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Compared to single-component Bose-Einstein condensates, spinor Bose-Einstein condensates display much
richer dynamics. In addition to density oscillations, spinor Bose-Einstein condensates exhibit intriguing spin
dynamics that is associated with population transfer between different hyperfine components. This paper
analyzes the validity of the widely employed single-mode approximation when describing the spin dynamics
in response to a quench of the system Hamiltonian. The single-mode approximation assumes that the different
hyperfine states all share the same time-independent spatial mode. This implies that the resulting spin
Hamiltonian only depends on the spin interaction strength and not on the density interaction strength. Taking
the spinor sodium Bose-Einstein condensate in the f = 1 hyperfine manifold as an example and working within
the mean-field theory framework, it is found numerically that the single-mode approximation misses, in some
parameter regimes, intricate details of the spin and spatial dynamics. We develop a physical picture that explains
the observed phenomenon. Moreover, using that the population oscillations described by the single-mode
approximation enter into the effective potential felt by the mean-field spinor, we derive a semiquantitative
condition for when dynamical mean-field induced corrections to the single-mode approximation are relevant.

Our mean-field results have implications for a variety of published and planned experimental studies.

DOI: 10.1103/PhysRevA.102.023324

I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs) display rich
physics including spin domain formation, spin textures, topo-
logical excitations, and nonequilibrium quantum dynam-
ics [1,2]. Spin-1 BECs are most commonly realized using
sodium or rubidium atoms in the f = 1 hyperfine manifold.
Due to angular momentum conservation, the scattering of two
m = 0 atoms into the m = =£1 hyperfine states provides a path
toward entanglement generation [3—14]; here, m denotes the
projection quantum number associated with the total angular
momentum quantum number f of a single atom. This route for
entanglement generation, which can be viewed as an analog of
the four-wave mixing process in quantum optics, is behind a
variety of proposals aimed at spin squeezing and metrological
gain [15-23].

In »*Na and ¥Rb spin-1 BECs (f = 1 manifold), the
scattering length combination associated with the spin in-
teractions is significantly smaller, in magnitude, than that
associated with the density interactions; the ratio is approx-
imately 28.1 [24] and 215 [2] for sodium and rubidium,
respectively. Correspondingly, the energy (time) scale for the
spin interactions is smaller (larger) than for the density inter-
actions. This observation is the key behind the single-mode
approximation (SMA) [1,2,4,25-27], which—in the context
of a time-dependent situation—amounts to assuming that the
shape but not the amplitude of the spatial density profile is
frozen during the dynamics. As a consequence, the spatial
modes enter into the spin Hamiltonian only in the form of the
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mean total density: A larger mean total density corresponds to
a larger in magnitude spin-dependent interaction energy.

The SMA has been employed at the quantum
level [4,13,17,22,25,28,29] as well as at the mean-field
level [30-34]. In the former, the spin Hamiltonian is treated
fully quantum mechanically. In the latter, the mean value
of the spin components is considered, resulting in a set of
differential equations in terms of the fractional population
of the m = 0 mode and the relative phase that can be solved
analytically. Intriguingly, the set of differential equations can
be reproduced by defining a classical Hamiltonian in which
the relative phase and fractional population play the role
of the generalized coordinate and generalized momentum,
respectively [30]. This mapping allows one to visualize
the dynamics using phase portraits in two-dimensional
phase space.

The number of studies dedicated to assessing the validity
of the mean-field SMA quantitatively in experimentally real-
istic dynamical settings is rather small [35-37]. This paper
adds to this list and develops a simple framework for the
emergence of dynamics beyond the SMA. Our paper is re-
lated to Ref. [38], which observed quantum fluctuation-driven
resonances experimentally and analyzed these resonances
using the undepleted pump approximation, which assumes
that the predominantly occupied spin component remains
macroscopically occupied during the spin dynamics. Just as
Ref. [38], we discuss a resonance effect. The characteristics
that distinguish the resonances discussed in the present paper
from those discussed in Ref. [38] are as follows: (i) In our
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paper, the time-dependent SMA solutions create an effective
time-dependent potential (driving term) for each m channel.
The effective potentials seen by the m = £1 components in
Ref. [38], in contrast, are time independent. If the effective
potential felt by one component supports an excited eigenstate
whose energy is in resonance with the ground-state energy
of another channel, then coupling to an excited spatial mode
becomes non-negligible. Physically, the above energy condi-
tion corresponds to a resonant scattering process in which two
m = 0 atoms get scattered into an m = +1 and an m = —1
atom. (ii) The coupling between the spin and the spatial
degrees discussed in this paper is mean-field driven and not
as in Ref. [38] quantum fluctuation driven.

Our solutions to the coupled mean-field Gross-Pitaevskii
equations show that the coupling between the spin and the
spatial degrees of freedom develops dynamically, despite the
fact that the initial state is well described within the mean-
field SMA. The resonance condition, which depends on the
interactions, can be avoided by tuning the single-particle
detuning between the m = 0 and the m = +1 atoms. Since
the energy is conserved after the quench, the quench-induced
dynamics discussed in our paper is not accompanied by a
relaxation to the ground state or the formation of (quasi-)static
spin domains. Instead, spin structure develops and disappears
as time proceeds. Our results are expected to be useful for the
interpretation of past, ongoing, and future experiments.

The remainder of this article is structured as follows.
Section II reviews the theoretical framework employed.
Section III presents results for a *Na BEC under external
axially symmetric harmonic confinement with a fixed aspect
ratio for various single-particle energy shifts g and particle
numbers N using an initial state with vanishing magnetiza-
tion M. Beyond SMA physics is observed at the mean-field
level. Section IV explains the observed beyond SMA effects.
Finally, Sec. V summarizes our main results and provides an
outlook.

II. THEORETICAL FRAMEWORK

We consider a spin-1 BEC consisting of N mass-M atoms
in an external harmonic trap with angular frequencies wy, w,,
and w,. In addition to the harmonic confinement, the BEC
atoms are exposed to external magnetic and microwave fields.
The parameter ¢ in our equations below quantifies the strength
of the energy shift that arises from the magnetic-field-induced
quadratic Zeeman shift and the microwave field-induced AC
Stark shift [37,39]. The linear Zeeman shift energy does not
appear explicitly in the equations since it can be eliminated
by going to a rotating frame [2,27]. Two different mean-field
descriptions are considered:

(1) Approach A. A (2 + 2)-parameter mean-field SMA
framework. This approach amounts to solving two sets of
equations (one for the spatial and one for the spin degrees of
freedom), both of which depend on two parameters.

(2) Approach B. A five-parameter coupled Gross-
Pitaevskii equations framework. This mean-field approach
accounts for the coupling of the spatial and spin degrees of
freedom.

In both approaches, the BEC is described by a three-
component spinor U(F, 1) = (W (7, 1), Wo(F, 1), W_i(F, 1) ;

however, the equations that govern W,,(7, t) differ for the two
cases.

A. Approach A

The mean-field SMA [1,2,4,25-27] assumes that the
m = +1, 0,and —1 components share the same spatial wave-
function Ygma (F) exp(—iet/h), where the Gross-Pitaevskii
orbital Ygya (7) and the chemical potential € are solutions to
the stationary single-component Gross-Pitaevskii equation,

[Ho + gx(N = DIYrsma (P 1¥smia(F) = epsma (), (1)

with
—h?
HO = WV;Z + Vtrap(’_z) (2)
and
1
Vieap (F) = EM((U;%)CZ + w§y2 + w?zz). 3)

The Gross-Pitaevskii orbital Y¥sya (7) is assumed to be nor-
malized to one, and the density interaction strength g, is
defined through [1,2]

_ A 2 ap + 2a,

M3 @

&n
where ay and a, are the s-wave scattering lengths for two
colliding atoms with total spin angular momenta F =0 and
F =2, respectively. Assuming axially symmetric harmonic
confinement with w, = wy =w,, Ysma(¥) is governed by two
dimensionless parameters, namely, the dimensionless mean-
field strength g,(N — 1)/(ap, .fiw:) [ano.: = +/h/(Mw;)] and
the trap aspectratio A, A = w,/w,,.

The spinor components W,, (7, ¢) are, then, written as

W (7, 1) = Xm()Ysma (F) exp(—i€t /h), 4)

where the y,,(t), which govern the spin dynamics, are
given by Xm(t) =  Pm () exp[lem(t)] Here, 6,,(t) and p,, (1)
denote the phase and fractional population, normalized such
that py1(¢) 4+ po(t) + p—1(t) = 1, of the mth component. The
SMA is argued to be applicable when the spin healing length
&, & = h//2M|c,], is larger than the size of the BEC [2,40].
Here, c; is the spin interaction energy, ¢, = g,iisma, Where the
spin interaction strength g, [1,2] is given by

_ 477,’Fl202—a0
8s = M 3

(6)

and the mean density 7isma by 7isma = N [ |¥sma (F)|*dF.
Looking ahead, we also define the density interaction energy
Cny Cn = EnNISMA-

The equations that govern the fractional populations and
phases can be conveniently written in terms of the mag-
netization M, which is conserved throughout the time dy-
namics, and the relative phase 6(¢) between the spinors
M = pi1(t) — p-1(t) and 6(t) = 26p(t) — 011(1) — 61 (1).
With these definitions, the coupled equations of motion

023324-2



MEAN-FIELD SPIN-OSCILLATION DYNAMICS BEYOND ...

PHYSICAL REVIEW A 102, 023324 (2020)

read [30]
%di;t(t) = —pVI1 = po()P = M2sin[6®)]  (7)
and
_%% =_C%+1—2,00(t)
2 2
B =
(®)

Equations (7) and (8) show that the mean-field spin dynam-
ics within the SMA is fully determined by two parameters,
namely, the “dimensionless energy” ¢g/c; and the “dimension-
less time” ¢/(fi/cs). Since the static spatial mode and the
spin dynamics are decoupled and each is governed by two
parameters (throughout, we are considering axially symmetric
harmonic confinement), we refer to the mean-field SMA as a
(2 4 2)-parameter framework. It should be noted, however,
that nigma, Which is determined by the static spatial mode,
enters via the quantity ¢, into the equations that determine the
spin dynamics.

As already alluded to in Sec. I, Egs. (7) and (8) can be inter-
preted as Hamilton’s equations of motion of a classical Hamil-
tonian, with 6(¢) and py () playing the roles of the generalized
coordinate and associated generalized momentum. Within this
framework, the spin energy E; is conserved [30]. Figures 1(a)—
1(d) show the phase portrait for g/c; = 1/2, 1, 3/2, and 2,
respectively. Given py(0) and 6(0), the dynamics proceeds
along a fixed energy trajectory (lines in Fig. 1). Depending on
the initial conditions, the trajectories correspond to periodic
phase solutions (solid lines in Fig. 1) or running phase solu-
tions (dashed lines in Fig. 1). For both classes of solutions,
po(t) is characterized by a fixed period and amplitude. Our
calculations in Sec. III consider initial states with py(0) =
1/2, p11(0) = p_1(0) = 1/4,and 6(0) = O (see the blue dots
in Fig. 1).

B. Approach B

Even if the initial state is structureless and, e.g., well
described by a Thomas-Fermi profile, spatial structure may
develop during the time dynamics. Indeed, the formation of
spatial structure during spin oscillation dynamics for spin-1
2’Na and 8’Rb BECs has been reported by several experimen-
tal groups [38,41-43]. So far, the theoretical modeling of this
structure formation has been, to the best of our knowledge,
restricted to approximate frameworks in the form of reduced
dimensionality coupled mean-field Gross-Pitaevskii simula-
tions [25] or a stability analysis at the quantum level [38,44].
The following paragraphs outline the time-dependent cou-
pled mean-field Gross-Pitaevskii equations framework, which
allows for the coupling of the spin and spatial degrees of
freedom and makes no a priori assumption about the spatial
dynamics of the orbitals.

The time-dependent mean-field Gross-Pitaevskii equa-
tions for the spinor U (7, 1), which capture beyond single-
mode physics, can be conveniently written in matrix

FIG. 1. Phase portraits illustrating the mean-field SMA spin dy-
namics for M = 0 and (a) g/c; = 1/2,(b) g/c; = 1,(c) q/cs = 3/2,
and (d) g/c; = 2. The lines show equally spaced trajectories with
fixed E;/c,; the dimensionless energy spacing is 1/20, 1/16, 1/8,
and 1/6 in panels (a)—(d), respectively. The blue dots mark the
initial conditions considered in Sec. III; they correspond to E;/c; =
3/4, 1, 5/4, and 3/2 in panels (a)—(d), respectively. The separatrix
that divides the periodic phase solutions (solid lines) and running
phase solutions (dashed lines) is shown by a thick black line in panels
(a)—(c); panel (d) supports only running phase and no periodic phase
solutions.

form [1,25-27,45]

AU(F, 1 IS
ih% =L+ Egq +V.EDIPED, 9
where
L=Ho+gN—1) Y [¥,F0DI% (10)
m=0,%£1
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V. (7.1)
> W E OP =219 F 0

m==x1,0
—a(N—1) [Wo (7, DT W_ (7, 1)

0

If the spin interactions vanish (i.e., if gy =0), then the
solutions are independent of the coupling matrix V (7,1)
[see Egs. (9) and (11)]. The pattern formation discussed in
Sec. III crucially depends on the kinetic-energy contributions
in Eq. (9) [see also Eq. (10)], i.e., treatment of the coupled
mean-field Gross-Pitaevskii equations within the Thomas-
Fermi approximation yields qualitatively different results than
treatment of the full coupled mean-field equations.

As discussed earlier, the spatial dynamics and the spin
dynamics within the mean-field SMA depend each on two
dimensionless parameters, namely, g,(N — 1)/ (af’10 Jiw;) and
A for the spatial degrees and q/cs and t/(h/c;) for the spin
degrees. The coupled Gross-Pitaevskii equations [see Egs. (9)
and (10)], in contrast, depend on five dimensionless param-
eters: g,(N — 1)/(ap, i), A, g/cs, t/(Rfcs), and g, /g;.
The ratio g,,/gs “connects” the spatial and spin degrees of free-
dom. The energy scales fiw,, fiw,, and g,(N — 1) /aﬁoqz are—
for typical experimental parameters—significantly larger than
the energy scale c,. This suggests that the dynamics that is
resulting from these energy scales is faster than the “low-
energy” spin population dynamics. In fact, the mean-field
SMA assumes that the dynamics introduced by these high-
energy scales is so fast that it can be safely averaged out.
However, the coupling between the low- and the high-energy
degrees of freedom can, at least, in principle, lead to an
energy transfer between the associated degrees of freedom.
Although direct comparisons between Gross-Pitaevskii sim-
ulation results and experimental data were not performed,
Ref. [41] attributed the experimentally observed damping
of the spin oscillations for 8’Rb (positive ¢) to this en-
ergy transfer and, associated with it, the breakdown of the
mean-field SMA.

III. NUMERICAL RESULTS

We consider a spin-1 2Na condensate with ag = 48.91ag
and a, = 54.54ap [24], where agp denotes the Bohr radius. To
prepare the initial state, we imagine the following procedure.
First, all atoms are loaded into the m = —1 state of the f = 1
hyperfine manifold in the presence of a small magnetic field.
Second, a radio-frequency pulse is applied to prepare a state
with population fractions of 1/4 and 1/2 in the m = %1 and
m = 0 hyperfine states of the f = 1 manifold [35,37].

The lines in Fig. 2 show the fractional population py(t) as
a function of time, obtained by solving the coupled Gross-
Pitaevskii equations for N =40000 and an axially sym-
metric harmonic confinement with moderate aspect ratio of

D W OF = W 0

m==%1,0
Wo (7, D[ (F, )]

E ir 18 a diagonal matrix with diagonal elements ¢, 0, and g; and

Yo7, D[V (F, D)]* 0

[Wo(F, D" W11 (7, 1)

D W O =21 (F 0

m==1,0

Y

(

A =15/7 =~ 2.143 for four different ¢ values. For compari-
son, the mean-field SMA results are shown by open circles.
For the smallest and largest g/c,’s considered [Figs. 2(a)
and 2(d) are for g/c; = 1/2 and 2, respectively], the mean-
field SMA describes the full mean-field spin oscillation dy-
namics fairly accurately.

0 F———+——t—t—
0.6} (d) A
& 5 1% ]
04l £y R 0N 4%§° A
Q \ ° o ::o ) /° o /-
o Sogo O%pc® o0
02} k
(1] 3 L L L L L L L L L .
0 20 40 60 80 100
t (ms)

FIG. 2. Comparison of the time-dependent fractional popula-
tion po(¢) obtained using the coupled mean-field Gross-Pitaevskii
equations (lines, Approach B) and mean-field SMA (open circles,
Approach A). The coupled Gross-Pitaevskii equations simulations
are performed for a sodium spin-1 BEC with N =40000 un-
der external harmonic confinement characterized by w, = 27w x 70
and w, = 2w x 150 Hz and interaction energies c,/h ~ 12.5 and
¢n/h = 350 Hz. The single-particle energy scale ¢ is (a) g/c; = 1/2,
(b) g/cs =1, () g/cs = 3/2, and (d) q/c, = 2; this corresponds to
q/h =~ 6.23,12.5, 18.7, and 24.9 Hz, respectively. The inset in panel
(b) shows the mean-field SMA result for larger 7.
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FIG. 3. Snapshots of the integrated spatial density for a >*Na spin-1 BEC with N = 40 000 under external harmonic confinement with w, =
27w x 70 and w, = 2 x 150 Hz. The parameters are the same as those in Fig. 2(c), i.e., ¢;/h ~ 12.5, ¢,/h =~ 350 Hz and ¢q/c, = 3/2. The
top row [panels (ai)—(ci)] and bottom row [panels (aii)—(cii)] are for + = 38 and 50 ms, respectively. The first, second, and third columns show
the integrated densities ny;(x,y, 1) = N [* |W (7, 1)[’dz, no(x,y.1) =N [7 |Wo(F, 0)Pdz, and n(x,y, 1) =N 'Y, _o 1 [0 [W(F, 1)2dz,

respectively.

For g/c; = 1, in contrast, the results for the coupled Gross-
Pitaevskii equations (Approach B) display spin oscillations
with notably smaller period than the results for the mean-
field SMA (Approach A) [73 versus 231 ms, see the inset
of Fig. 2(b)]. For this parameter combination, the coupling
between the spin and the spatial degrees of freedom speeds
the spin oscillation dynamics up significantly, i.e., the mean-
field Gross-Pitaevskii equations framework predicts a smaller
period than the mean-field SMA framework. In the classical
phase portrait, the initial state for g/c; =1 is located on
the separatrix. As can be seen from Fig. 1(b), this implies
that the fractional population py(#) is equal to zero half-way
through the first oscillation of the fractional populations. The
coupled Gross-Pitaevskii equations, in contrast, result in a
small nonzero po(t) half-way through the first oscillation
of the fractional populations; specifically, the value of py(t)
for t+ =36.4 ms is approximately 0.019, corresponding to
about 700 atoms in the m = 0 hyperfine state. For such a
low-atom BEC component, quantum fluctuations of the spin
and/or spatial degrees of freedom may play a non-negligible
role, suggesting that the applicability of the coupled Gross-
Pitaevskii equations needs to be assessed carefully.

For q/cy =3/2 [see Fig. 2(c)], the coupled Gross-
Pitaevskii equations and the mean-field SMA both display
spin population oscillations of—roughly—the same period.
Intriguingly, however, the coupling between the spin and
spatial degrees of freedom that is accounted for by the coupled
Gross-Pitaevskii equations leads to a damping as well as an
overall upward drift of the spin oscillation amplitude during

the first few cycles. This upward drift is not captured by
the mean-field SMA, which predicts fractional population
oscillations with constant amplitude and period.

Figure 3 shows selected integrated density profiles for the
same parameters as those used in Fig. 2(c), i.e., for the case
where the fractional population p(¢) drifts upward with time.
Recall, this happens for ¢/c; = 3/2 and an initial state that is
far away from the separatrix [see Fig. 1(c)]. The first two rows
of Fig. 3 are for + = 38 ms (after a bit more than one spin
population oscillation) and the last two rows for = 50 ms
(after about one and a half spin population oscillations). For
both times, we see that the total integrated densities [see
Figs. 3(ci) and 3(cii)] are close to what would be expected
within the SMA and that the integrated densities for the spinor
components [see Figs. 3(ai), 3(bi), 3(aii), and 3(bii)] display
nontrivial structure, i.e., have much less resemblance with
a Thomas-Fermi profile. Figure 3 shows that the structures
of ny(x, y,t) for t = 38 ms and of ny;(x,y,t) for t = 50 ms
are quite similar. This observation is more general: We find
that the “deformations” of the subcomponent densities ny(7, t)
and n4(7,t), which combine to a Thomas-Fermi-like to-
tal density n(7,t), oscillate “out of phase.” This oscillatory
structure in the subcomponent densities can clearly not be
described within the SMA. We also solved the coupled mean-
field Gross-Pitaevskii equations within the Thomas-Fermi
approximation, which neglects the kinetic-energy terms. This
approximation yields qualitatively different densities than
those displayed in Fig. 3. This shows that the observed struc-
ture formation depends sensitively on the interplay between
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FIG. 4. Fractional population py(t), determined by the coupled
Gross-Pitaevskii equations for a sodium spin-1 BEC under external
harmonic confinement characterized by @, =27 x 70 and w, =
27 x 150 Hz. The black solid, red dashed, and blue dotted lines
are for N = 10000, 40000, and 80 000, respectively. The g value
is adjusted for each N such that g/c; = 3/2 for all three N’s con-
sidered. For comparison, the open circles show the result from the
calculations within the mean-field SMA; since the time is plotted in
dimensionless units, the mean-field SMA result is independent of N.
The open circles are essentially indistinguishable from the coupled
Gross-Pitaevskii equations results for N = 10 000.

the various energy terms in the coupled mean-field Gross-
Pitaevskii equations.

The breakdown of the SMA can be illustrated in a com-
plementary approach, which relies on the fact that the mean-
field SMA framework is fully governed by two dimensionless
parameters, namely, g/c; and t/(%/cg). The open circles in
Fig. 4 show the fractional population py(¢), obtained within
the mean-field SMA, as a function of the dimensionless time
for g/c; = 3/2 [same data as in Fig. 2(c)]. For comparison,
the red dashed, black solid, and blue dotted curves show
the coupled mean-field Gross-Pitaevskii equations results for
N =40000 [same data as in Fig. 2(c)], N = 10000, and
N = 80000, respectively. In all cases, the trap frequencies w,
and w, and coupling strengths g and g,, are the same as before.
However, the value of ¢ is adjusted such that g/c; = 3/2
for all three N values considered. Figure 4 shows that the
N = 10000 results are essentially on top of the SMA results,
that the N = 80000 oscillations have a slightly reduced os-
cillation period and amplitude, and that the N = 40000 data
display—as discussed in detail above—notable deviations
from the SMA result. The ratio & /Rrp . is & 1.51, ~0.84,
and ~0.63 for N = 10000, 40000, and 80 000, respectively.
Thus, the reliability of the mean-field SMA is not solely
governed by the ratio between the spin healing length and the
Thomas-Fermi radii.

Focusing on initial states with fractional populations of
1/4,1/2, and 1/4 for the m = +1, m =0, and m = —1 hy-
perfine levels and vanishing relative phase, Figs. 2—4 identify
two regimes where the mean-field SMA (Approach A) and
coupled mean-field Gross-Pitaevskii equations (Approach B)
yield different results. (i) Unlike Approach A, Approach B
reveals an overall drift of the oscillating fractional population
po(t), which is accompanied by time-dependent non-Thomas-
Fermi-like pattern formation. (ii) The time periods of the spin
oscillations predicted by Approach A and Approach B deviate

significantly for g/c; = 1, i.e., in the regime where the initial
state is located on the separatrix. The next section develops a
theory understanding of regime (i).

IV. PHYSICAL PICTURE

The effective potential picture developed in this sec-
tion based on the time-dependent Gross-Pitaevskii equations
[Egs. (9)—(11)] is conceptually similar to the effective poten-
tial picture developed in Ref. [38], using a framework that
accounts for quantum fluctuations. In that paper, the m = +1
modes are initially empty and the effective potentials are time
independent. In our paper, in contrast, the m = &1 modes are
initially macroscopically occupied and the effective potentials
are time dependent.

In the absence of interactions and positive g, two colliding
m = 0 atoms must have an “extra” energy of 2q to scatter into
an m = +1 atom and an m = —1 atom. If g is negative, then,
an m = +1 atom and an m = —1 atom must have an extra
energy of 2¢ to scatter into two m = 0 atoms. To streamline
the discussion, we assume in the remainder of this section
that ¢ is positive; the arguments can be readily extended to
the negative-g case. Since the m = 0 channel needs—in the
absence of interactions—an extra energy of 2¢ to be in res-
onance with the m = =1 channels, we anticipate that—in the
presence of interactions—the drifting occurs when there exists
an excited state in the m = 0 channel that is in resonance with
the ground states of the m = %1 channels. In this resonant
regime, population transfer to the excited state can occur,
leading to a density deformation (physics beyond the SMA).
Since the different m channels are coupled in the presence of
interactions, the excited and ground states just referred to are
associated with effective potentials that neglect the coupling
between channels.

Our semiquantitative estimate starts with Egs. (9)—(11).
We work within the SMA to evaluate the effective potential

Vg 1),
V@ 1) = Viap(PDL + E iy + V. (7, 1), (12)
where

Va0 = V@) + g — DY [0, 0P (13)

and I denotes the 3 x 3 identity matrix. Specializing to the
case where |W_ (¥, t)| = |V_ (¥, t)|, we find

Vau# 0) = O = Dlrsma(PIPV g (1), (14)
where
Ve = 8l + 8V o) + 8V ot giag - (15)

Here, Kd,—ag(t) is a diagonal matrix with elements pg(z),
1 — po(t), and po(2),

0 d.@®) 0
dr(t) 0 dy, @) |, (16)
0 dy@ 0

VY oft-diag (1) =
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and

day(t) = [ po(?)[1 2_ po(1)] ilf0()—=021 ()] (17)

To proceed, we treat the time ¢ as an adiabatic parameter,
neglect V¢ ;00 (1), and solve the linear Schrodinger equation
for the effective potential V (7, t). Explicitly, the m = %1
and m = 0 effective potentials read as

Veff,i1(7a t) = Vtrap(;;) +61 + [gn +gsp0(t)](N - l)“ﬁSMA(?)lz
(18)

and

Vet 0(F, 1) = Virap(F) + [0 + &:(1 = po (1)) IV — D ¥rsma (7).
19)

Since the effective potentials depend on time through po(?),
the resonance condition changes with time. To estimate the
resonance condition, we use the effective potential curves for
t =0, ie., we set pg(t) equal to 1/2; this implies that the
coupling constants are equal to g, + g;/2 in all three channels.
Although there is some arbitrariness in this choice, the phys-
ical picture is not impacted by this. When the m =0 channel
supports an excited state that lies 2¢ above the ground-state
energy of the m & 1 channels, the resonance condition is ful-
filled. A more rigorous treatment would include the coupling
terms and might consider a time average.

For the parameters of Fig. 2, our approximate formalism
yields that the drifting should occur at g.s &~ 21 Hz. This
estimate agrees quite well with the result obtained by solving
the coupled Gross-Pitaevskii equations, which shows that
the drifting is maximal for ¢ &~ 19 Hz. We also estimate the
resonance conditions for N = 10* and N = 8 x 10*, using
the same parameters as in Fig. 4. Our approximate formal-
ism yields g5 ~ 31 and g5 & 17 Hz, respectively, in good
agreement with the observed maximal drifting for g ~ 30
and g ~ 17 Hz. To estimate g5, we used the Thomas-Fermi
approximation [46]. This implies that the effective poten-
tial V (7, ¢) is constant in the regime where the density
|¥sma (7)|?, estimated within the Thomas-Fermi approxima-
tion using the coupling constant g, + g,/2, is finite and
equal to the harmonic-oscillator potential otherwise. As a
consequence, the energy of the first “radially” excited state
(excitation predominantly located along the p coordinate) sits
by an energy that is comparable to the Thomas-Fermi energy
above the ground-state energy. Importantly, our approximate
framework also predicts higher-lying resonances, correspond-
ing to higher-lying excited states that are supported by the
effective potentials Ve, (7, t) and higher-order resonances.
Our numerical solutions to the coupled Gross-Pitaevskii equa-
tions confirm these predictions. We checked the predictive
power of our approximate framework for about ten different
N, w,, w;, g, and g; parameter combinations and found that
it predicts the first drifting condition, i.e., the value of gy,
at roughly the 15% level. We emphasize that the drifting
is not only observed for sodium spin-1 BECs, but also for

spin-1 BECs with larger g,/g;. Moreover, analogous effects
are anticipated to occur for higher-spin BECs.

V. CONCLUSIONS

This paper investigated the applicability of the SMA for a
quenched spin-1 BEC. Specifically, the system Hamiltonian
was quenched at time zero, and the subsequent time evolution
was analyzed. All figures presented show results for a >*Na
spin-1 BEC under axially symmetric harmonic confinement
with a moderate aspect ratio and atom numbers of typical
experiments. This system has been used extensively to study
spin oscillations, and published experimental data [35,37,47]
have been interpreted as validating the SMA. Relying on
the applicability of the SMA, follow-up work used **Na
spin-1 BECs to study (quantum) phase transitions that are
supported by the spin Hamiltonian [12,13,28,36,48,49]. At
the same time, some experimental observations, which cannot
be readily reconciled with the validity of the SMA, have
been reported [12,28,38,41] not only for >*Na spin-1 BECs,
but also for 8’Rb spin-1 BECs. Quite generically, it is said
that the SMA should become better as the ratio between
the density- and the spin-interaction strengths increases. This
ratio is 28.1 for the f = 1 manifold of ’Na [24] and 215
for the f = 1 manifold of 8’Rb [2]. Spin-1 BECs can also
be realized using the f = 2 or larger f-hyperfine manifolds,
provided the m = £2, ..., £f atomic levels are unoccupied.
The f = 2 manifold of 87Rb has, e.g., been used to realize a
spin-1 system [19,50].

Section III showed that the solutions to the time-dependent
mean-field Gross-Pitaevskii equations yield, for certain pa-
rameter combinations, spin oscillations that deviate apprecia-
bly from those obtained within the mean-field SMA. The drift-
ing of the spin oscillations were interpreted as a key signature
of beyond mean-field SMA physics. Section IV showed that
the drifting occurs, assuming positive g, when the energy of
the excited state supported by the effective m = 0 mean-field
potential curve is in resonance with the ground state supported
by the m = *1 effective mean-field potential curves: When
the excited spatial mode has just the right energy, two ex-
cited m = 0 atoms are in resonance with a pair of m = %1
atoms, providing a coupling mechanism that leads to spatial
deformations that are not described by the mean-field SMA
orbital. An analogous argument applies to negative ¢g. The dy-
namical mean-field-driven resonance effect discussed in this
paper, which exists for positive and negative g’s, complements
earlier work that experimentally measured and theoretically
analyzed quantum-fluctuation-driven resonances [38].

Our predictions have a wide range of implications for,
e.g., the calibration of effective Rabi coupling strengths and
proposals that are aimed at metrological gain [15-23]. If
the spatial degrees of freedom cannot be treated as “stiff,”
describing the quantum properties of the spin degrees of
freedom will be significantly more involved. To minimize the
coupling between the spatial and the spin degrees of freedom,
in practice one will likely want to work away from the regime
where the resonances that were predicted in this paper occur.
Taking an alternative viewpoint, the physics in the strongly
coupled regime may be an interesting subject in itself.
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