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Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases
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We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a
generalized Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of
the dipolar interaction, approaching the transition to the supersolid phase. The critical angular velocity for the
existence of an energetically stable vortex decreases in the supersolid, due to the reduced value of the density in
the interdroplet region. The angular momentum per particle associated with the vortex line is shown to be smaller
than h̄, reflecting the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is
shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For large angular
velocities, when the distance between vortices becomes comparable to the interdroplet distance, the vortices are
arranged into a honeycomb structure, which coexists with the triangular geometry of the supersolid lattice and
persists during the free expansion of the atomic cloud.
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I. INTRODUCTION

The recent realization of supersolidity in dipolar Bose-
Einstein condensed gases [1–3] is stimulating novel exper-
imental and theoretical work aimed at studying the super-
fluid properties of these intriguing systems, which exhibit
the spontaneous breaking of both gauge and translational
symmetry yielding superfluidity and crystal periodic order,
respectively (see, e.g., Refs. [4–7]). Experimental evidence
of phase coherence among the droplets forming the crystal
structure [1–3], the occurrence of Goldstone modes associated
with the spontaneous breaking of both symmetries [8–10],
and the reduction of the moment of inertia with respect to
the rigid value [11] have provided important signatures of the
superfluid behavior of these systems. Conclusive proof of su-
perfluidity is, however, given by the observation of quantized
vortex lines, following the seminal papers of Refs. [12–16]
in Bose-Einstein condensates and strongly interacting Fermi
gases, respectively. The realization of quantized vortices,
hosted by the crystal configuration of the supersolid, then
represents a challenging task to pursue. This possibility, so
far not yet experimentally realized, has been the object of
recent theoretical investigations [17]. Even the structure of
quantized vortices in the fully superfluid phase and, in par-
ticular, the effect of the long-range dipolar force on the size
of the vortex core and on the value of the critical angular
velocity needed to ensure the energetic stability of a single
vortex line, represents an interesting topic, hopefully of near-
future experimental investigation. The purpose of this paper
is to provide a comprehensive theoretical investigation of the
structure of quantized vortices in a Bose-Einstein condensate
characterized by a long-range dipolar interaction with special
focus on the supersolid phase.
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Our investigation is based on the use of a suitable extension
of the Gross-Pitaevskii equation to include the beyond mean-
field term (see Sec. II) in the equation of state accounting for
quantum fluctuations [18], which plays a crucial role in the
emergence of supersolidity and the formation of self-bound
droplets (see Fig. 1). In Sec. III, we explore the properties of
a single vortex line in both the superfluid and the supersolid
case. In the superfluid phase, the dipolar interaction hugely
increases the vortex core size as compared to Bose gases with
only zero-range interaction. In the supersolid phase, vortices
are hosted in the region separating the droplets forming the
crystal structure and their shape is strongly deformed by the
presence of the droplets. We show that the value of the critical
angular velocity exhibits an important reduction by increasing
the ratio between the dipolar and the zero-range strengths of
the interatomic force. Furthermore, we show that the angular
momentum carried by a vortical line in an axisymmetrically
trapped supersolid is reduced with respect to the usual value
h̄ as a consequence of the reduced superfluidity of the system.
By carrying out a time-dependent simulation, we also point
out that the nucleation process for the creation of a vortical
line in the supersolid phase is favored by the softening of the
quadrupole mode frequency. In Sec. IV, we study the case of
higher angular velocities and show that the coexistence of the
density modulation and vorticity yields a honeycomb vortex
lattice in place of the usual triangular (Abrikosov) lattice,
the coexistence persisting during the expansion following the
sudden release of the trap. We sum up our conclusions in
Sec. VI.

II. DIPOLAR GROSS-PITAEVSKII EQUATION WITH
LEE-HUANG-YANG CORRECTION

We consider a dipolar Bose gas of 164Dy atoms trapped by
an in-plane isotropic harmonic potential Vho(r) = 1

2 mω2(x2 +
y2 + λ2z2) , with λ = ωz/ω, and m the atomic mass. At zero
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FIG. 1. Example of the three distinct phases of a dipolar Bose
gas in a pancake geometry (from left to right): superfluid, supersolid,
and droplet crystal phase. The pictures are obtained as ground-state
solutions of the extended Gross-Pitaevskii Eq. (1) for 105 atoms
by decreasing the s-wave scattering length to favor the long-range
anysotropic dipolar interaction (see text).

temperature, the gas can be characterized by a single macro-
scopic wave function �(r, t ), whose temporal evolution is de-
scribed by a generalized Gross-Pitaevskii equation. The latter
takes into account the contact, the dipole-dipole interaction,
and the quantum fluctuations [19] and can be written as

ih̄
∂

∂t
�(r, t ) = H(r) �(r, t ) , (1)

where the Hamiltonian is

H(r) = − h̄2

2m
∇2 + Vho(r) + g|�(r, t )|2 + γ (εdd )|�(r, t )|3

+
∫

dr′Vdd (r − r′)|�(r′, t )|2 , (2)

with g = 4π h̄2a/m the coupling constant fixed by the s-
wave scattering length a and Vdd (ri − r j ) = μ0μ

2

4π
1−3 cos2 θ
|ri−r j |3 the

dipole-dipole potential, μ0 being the magnetic permeability
in vacuum, μ the magnetic dipole moment, and θ the angle
between the vector distance between dipoles and the po-
larization direction, which we choose as the z axis. In the
absence of trapping, the system can be fully characterized
by the single parameter εdd = μ0μ

2/(3g) = add/a, i.e., the
ratio between the strength of the dipolar and the contact
interaction, eventually written in terms of the dipolar length
add and the scattering length a. For the atom we are using,
add = 131 aB, where aB is the Bohr radius. The third term
of the Hamiltonian Eq. (2) corresponds to the local density
approximation of the beyond-mean-field Lee-Huang-Yang
(LHY) correction [18,20], with

γ (εdd )= 16

3
√

π
ga

3
2 Re

[∫ π

0
dθ sin θ [1+εdd (3 cos2 θ−1)]

5
2

]
.

(3)
Experimental measurements and microscopic Monte Carlo
calculations [21] have confirmed that the LHY term is an
accurate correction to the mean-field theory given by the
Gross-Pitaevskii equation both in dipolar gases and quantum
mixtures [22–26]. At the mean-field level, increasing the role
of the dipolar interaction would lead to the collapse of the
cloud because of the attractive component of the dipolar
force. The collapse is prevented by a strong confinement in
the polarization direction z, (λ � 1) causing the occurrence
of a typical rotonlike excitation spectrum [27], whose gap
becomes smaller and smaller as one increases εdd , and by
the inclusion of the LYH term. Both effects are responsible

for the emergence of new interesting phases. In particular, a
dipolar Bose gas confined in the polarization direction has
been shown to be fully superfluid for a value of εdd lower
than a certain critical value of the order of 1.3 (this value has
a weak dependence on the trapping parameters and the total
atom number N). Above this value, that would correspond
to a roton collapse in the absence of the LHY effect, the
system presents supersolid properties characterized by density
modulations and coherence between the density peaks. Fur-
ther increasing εdd , the system enters the crystal phase, where
coherence between the density peaks is destroyed and global
superfluidity is lost.

In Ref. [17], we have recently shown that supersolids
are able to host quantized vortices in the low-density region
between the density peaks, with a deformed vortex core.
In the following, we determine the behavior of the relevant
properties of these vortices by changing the value of the
relevant parameter εdd .

To study vortices, we add to the Hamiltonian of the system
the angular momentum constraint −�Lz, where Lz is the
angular momentum operator and � is the angular rotation
frequency, and solve the Gross-Pitaevskii equation either in
imaginary or real time as explained in detail in the following.
In particular, the ground state of a superfluid is insensible to
rotations for � lower than a critical value �c, above which
the presence of a vortex in the system becomes energetically
favorable. The new stable vortical configuration carries an an-
gular momentum per particle equal to h̄. Supersolids, instead,
react to any value of the angular frequency due to the existence
of a nonsuperfluid component [17] and for the same reason,
the angular momentum carried by a vortex line is expected to
be smaller than the usual value h̄, as we explicitly verify in the
next section.

III. SINGLE VORTEX LINE

In this section, we analyze the properties of a single vortex
line oriented along the z direction and located in the center of
the trap. We present the results for its core size, its energy,
and its angular momentum across the superfluid-supersolid
transition. Furthermore, we show that, similarly to the case
of usual superfluids [28,29], the nucleation of vortices in a
rotating trap, is dictated by the quadrupole deformation of the
superfluid component.

A. Vortex core structure

The structure of the vortex core in superfluids is deeply
connected to a length called healing length. In condensates
with only contact interactions, the healing length is computed
as the half width half maximum of the wave function. Keeping
the same definition as valid for the dipolar case, seminal
papers already studied in detail the dependence of the healing
length on the scattering length for dipolar gases without the
LHY correction [30,31]. In these works, it has been shown
that the healing length of the vortex increases by increasing
εdd until the gas collapses.

As mentioned above, quantum fluctuations prevent the
collapse, and the supersolid phase emerges in the trapped
geometry at higher values of εdd . In Fig. 2, we report the
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FIG. 2. Healing length defined as the vortex core size (see text)
as a function of the scattering length a by crossing the superfluid to
supersolid transition, both in the nondipolar (solid line) and dipolar
(points) case.

healing length as the system goes from the superfluid into the
supersolid regime, by solving in imaginary time the Gross-
Pitaevskii equation in a rotating frame with angular frequency
�. We find that the healing length keeps increasing till the
transition point, after which a nonmonotonic and irregular
behavior is observed. At the transition point, there appears to
be a jump. In the supersolid phase, the healing length does not
show a monotonic behavior but it remains roughly constant.
As noticed already in Ref. [17], indeed, in the supersolid phase
the vortex core size is of the same order of the peak density
distance, which implies that the vortex core is no longer
characterized by atom-atom interactions but deeply modified
by the crystal structure. The healing length for the nondipolar
case is also shown for comparison.

B. Critical rotation frequency

The vortex line previously described is energetically stable
only above a certain angular frequency �c, which makes the
energy in the rotating frame of the system with the vortex
lower than the energy without the vortex. We have calculated
the value of the critical rotation frequency for a stable vortex
line in the center as a function of εdd across the superfluid-
supersolid-crystal transition, shown in Fig. 3(a). There are
already several works [30–32] accounting for the dependence
of the critical rotation frequency as a function of εdd in dipolar
condensates without including quantum fluctuations. In that
case, �c increases with εdd , reaching a maximum for εdd = 1,
and decreasing for larger values until the collapse is achieved.
Thanks to the inclusion of the beyond-mean-field term in the
Gross-Pitaevskii equation one can go beyond the mean-field
collapse, eventually entering the supersolid phase. We find
that after the maximum is reached, the critical frequency keeps
decreasing, showing a rather small jump at the transition to the
supersolid regime, and continues decreasing until the crystal
phase is reached.
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FIG. 3. (a) Critical rotation frequency as a function of εdd.
(b) Jump of the angular momentum � and nonclassical momentum
of inertia fraction fNCRI as a function of εdd. Angular momentum as
a function of the rotation frequency � for (c) εdd = 1.347, (d) εdd =
1.404, and (e) εdd = 1.483, respectively, in the superfluid, supersolid,
and crystal regimes. The other parameters are N = 40 000 atoms and
trapping frequencies ωx,y,z = 2π × (60, 60, 120) Hz.

C. Angular momentum carried by a vortex

In a fully superfluid system, the angular momentum per
particle carried by a vortex line is h̄. In a partially super-
fluid system, this value should instead become smaller. The
angular momentum carried by the vortex corresponds to the
jump �h̄ in the angular momentum per particle at � = �c

by increasing the angular velocity from below to above the
critical value. We have determined such a jump across the
whole zero-temperature phase diagram of the trapped dipolar
gas and the value of � is reported in Fig. 3(b). As intuitively
expected, we find that � = 1 in the superfluid phase, it de-
creases monotonically in the supersolid phase and eventually
becomes zero in the droplet crystal phase. For completeness,
the angular momentum per particle as a function of � is
reported in Figs. 3(c)–3(e), corresponding to the superfluid,
supersolid, and droplet crystal regime, respectively.

It is interesting to analyze the connection between � and
the superfluid fraction of the system through the jump in the
moment of inertia. Such a jump is only due to the presence
of a superfluid part in a supersolid, and therefore � itself
is a natural quantity to evaluate the global superfluidity of
the system. Another very relevant quantity to characterize
the superfluidity of finite systems is the nonclassical rotation
of inertia fraction that we studied in detail for the dipolar
supersolid gas in Ref. [17]. The nonclassical rotation of inertia
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fraction is given by

fNCRI = 1 − /rig , (4)

where  is the moment of inertia of the system and rig is its
rigid body value. As pointed out by Leggett [33] in cylindrical
annulus, fNCRI coincides with the superfluid fraction fs. In
Fig. 3(b), we compare fNCRI and �. In the superfluid phase,
they are both equal to 1, i.e., the whole system is superfluid. In
the supersolid region, they start deviating from each other with
fNCRI > �. In the droplet crystal phase, fNCRI remains finite,
while � = 0. The reason is due to the fact that each density
peak (droplet) in the crystal phase is superfluid by itself,
therefore increasing the value of the nonclassical rotation of
inertia. On the other hand, � only accounts for the superfluid
component participating in the rotation due to the presence of
a vortex.

D. Quadrupole instability and vortex nucleation

In this section, we address the problem of vortex nucleation
by rotating the harmonic trap, as implemented almost 20 years
ago for a standard 87Rb BEC [29]. The dynamics of vortex
nucleation in ordinary (nondipolar) condensates in a rotating
trap has been extensively studied. Vortex nucleation is induced
by the introduction of a suitable rotating deformation of the
trap, characterized by a rotation frequency � and deformation
parameter ε = (ω2

x − ω2
y )/(ω2

x + ω2
y ).

It turns out that there indeed exists a critical frequency for
vortex nucleation �vn [13,29], which is significantly higher
than the one at which a vortex becomes energetically fa-
vorable. The reason is due to the presence of an energetic
barrier [34] for the vortex to enter due to the need of creating
a density depletion at the vortex position. In Refs. [28,35], it
was shown that for rotating harmonic traps, the mechanism of
vortex nucleation is triggered by the dynamic instability of the
quadrupole mode, according to the resonance condition

�vn = ωq/2 , (5)

with ωq = √
2 ω⊥ the frequency of the quadrupole mode in

the absence of rotation [36]. The dynamical instability leads
to the spontaneous breaking of the cylindrical symmetry of
the cloud creating the condition for vortices to be nucle-
ated [28,35].

Not surprisingly, considering the Gross-Pitaevskii equation
without the LHY term, dipolar superfluids show the same kind
of quadrupole instability [30,37], which could therefore drive
vortex nucleation, when the resonance condition is satisfied.
Notice, however, that for a dipolar gas, the quadrupole fre-
quency ωq is not simply given by

√
2ω⊥ but it depends on the

interaction strength and the trapping parameters of the dipolar
gas (see, e.g., Ref. [37]). Quite remarkably, by direct numeri-
cal simulations, we have shown that the critical frequency for
the vortex nucleation is still given by the resonant condition
Eq. (5) also when the LHY correction is included and even
when the system is in the supersolid phase.

We consider N = 40 000 atoms confined in a harmonic
trap with frequencies ωx,y,z = 2π × (60, 60, 120) Hz, whose
ground state configuration is obtained by propagation in imag-
inary time of Eq. (1). The quadrupole mode frequency of the
system is obtained by evolving the system in real time under
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FIG. 4. Twice the critical frequency for vortex nucleation via the
introduction of a rotating quadrupolar deformation (red circles), and
frequencies of quadrupolar compressional modes (empty symbols),
as a function of εdd . While in the superfluid phase, one finds a single
mode excited by a sudden quadrupolar deformation (triangles), in the
supersolid phase one finds three modes, two of which are associated
with lattice excitations (empty squares) and one with superfluid
oscillations (triangles), reflecting the presence of three Goldstone
modes in an infinite system. The relation �c = ωq,s f /2, expected for
a superfluid, remains valid also in the supersolid.

the action of a small, sudden quadrupolar deformation of the
trap. We find that a sudden quadrupolar perturbation in the
supersolid phase excites three modes that can be associated
with the three Goldstone modes expected for an infinite,
quasi-2D supersolid [4,38]: one Goldstone mode associated
with the spontaneous breaking of the U(1) symmetry responsi-
ble for superfluidity and two associated with the spontaneous
breaking of translational invariance along two directions. The
results for the quadrupole frequencies are reported in Fig. 4.
They extend to the 2D case our previous findings for the
axial breathing mode of an elongated system [8]. As expected,
we find that the lower mode decreases as εdd is increased,
being dominated by the (global) superfluidity of the system,
which disappears approaching the droplet crystal phase. The
other two frequencies, dominated by the motion of the crystal
peaks, increase until saturation in analogy to what we found
in Ref. [8].

The nucleation of the vortex is studied instead by evolving
Eq. (1) in real time starting from the ground state by adding
the −�Lz term to the Hamiltonian [39]. A very small trap
deformation (ε = 3.33 × 10−3) to trigger the instability is
also added. We observe that for any value of εdd there exists a
critical angular frequency �vn, such that for � � �vn strong
cloud deformations occur followed by the nucleation of a vor-
tex (see Fig. 5) [40]. In Fig. 4, we report the calculated values
of �vn multiplied by a factor of 2 to make the comparison with
the lowest quadrupole frequency more direct and explicit. The
resonance condition Eq. (5) considering the (superfluid) lower
frequency mode is met.

A comment on the timescale for vortex nucleation is due
here. Our simulation predicts rather long times (of the order
of 1 second) for the vortex nucleation at T = 0. However,
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FIG. 5. In situ density profiles along the z = 0 plane show-
ing the nucleation of a vortex in a gas of N = 40 000 164Dy
atoms in a slightly deformed trap, of frequencies ωx,y,z = 2π ×
(59.9, 60.1, 120) Hz and εdd = 1.394. (a) Initial preparation of the
gas in the supersolid ground state. (b) The system is put in rotation by
the adiabatic introduction of an angular momentum constraint, until
the angular velocity of 2π × 20 Hz is reached. The system shows a
slight quadrupolar deformation in the z = 0 plane. Several vortices
forms at the surface of the system. (c) The vortices try to penetrate
the lattice through the interstitial region between the droplets to lower
the energy. (d) A single vortex finally settles in the middle of the trap.

in real experiments, noise and thermal effects are expected
to trigger the instability on a much faster timescale, since
noise accelerates the spontaneous breaking of the cylindrical
symmetry of the cloud [41]. Moreover, the presence of the
thermal cloud, which exchanges energy with the condensate,
favors the relaxation process through which the vortex lattice
settles. We also checked that, as expected, larger, yet small,
trap deformations help in speeding up the nucleation process.
For instance, increasing ε of an order of magnitude (ε � 0.03)
reduces the time for the vortex nucleation of also an order of
magnitude � 100 ms.

IV. VORTEX LATTICES IN DIPOLAR SUPERSOLIDS

A superfluid can host more than a single vortex line, if
the rotational frequency is large enough. Many vortices form
in the z = 0 plane, a 2D triangular lattice called Abrikosov
lattice [14,15]. The aim of this section is to address the
question of whether and how a dipolar supersolid can host
many vortices. The presence of the regular (triangular lattice)
density modulation can indeed interfere with the formation of
the Abrikosov lattice, when the intervortex distance (which
scales as �−1/2) becomes of the same order of the distance
between the density peaks (the latter being fixed by the roton
wave vector [27], which in supersolids is of the order of a few
units of the axial oscillator length

√
h̄/mωz).

We have first checked that the triangular Abrikosov lattice
persists in the whole superfluid regime, also in the presence of
the dipolar interaction and LHY term, till the transition to the
supersolid phase [42].

In the supersolid phase, it is energetically favorable to ac-
commodate the vortices in the low density regions. Therefore,
when the vortex distance is of the same order of the distance
between the density peaks, there is a competition between the
natural tendency of vortices forming the triangular Abrikosov
lattice and the vortices occupying the valleys of the supersolid
density. In Fig. 6(b), we show the numerical result of the
imaginary-time evolution of the extended Gross-Pitaevskii
equation in a rotating frame for large enough angular veloci-
ties. We obtain that the vortices are pinned by the minima of
the supersolid density modulations forming—for the choosen
value � = 2/3 ω⊥—a honeycomb lattice. It is instructive to
compare it with the system for � = 0, reported in Fig. 6(a).
The increase of the cloud’s radius (and the density reduction)
due to the centrifugal potential allows a larger number of
peaks to be hosted in the system.

It is important to notice that in the literature, the pinning of
Abrikosov vortex lattices in Bose gases has been addressed
by a number of authors considering an underlying (square
or triangular) rotating optical lattice [43–46], with a nice
early experimental demonstration of the transition from the
“natural” Abrikosov lattice to the pinned vortex lattice by Eric
Cornell and coworkers [47]. We remind the reader, however,
that in our case, the structure of the density modulation is not
imposed by an external potential but is due to the spontaneous
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FIG. 6. Density plots of N = 110 000 164Dy atoms in the supersolid phase for εdd = 1.409, confined in an harmonic trap with frequencies
ωx,y,z = 2π × (60, 60, 120) Hz. (a) Nonrotating gas � = 0, (b) � = 2/5ωx , and (c) � = 5/6ωx .
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FIG. 7. In situ density profiles along the z = 0 plane [panels
(a)–(f)], and cuts along the x axis [panels (g)–(i)] of an expanding
dipolar supersolid in the absence [a)–(c)] and presence [(d)–(f)] of
a vortex. The initially prepared ground state in the presence (d) of
a vortex has been obtained for � = 2π × 20 Hz. Panel (g) shows
the corresponding density cut along the x axis. The red (black) line
corresponds to the case with (without) vortex. Panels (h) and (i) show
corresponding cuts along the x axis. The other parameters are the
same as in Fig. 5. (A full movie of the expansion is available as
Supplementary Material [40].)

breaking of translational symmetry, yielding the supersolid
phase.

The pinned honeycomb lattice persists as long as � is
not too large for the intervortex distance to become smaller
than the period of the supersolid lattice. By further increasing
�, we find that the vortices are hosted in the low density
regions surrounding the droplets as shown in Fig. 6(c) for
� = 5/6 ω⊥.

V. EXPANDING A SUPERSOLID WITH VORTEX LINES

The previously reported results considered the possibility
of addressing the system in situ. Here we briefly discuss the
effect of letting the cloud expand, i.e., after switching off the
trap in the transverse (z = 0) plane to image the system with
a better space resolution. We consider both the single and the
many-vortex case.

Figure 7 shows the density profiles of a dipolar supersolid
with and without a vortex line at two different times after the
removal of the trap [40]. The ratio between the peak density
and the central density, in the absence of the vortex, is less
than 10 and it further decreases during the expansion, the
minimum of the density remaining of the same order as that of
an ordinary superfluid. Thus, with our choice of parameters, a
good imaging system could easily identify the presence of the
vortex in the center of the trap.

For the high angular frequency case, when many vortices
appear, we consider the most interesting case, when the vor-
tices form a honeycomb lattice, as in Fig. 6(b). The expansion
at two different times after switching off the transverse con-
finement is reported in Fig. 8 [40]. In particular, we notice that
the geometry of the two lattices remains unchanged during the
expansion, paving the way for the possible direct observation
of the frustration of the vortex lattice.

Concerning the latter case, we recently became aware of
a very recent work [48] discussing a protocol to produce a
vortex lattice in a large supersolid cloud and exploring the
following dynamics of the expansion.

VI. CONCLUSIONS

In this paper, we have provided a comprehensive study of
quantized vortex lines in the supersolid phase of an ultracold
dipolar gas rotating in the plane orthogonal to the polarization
direction of the dipole moment of the atoms. The analysis has
been carried out by means of the generalized Gross-Pitaevskii
equation [Eqs. (1) and (2)], including LHY corrections for the
stabilization of the supersolid phase.

We have studied in detail the stationary properties and
the nucleation dynamics of a single vortex line hosted in the

(a) (b) (c)

FIG. 8. Expansion of a dipolar supersolid in the presence of the vortex lattice reported in Fig. 6(b). (a) The initially prepared ground state.
This state is evolved in real time, after switching off the radial confinement. Panels (b) and (c) show the z = 0 density profile at two later times
(A full movie of the expansion is available as Supplementary Material [40].)
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center of the cloud. We have found that the width of the vortex
lines, close and in the supersolid phase, is significantly larger
than in usual condensates interacting with contact forces.
The width is large enough to be likely directly imaged with
available in situ techniques. The critical rotational frequency
for the energetic stability of a vortex has been found to
decrease by increasing the dipolar interaction strength close
to and into the supersolid phase. The angular momentum
carried by a vortex is smaller than h̄ in the supersolid phase
and approaches zero by approaching the crystal droplet phase
due to the reduction of the superfluid density of the cloud.
Remarkably, we could show that the nucleation of a vortex is
always triggered by the softening of the lowest quadrupole
mode frequency (see Fig. 4), as in standard Bose-Einstein
condensates with contact interaction.

At large enough angular velocity, we have addressed the
problem of the spatial arrangement of many vortices. The

supersolid phase forces the vortices to be pinned in the density
valleys. In particular, we have shown that vortices arrange
in a regular honeycomb lattice when the intervortex distance
is of the same order of the solid periodicity [Fig. 6(b)], the
supersolid vortex structure being preserved during the free
expansion, following the release of the trap.
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