 = 100μb,
and R = 95ξb is the radius.

V. DYNAMICAL SIMULATIONS

We further investigate the stability of NSVs by simulat-
ing their dynamics using the time-dependent GPE (9). The
simulations are performed with a flat-bottomed circular trap
(i.e., scalar potential added to the GPE) of the form

U (ρ) = 1

2
U0

[
tanh

(
ρ − R

ξb

)
+ 1

]
, (39)

where U0 is the trap depth and R is the radius. The initial
state is a NSV centered at the origin, obtained by solving the
radial GPE [Eq. (14) including U (ρ)] in the flat-bottomed trap
potential using the approach described in Sec. III. This state is

FIG. 6. (a) Vortex separation �r of a normal-core NSV, obtained
with parameters q = −0.3μb, c1 = 0.05c0. (b) Quadratic Zeeman
dependence of the separation time tsep for c1 = 0.05c0. Black dots
indicate numerical results. The red line is a fit to the BdG results,
given by 4.07μb/ Im(Eun), where Im(Eun) is shown in Fig. 3(b).

interpolated onto a uniform 2048 × 2048-point 2D grid with
spacing 0.1ξb. A small amount of complex Gaussian noise is
added to seed any instabilities in the dynamics. This is first
prepared as white noise (on the position space grid), then
restricted in reciprocal space to have maximum wave-number
8ξ−1

b , and finally spatially filtered to the region within the trap.
Typically adding this noise to the initial state causes a 0.005%
increase in the wave-function norm and a 0.05% increase in
the system energy. We time evolve the resulting state using the
second-order symplectic method described in Ref. [54].

We use the z spin density to illustrate the evolution of a
normal-core NSV in Fig. 5. Initially, Fz is zero (to the level
of the noise) but as the component vortices separate, clear
structure develops. The vortex core in the m = 1 component
is filled by the m = −1 component and thus appears as a
negative Fz peak. Similarly, the vortex core in the m = −1
component appears with a positive Fz peak. As time pro-
gresses, the component vortex separation tends to increase and
they move away from the trap center. Eventually, the vortices
approach the boundary where they undergo a sudden change
in their motion causing the appreciable emission of spin waves
[see Fig. 5(f)]. In contrast, for a polar-core NSV with q >

−0.05μb and c1nb > 0.05μb [which is stable according to
the BdG analysis, see Figs. 3(a) and 3(b)], we observed the
component vortices to remain together at the origin for the
entire evolution (i.e., up to tfinal = 1200h̄/μb).

The above results motivate us to quantify the instability
of the NSV in terms of the rate that the component vortices
separate. In Fig. 6(a), we show the evolution of the distance
between the component vortices (�r) for the case examined in
Fig. 5 over the initial period of its dynamics (i.e., well before
the boundary collision occurs). We identify the separation
time tsep as the time when �r first exceeds ξb. In Fig. 6(b), we
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show tsep obtained from simulations conducted over a range of
q values. Here we see that tsep increases with q for q > qc, and
appears to diverge as q approaches −0.1μb. These results are
consistent with the BdG analysis [see Fig. 3] if we identify
tsep as scaling with h̄/|Eun|, where Eun is the (imaginary)
eigenvalue of the dynamically unstable mode. A comparison
to the BdG results is presented in Fig. 6(b) and is seen to have
good quantitative agreement.

VI. DISCUSSION AND CONCLUSIONS

Here we have presented a description of the NSV, outlining
the stationary state properties and a transition between a
normal-core and polar-core form occurring at a critical value
of the quadratic Zeeman energy. The NSV generally is un-
stable to dissociating into two HQVs. Using a BdG analysis,
we quantify this instability and find that it can be reduced
by increasing the strength of the spin-dependent interactions.
For the polar-core NSV, the instability also decreases by
increasing the quadratic Zeeman energy.

It should be possible to controllably produce NSVs using
established experimental schemes involving magnetic and

optical fields [12,55], which would allow the properties of
individual NSVs to be studied. It is also interesting to ask if
NSVs could play a role in the nonequilibrium dynamics of an
antiferromagnetic spinor condensate quenched into the EPP
phase. To date, studies have considered the role of HQVs (e.g.,
Refs. [18,22]), however, we have identified regimes where
NSVs are stable (or quasistable) defects. In such regimes,
they may be important in the description of phenomena
such as phase ordering and quantum turbulence. We note
that the easy-plane ferromagnetic spinor condensate similarly
supports two types of vortices, with the dominant vortex type
determining the universal ordering dynamics [8,9,56].
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