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Bose-Bose mixtures in a weak-disorder potential: Fluctuations and superfluidity
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We study the properties of a homogeneous dilute Bose-Bose gas in a weak-disorder potential at zero
temperature. By using the perturbation theory, we calculate the disorder corrections to the condensate density, the
equation of state, the compressibility, and the superfluid density as a function of density, strength of disorder, and
miscibility parameter. It is found that the disorder potential may lead to modifying the miscibility-immiscibility
condition and a full miscible phase turns out to be impossible in the presence of the disorder. We show that the
intriguing interplay of the disorder and intra- and interspecies interactions may strongly influence the localization
of each component, the quantum fluctuations, and the compressibility, as well as the superfluidity of the system.

DOI: 10.1103/PhysRevA.102.023325

I. INTRODUCTION

In recent years, degenerate multicomponent quantum gases
have prompted considerable interest in the community of
cold atom physics both theoretically and experimentally due
to their rich phase diagram. One of the most significant
characteristics of such multicomponent structures is their
miscibility-immiscibility transition, which depends on the
ratio of the intra- and interspecies interactions [1–3], on the
condensate numbers [4], and on thermal fluctuations [5–8]. A
mixture of two-component Bose-Einstein condensate (BEC)
plays a crucial role in various systems, such as solitons (see,
e.g., Ref. [9]), vortices (see, e.g., Ref. [10]), and bilayer
Bose systems (see, e.g., Refs. [11,12]). Very recently, it has
been found that the balance between the mean-field term and
the beyond-mean-field quantum fluctuation may lead to the
formation of a mixture droplet phase [13–16].

On the other hand, the creation of disorder using speckle
lasers [17,18] or incommensurate laser beams [19,20] opens
promising new avenues in condensed-matter physics and in
the ultracold quantum gases field. The competition between
disorder and interactions plays a nontrivial role in developing
a fundamental understanding of many aspects of ultracold
gases, namely the Bose glass (a gapless compressible insulat-
ing state) [21–25], Anderson localization [17–20,26–31], dis-
ordered BEC in optical lattices [32–35], Bose-Fermi mixtures
[36,37], and dipolar BEC in random potentials [7,38–45].

Until now, there has been little work treating disor-
dered ultracold Bose-Bose mixtures. A general mechanism of
random-field-induced order has been analyzed in both lattice
[46] and continuum [47] two-component BEC. Localization
of a trapped two-component BEC in a one-dimensional ran-
dom potential has been numerically addressed in Ref. [48].
It has been found in addition that disorder plays a crucial
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role in the dynamics of spin-orbit coupled BEC in a random
potential [49].

This paper aims to investigate the impacts of a weak-
disorder potential on the quantum fluctuations and on the
superfluidity of two-component BEC. To this end, we ex-
tend the perturbative theory applicable to the single compo-
nent bosonic gas [30,31,38,39,45,50] and present a detailed
analysis of weakly interacting homogeneous two-component
Bose gases subjected to weak-disorder potential with delta-
correlation function. The effects of the disorder on the
miscibility-immiscibility condition are also deeply investi-
gated. This study not only bridges the gap between superfluid-
ity, interactions, and disorder but also it is important from the
viewpoint of elucidating the localization phenomenon of two
bosonic species.

We derive useful expressions for the condensate fluctua-
tions due to the disorder known as glassy fraction, the equa-
tion of state (EOS), the compressibility, and the superfluid
density. We look at how each species is influenced by the
disorder and how the interaction between disordered bosons
influences the coupling and the phase transition between the
two components. Our results reveal that the localization of
each species does not depend only on the disorder strength
but depends also on the interspecies interactions and the
ratio of intraspecies interactions. We show that the disorder
effects could significantly enhance chemical potential of each
species. The disorder corrections to the superfluid density
show a similar behavior as the glassy fraction of the conden-
sate. Moreover, we obtain disorder corrections to the com-
pressibility and the miscibility condition and accurately de-
termine the critical disorder strength above which a transition
from miscible to immiscible phase occurs. In the decoupling
regime where the interspecies interaction goes to zero, we find
good agreement with the analytical results obtained within the
Huang-Meng-Bogoliubov model [51] and perturbative theory
for a single component BEC. Experimental evidence of the
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Huang-Meng theory for a single BEC has been reported most
recently in Ref. [52].

The rest of this paper is structured as follows. In Sec. II we
develop the perturbative theoretical description with respect
to disorder which is based on the coupled Gross-Piteavskii
(GP) equations and discuss its validity. Section III deals with
the fluctuations due to the disorder potential. We focus explic-
itly on the effects of weak delta-function correlated disorder
and derive an analytical formula for the glassy fraction. Its
behavior is deeply highlighted as a function of the miscibility
parameter and interspecies interactions. In Sec. IV we cal-
culate the disorder corrections to the EOS by extending the
renormalization scheme used in a dirty single BEC [39,45].
Section V is dedicated to investigating the compressibility
and to establishing the miscibility condition for a disordered
homogeneous mixture. We find that a binary Bose miscible
mixture cannot occur in the presence of the disorder. In
Sec. VI we look at how a weak-disorder potential influences
the superfluidity. Section VII contains some conclusions and
outlooks.

II. Model

Consider weakly interacting binary Bose gases in a weak
random potential fulfilling mean-field miscibility criterion
(see below). The system is described by the coupled GP
equations [6,7,16,53]

μ j� j =
[
− h̄2

2mj
∇2 + Uj + g j |� j |2 + g12|� j |2

]
� j, (1)

where � j is the wave function of each condensate, the in-
dice j is the species label, j = 3 − j, μ j is the chemical
potential of each condensate, and gj = (4π h̄2/mj )a j and
g12 = g21 = 2π h̄2(m−1

1 + m−1
2 )a12 with a j and a12 being the

intraspecies and the interspecies scattering lengths, respec-
tively. The gas parameter satisfies the condition nja3

j � 1.
The disorder potential Uj (r) is described by vanishing ensem-
ble averages 〈U (r)〉 = 0, and a finite correlation of the form
〈U (r)U (r′)〉 = R(r − r′).

For weak disorder, Eq. (1) can be solved using straightfor-
ward perturbation theory in powers of U using the expansion
[30,31,38,39,45,50]

� j = �
(0)
j + �

(1)
j (r) + �

(2)
j (r) + · · · , j = 1, 2, (2)

where the index i in the real valued functions �(i)(r) signals
the ith order contribution with respect to the disorder poten-
tial. They can be determined by inserting the perturbation
series (2) into Eq. (1) and by collecting the terms up to U 2.
The zeroth order gives

�
(0)
j =

√√√√μ j − g12�
(0)2
j

g j
, (3)

which is the uniform solution in the absence of a disorder
potential. Combining Eq. (3) yields

�
(0)
j =

√√√√μ j

g j

(
1 − g12

g j

μ j

μ j

)
�

� − 1
, (4)

where � = gjg j/g2
12 is the miscibility parameter which char-

acterizes the miscible-immiscible transition. For � > 1, the
mixture is miscible while it is immiscible for � < 1.

The first-order equation reads

− h̄2

2mj
∇2�

(1)
j (r) + Uj (r)�(0)

j + 2g j�
(0)2
j �

(1)
j (r)

+ 2g12�
(0)
j �

(0)
j

�
(1)
j

(r) = 0. (5)

Performing a Fourier transformation, one obtains

�
(1)
j (k) = −

[
Uj (k) + 2g12�

(0)
j

�
(1)
j

(k)
]
�

(0)
j

Ek j + 2g j�
(0)2
j

, (6)

where Ek j = h̄2k2/2mj .
For Ek j � 2g j�

(0)2
j = μ j (1 − g12μ j/g jμ j )�/(� − 1),

the kinetic energy is negligible compared to the random
potential energy; then the mixture deformation sustains only
the potential effects. Therefore, the coupled GP equations
(1) yield for the total density n j (r) = �

(0)2
j + n(1)

j (r),

where n(1)
j = �(n0 j − g12n0 j/g j )/(� − 1), with n0 j =

(μ j − Vj )/g j being the decoupled condensate density which
is nothing else than the standard Thomas-Fermi-like shape.
For Ek � μ j (1 − g12μ j/g jμ j )�/(� − 1), the densities of
the two BEC follow the modulations of a smoothed disorder
potential where the variations of U have been smoothed out.

The second-order term is governed by the following
equation:

− h̄2

2mj
∇2�

(2)
j (r) + Uj (r)�(1)

j + g j
[
2�

(0)2
j �

(2)
j (r) + 3�

(0)
j �

(1)2
j (r)

] + g12
[
2�

(0)
j

�
(1)
j

(r)�(1)
j (r) + �

(0)
j �

(1)2
j

(r)

+ 2�
(0)
j �

(0)
j

�
(2)
j

(r)
] = 0. (7)

The solution of this equation in the momentum space reads

�
(2)
j (k) = −

∫
dk′

(2π )3

�
(1)
j (k − k′)

[
Uj (k′) + 3g j�

(0)
j �

(1)
j (k′)

]
Ek j + 2g j�

(0)2
j

− g12

2�
(0)
j

�
(0)
j �

(2)
j

(k)

Ek j + 2g j�
(0)2
j

− g12

∫
dk′

(2π )3
�

(1)
j

(k − k′)

×
[
2�

(0)
j

�
(1)
j (k′) + �

(1)
j

(k′)�(0)
j

]
Ek j + 2g j�

(0)2
j

. (8)
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Equation (8) enables us to self-consistently determine the
chemical potential of the system (see below).

Finally, the validity of the present perturbation approach
requires the condition U � g j�

(0)2
j � g jn j , where �

(0)
j is

given in Eq. (4), tells us that the densities do not vary much
around the homogeneous values. For g12 = 0, one recovers
the well-known condition (U � g�(0)2) established for a
disordered single BEC [50]. Indeed, this simple assumption
indicates how localization can be destroyed in a regime of
weak interactions. However, the perturbation approach is no
longer valid in the regime of strong disorder.

III. GLASSY FRACTION

In this section we deal with the mixture fluctuations due
to the disorder potential. It has been shown that the disorder
contribution to the condensate can be given as the variance of
the wave function nR j = n j − nc j [38,39], where

n j = 〈
�2

j (r)
〉 = �

(0)2
j + 〈

�
(1)2
j (r)

〉 + 2�
(0)
j

〈
�

(2)
j (r)

〉 + · · ·
(9)

and

nc j = 〈� j (r)〉2 = �
(0)2
j + 2�

(0)
j 〈�(2)

j (r)〉 + · · · (10)

is the condensed density. Subtracting (10) from (9), one
obtains nR j = 〈�(1)2

j (r)〉 + · · · , which is in fact analog to the
Edwards-Anderson order parameter of a spin glass [39,54,55].

From now on, we shall consider U1 = U2 = U and
m1 = m2 = m. Employing the Fourier transform of �

(1)
j (r),

i.e., Eq. (6), and using the fact that 〈U (k′)U (k′′)〉 =
(2π )3R(k′)δ(k′ + k′′), the glassy fraction, nR j , can be
written as

nR j = n j

∫
dk

(2π )3
R(k)

[
Ek + 2n j (g j − g12)

Ek

]2

, (11)

where Ek = (Ek + 2g jn j )(Ek + 2g jn j ) − 4g2
12n jn j .

For analytical tractability, we consider the white noise
random potential, which assumes a delta distribution

R(r − r′) = R0δ(r − r′), (12)

where R0 is the disorder strength with dimension (energy)2 ×
(length)3. The model (12) is valid when the correlation length
of the correlation function R(r − r′) is sufficiently shorter
than the healing length.

After some algebra, we get a useful formula for the glassy
fraction:

nR j

n j
= 4πR′

j

√
n ja3

j

π
f j (�), (13)

where R′
j = R0/g2

jn j is a dimensionless disorder strength and

f j (�) =
⎡
⎣ (2β j )−3/2√

1 + μ̄ j + √
β j

− (2β j )−3/2√
(1 + μ̄ j ) − √

β j

⎤
⎦ f̄1(�)

+
⎡
⎣ √

2β−1
j

4
√

1+μ̄ j+
√

β j

+
√

2β−1
j

4
√

(1+μ̄ j ) − √
β j

⎤
⎦ f̄2(�),

(14)

where

f̄1(�) = (1 + μ̄ j )
3 + 2α j (1 + μ̄ j )

2

− 4(1 + μ̄ j )

[
2μ̄ j

(
� − 1

�

)
+ α2

j

]

+ 8μ̄ jα j

(
� − 1

�

)
,

f̄2(�) = (1 + μ̄ j )
2 + 2α j (1 + μ̄ j ) − 6μ̄ j

(
� − 1

�

)
− 2α2

j ,

β j = (1 + μ̄ j )
2 − 4μ̄ j[(� − 1)/�],

α j = μ̄ j
[
1 −

√
g j/(g j�)

]
, μ̄ j = n jg j/n jg j .

Equation (13) is appealing since it describes the glassy frac-
tion in terms of the miscibility parameter. The total disorder
density is given by nR = nR1 + nR2. For � → ∞ (or g12 → 0,
equivalently), we find from Eq. (13) that f1(∞) = f2(∞) =
1/2. Therefore, we should reproduce the famous Huang and
Meng result [51], nR/n = 2πR′√na3/π , for the single com-
ponent disorder fraction. The intriguing interplay between
the strong intercomponent coupling and the disorder effects
in the regime � − 1 � 1 would cause a sharp increase in
the functions f j (�). Near the phase separation, i.e., � →
1 (or g12 → √

g1g2, equivalently), the functions f j (�) are
diverging. They are complex for � < 1 and hence the mixture
undergoes instability.

The disorder functions f j have the following asymptotic
behavior for small a12

f j (a12) = 1

2
− n j

n ja j

(
1 +

√
n j a j

n j a j

)2 a12 + · · ·

and for large a12

f j (a12) =
(√

a j/a j − 1
)2

2
( n j a j

n j a j
+ 1

)3/2
√(

a ja j/a2
12

) − 1
+ · · · .

It is straightforward to check that these asymptotic results
perfectly agree with the solutions shown in Fig. 1(a) in the
asymptotic regime.

As an illustration of our theoretical formalism, we con-
sider a two-component Bose condensate of rubidium atoms
in two different internal states 87Rb - 87Rb. We have taken
the intracomponent scattering lengths, a1 = 100.4a0 and a2 =
95.44a0 (a0 is the Bohr radius) [56], and the densities, n1 =
1.5 × 1021 m−3 and n2 = 1021 m−3. Thus the parameter n ja3

j

is as small as ∼10−4.
Figure 1(a) shows that, for a12/a0 � 97.89, the functions

f j are decreasing with the interspecies interaction giving
rise to the delocalization of both species. In the vicinity of
the transition between the miscible and immiscible phases,
i.e., a12/a0 = 97.89, the functions f j exhibit an anomalous
behavior where they develop a small minimum. Then they
start to increase for a12/a0 > 97.89. In such a regime, both
species are strongly localized in the local wells of the random
potential.
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The situation is quite different for fixed a12 and varying
the interactions ratio a2/a1. The disorder functions f1 and f2

decrease and increase, respectiely, with the ratio a2/a1 as is
shown in Fig. 1(b). The function f2 develops a minimum at
a2 � a1. For a2/a1 � 5, f1 is very small and thus the first
component becomes almost superfluid due to the suppression
of the localization, while the second BEC remains localized
regardless of the value of a12. One can conclude that the
localization of one component does not trigger the localization

of the second component due to the interplay of the intra- and
interspecies interactions and the disorder potential.

IV. EQUATION OF STATE

The EOS can be calculated by substituting Eqs. (3)–(8)
into Eq. (9) and solving the equation 〈�2

j (μb j )〉 = n(μb j ),
where μb j represents the bare chemical potential. It diverges
for uncorrelated disorder [39,45]. We then obtain

μb j (n j, n j ) = g jn j + g12n j −
∫

dk
(2π )3

R(k)(
g jg j − g2

12

)
Ek

{(
g jg j − g2

12

)
[Ek − 2n j (g12 − g j )] + g12g j[Ek − 2n j (g12 − g j )]

− 2g12g jg jn j[Ek − 2n j (g12 − g j )]2 − 2g2
jg jn j[Ek − 2n j (g12 − g j )]

2

Ek
− 2g12n j

(
g jg j − g2

12

)
[Ek − 2n j (g12 − g j )]

× [Ek − 2n j (g12 − g j )]

Ek
− 2g12g jg jn

3/2
j [Ek − 2n j (g12 − g j )]

3

(g jg j − g2
12)E2

k

}
. (15)

To overcome this unphysical ultraviolet divergence, we renor-
malize the chemical potential. The renormalized chemical
potential is defined as

μ j (n j, n j ) = μb j (n j, n j ) − μb j (0), (16)

where

μb j (0) = −
∫

dk
(2π )3

R(k)

[
1

Ek
+ g jg12(

g jg j − g2
12

)
Ek

]
. (17)

Omitting higher order in g12, we obtain, in second order of the
disorder strength, the following renormalized EOS:

μ j = g jn j + g12n j +
∫

dk
(2π )3

R(k)

(g jg j − g2
12)E2

k Ek

× {
4g2

jg jn j
(
Ek + g jn j

)
(Ek + 2g jn j )

2

+ 4g jg jg12n j

[
(Ek + g jn j )(Ek + 2g jn j )

2

+ E2
k (Ek + 2g jn j )

]}
. (18)

This equation allows us to calculate the sound velocity and the
inverse compressibility.

For delta-correlated disorder (12), the EOS reads

μ j = g jn j + g12n j + 16πg jn jR
′
j

√
n ja3

j

π
h j (�), (19)

where

h j (�) = 1

(2β j )3/2

�

� − 1

[
h̄1(�) + n jg12

n jg j
h̄2(�)

]
, (20)

and

h̄1(�) =
⎛
⎝ 1√

1 + μ̄ j + √
β j

− 1√
(1 + μ̄ j ) − √

β j

⎞
⎠H1(�)

+
⎛
⎝ √

β j√
1 + μ̄ j + √

β j

+
√

β j√
(1 + μ̄ j ) − √

β j

⎞
⎠H2(�),

h̄2(�) =
⎛
⎝ 1√

1 + μ̄ j + √
β j

− 1√
(1 + μ̄ j ) − √

β j

⎞
⎠H3(�)

+
⎛
⎝ √

β j√
1 + μ̄ j + √

β j

+
√

β j√
(1 + μ̄ j ) − √

β j

⎞
⎠H4(�),

where

H1(�) = (1 + μ̄ j )
3 + (1 + μ̄ j )

2

[
1

2
+ 2μ̄ j − 1

2
μ̄ j

(
�

� − 1

)]

− 4(1 + μ̄ j )

{
μ̄2

j + μ̄ j

[
1 + 2

(
� − 1

�

)]}

+ 2μ̄ j

(
� − 1

�

)
(1 + 4μ̄ j ) + 6μ̄2

j ,

H2(�) = (1 + μ̄ j )
2 + 1

2
(1 + μ̄ j )

[
1 + μ̄ j

(
�

� − 1

)]

− 6μ̄ j

(
� − 1

�

)
,

H3(�) = 2(1 + μ̄ j )
3 + (1 + μ̄ j )

2

[
−2+3

2
μ̄ j − 1

2

(
�

� − 1

)]

+ 2μ̄ j

{
3 +

(
� − 1

�

)[−8(1 + μ̄ j ) + 3μ̄ j + 4
]}

,

H4(�) = 2(1 + μ̄ j )
2 + 1

2
(1 + μ̄ j )

[
1

2

(
�

� − 1

)
+ 3μ̄ j

]

− 12μ̄ j

(
�

� − 1

)
.

The last term in Eq. (19) accounts for the disorder corrections
to the EOS. For � → ∞ (or g12 → 0, equivalently), one has
h j (∞) = 3/4 (see also Fig. 2) and thus the EOS reduces
to that of the single component BEC namely μ = gn(1 +
12πR′√na3/π ), found in Refs. [55,57,58] using the Huang-
Meng-Bogoliubov theory.
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FIG. 1. (a) Behavior of the disorder functions f j as a function
of the interspecies interaction strength a12 for 87Rb - 87Rb mixture.
(b) Behavior of the disorder functions f j as a function of the ratio
a2/a1 for a12 = 90a0. Blue dotted lines: f1. Red dashed lines: f2.
Here a12 can be adjusted via Feshbach resonance.

Figure 2(a) depicts that the functions h j grow with a12

and diverge at a12 → √
a1a2 result in an enhancement of the

total chemical potential. In this case, the quantum fluctuations
arising from interactions are viewed as being predominated by
disorder effects.

Moreover, we see from Fig. 2(b) that the disorder functions
h j behave differently with the interactions ratio a2/a1. Both
functions diverge for a2/a1 → 0 and match at a2/a1 = 5. The
chemical potential associated with the first component μ1

enhances when h1 rises, while μ2 decays for lowering h2. This
reveals that the competition of the intraspecies interactions
and the disorder potential may perceptibly alter the behavior
of the EOS of the whole mixture.
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a12 a0

h j

b

0 2 4 6 8 10
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35
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45
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55

60

a2 a1

h j

FIG. 2. (a) Behavior of the disorder functions hj as a function of
a12 for 87Rb - 87Rb mixture. (b) Behavior of the disorder functions hj

as a function of the ratio a2/a1 for a12 = 90a0. Blue dotted lines: h1.
Red dashed lines: h2.

V. MISCIBILITY CONDITIONS

We now discuss a possible energetic instability, associ-
ated with the presence of the disorder and the occurrence
of miscible-immiscible phase transition. For a homogeneous
mixture to be stable, the following conditions should be
fulfilled [59]:

∂μ j

∂n j
> 0, (21a)

(
∂μ j

∂n j

)(
∂μ j

∂n j

)
>

(
∂μ j

∂n j

)2

. (21b)

These conditions are derived from the variation of the
energy with respect to the densities. For the EOS (19), we
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FIG. 3. (a) Behavior of the disorder functions ∂hj/∂nj in units
of nj as a function of a12 for 87Rb - 87Rb mixture. (b) Behavior of
the disorder functions ∂hj/∂nj in units of nj as a function of the
ratio a2/a1 for a12 = 90a0. Blue dotted lines: n1∂h1/∂n1. Red dashed
lines: n2∂h2/∂n2.

obtain

∂μ j

∂n j
= g j

⎡
⎣1 + 8πR′

j

√
n ja3

j

π

(
h j + 2n j

∂h j (�)

∂n j

)⎤⎦. (22)

The second term in the right-hand side (RHS) of Eq. (22) con-
stitutes the disorder corrections to the inverse compressibility
κ−1

j = n2
j∂μ j/∂n j .

Figure 3(a) shows that the disorder functions n j∂h j/∂n j

possess identical behavior over almost the entire range of

the interspecies interactions. They vanish for a12 = 0 where
the two components are spatially separated and remain neg-
ligibly small in the domain 0 � a12/a0 � 65, indicating that
the disorder effect is marginally relevant in this regime. For
a12/a0 � 65, n j∂h j/∂n j decrease and display a negative di-
vergence at a12 → √

a1a2, leading to appreciably reduce the
compressibility of the system.

We observe from Fig. 3(b) that the disorder functions
n1∂h1/∂n1 and n2∂h2/∂n2 vary in the opposite way with the
ratio a2/a1. They diverge for a2/a1 → 0, and n1∂h1/∂n1 has a
minimum (n2∂h2/∂n2 has a maximum) at a2/a1 � 0.2, where
the second component is extremely dilute compared to the first
component, then increase (decrease) for a2/a1 > 0.2 [see the
inset of Fig. 3(b)]. This peculiar behavior can be attributed to
the competition between the repulsive interactions, the misci-
bility, and the disorder. The functions ∂hj/∂n j are negative in
the whole range of interactions.

The stability conditions (21) turn out to be given as

g j

⎡
⎣1 + 8πR′

j

√
n ja3

j

π

(
h j + 2n j

∂h j (�)

∂n j

)⎤⎦ > 0, (23a)

�

⎡
⎣1 + 8πR′

j

√
n ja3

j

π

(
h j + 2n j

∂h j (�)

∂n j

)⎤⎦

×
⎡
⎣1 + 8πR′

j

√
n ja

3
j

π

(
h j + 2n j

∂h j (�)

∂n j

)⎤⎦

>

⎛
⎝1 + 16πR′

j

√
n ja3

j

π

a j

a12
n j

∂h j (�)

∂n j

⎞
⎠

2

. (23b)

Expressions (23) clearly show that the miscibility condition
for a mixture of two interacting BEC is significantly affected
by the disorder potential. This gives rise to a phase transition
to an immiscible phase even though the cleaned mixture is
miscible. For relatively large disorder strength, the mixture
may drive a transition to an immiscible phase with complete
spatial separation between the two BEC. For R′

j = 0, the
conditions (23) reduce to those of the cleaned binary BEC
mentioned above.

The critical disorder strength above which a quantum
miscible-immiscible phase transition occurs can be directly
determined from (23b) as

R′c
j =

−Aj −
√

A2
j − 4Bj (� − 1)/�

16π
√

n ja3
j/πBj

, (24)

where Aj = (h j + 2n j∂h j/∂n j ) + √
g jn j/g jn j (h j +

2n j∂h j/∂n j ) − 4�−1(n jg j/g12)(∂h j/∂n j ) and Bj =
(h j + 2n j∂h j/∂n j )(h j + 2n j∂h j/∂n j )

√
g jn j/g jn j −

4�−1(n jg j/g12)2(∂h j/∂n j )
2 with R′

j
= R′

j (g
2
jn j/g2

j
n j ). In the

case of 87Rb - 87Rb mixture with parameters, a1 = 100.4a0,
n1 = 1.5 × 1021 m−3 and a2 = 95.44a0, n2 = 1021 m−3, and
a12 = 90a0, the miscible-immiscible phase transition arises
for disorder strengths R′c

1 = 0.7 and R′c
2 = 1.16.
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VI. SUPERFLUID FRACTION

Let us consider a Bose mixture superfluid moving with
velocity vsj = h̄ksj/m, where ksj is a wave vector correspond-
ing to the velocity of superfluid, subjected to a moving weak
random potential with the velocity vu = h̄ku/m, where ku is a

wave vector corresponding to the velocity of disorder. At finite
temperatures, the Bose fluid is separated into a superfluid
density ns j and a normal density nn j that moves with the
disorder component nR j . Then the coupled time-dependent GP
equations read

ih̄
∂� j (r, t )

∂t
=

(
− h̄2

2m
∇2 + U (r − vut ) + g j |� j (r, t )|2 + g12|� j (r, t )|2

)
� j (r, t ). (25)

We treat the solution of Eq. (25) perturbatively by introducing the function

� j (r, t ) = [
�

(0)
j + �

(1)
j (r, t ) + �

(2)
j (r, t ) + · · · ]eiksj·re− i

h̄

( h̄2k2
s j

2m +μ j

)
t
, (26)

which corresponds to the clean-case solution [39,45,57]. After inserting the expansion (26) into Eq. (25) and using the
transformation r′ = r + vut , one obtains(

− h̄2

2m
∇2 − i

h̄2

m
K j · ∇ + U (r′) − μ j + g j |� j (r′)|2 + g12|� j (r

′)|2
)

� j (r′) = 0, (27)

where Kj = ksj − ku.
In the two-fluid model, the total momentum P(r) of the

moving system is defined as

P j = −ih̄〈� j |iks j + ∇|� j〉 = h̄ks jn j − ih̄〈�∗
j∇� j〉. (28)

We neglect higher than linear terms in ks j and keep in mind
that in zeroth order P j does not depend on ks j . This yields

P j = h̄ks jn j − ih̄〈�∗(1)
j ∇�

(1)
j 〉 + · · · , (29)

where the first-order correction to the wave function is given
in Fourier space by

�
(1)
j (k) =

−U (k)�(0)
j

(
Ek − h̄2

m k · Kj
)[ − E2

k − 2Ek�
(0)2
j

(g j − g12) + (
h̄2

m k · Kj

)2]
4�

(0)2
j

�
(0)2
j g2

12E2
k − [

E2
k + 2Ekg j�

(0)2
j

− ( h̄2

m k · Kj)
2
][

E2
k + 2Ekg j�

(0)2
j − (

h̄2

m k · Kj
)2] . (30)

For small Kj , the normal density reads

nn j = n j − 1

h̄

∂Pj

∂Kj

∣∣∣
Kj=0

. (31)

In the case of delta-correlated random potential (12), we get
for the normal fraction

nn j = 16π

3
R′

j

√
n ja3

j

π
f j (�) = 4

3
nR j . (32)

We see that Eq. (32) well recovers the result of Huang and
Meng for a single component BEC with contact interaction
[51]. The fact that nn j is larger than nR j is due to the lo-
calization of bosons in the respective minima of the random
potential which leads to reduction of the superfluid density.
Obviously, the interplay of the disorder potential, interspecies
interaction, and the ratio of intraspecies interactions may
strongly affect the superfluid fraction ns j = 1 − (4/3)nR j .

VII. CONCLUSIONS

We investigated the impact of a weak-disorder potential
with a delta-correlated function of a homogeneous binary
BEC at zero temperature. Within the realm of the perturbative
theory, we derived analytical expressions for the physical
quantities of interest such as the condensate depletion due to
the disorder, the EOS, the compressibility, and the superfluid

density in terms of density, strength of disorder, and the
miscibility parameter. Our results revealed that the intriguing
interplay of the disorder and intra- and interspecies coupling
may strongly influence both the quantum fluctuations and
the superfluidity yielding a variety of interesting situations
for relevant experimental parameters. In particular, we found
either both species are localized or only one species is local-
ized and the second species remains extended. We showed
in addition that the localization of one component does not
necessarily trigger the localization of the other species. In-
terestingly, we found that the disorder potential leads to a
dramatic phase separation between the two species, changing
the miscibility criterion of the mixture. We expect that the
introduction of the Lee-Huang-Yang (LHY) corrections that
stem from quantum fluctuations in the EOS [60] may stabilize
the miscible state analogous to the quantum-mechanical sta-
bilization of the droplet phase [13]. The same scenario takes
place in a disordered dipolar BEC with the LHY quantum
corrections [45]. Furthermore, as in the disordered single
BEC, the disorder corrections to the normal part of each
Bose fluid have been found to be greater than the disorder
condensate depletion in each species because the bosons
scattered by the disorder environment provide randomly dis-
tributed obstacles for the motion of the superfluid. The results
obtained by Huang and Meng and the perturbation theory
in a single BEC for the fluctuations of the condensate and
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of the superfluid density due to the disorder have been well
recovered.

Strictly speaking, in the regime of a strong disorder, each
component fragments into a number of low-energy, local-
ized single-particle states with no gauge symmetry break-
ing forming the so-called Bose glass phase. The exploration
of such a regime would need either a nonperturbative ap-
proach or quantum Monte Carlo simulations. We believe
that the findings of this work add extra richness to the
diversity of disordered ultracold atoms. They open up an

avenue for controlling phase separation of Bose-Bose mix-
tures. Finally, an important extension of this work would be
to analyze effects of a weak disorder in a mixture droplet
state.
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