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The microscopic control available over cold atoms in optical lattices has opened new opportunities to study
the properties of quantum spin models. While a lot of attention is focused on experimentally realizing ground
or thermal states via adiabatic loading, it would often be more straightforward to prepare specific simple
product states and to probe the properties of interacting spins by observing their dynamics. We explore this
possibility for spin-1/2 and spin-1 models that can be realized with bosons in optical lattices, and which exhibit
XY-ferromagnetic (or counterflow spin-superfluid) phases. We consider the dynamics of initial spin-rotated
states corresponding to a mean-field version of the phases of interest. Using matrix product state methods in
one dimension, we compute both nonequilibrium dynamics and ground and thermal states for these systems.
We compare and contrast their behavior in terms of correlation functions and induced spin currents, which
should be directly observable with current experimental techniques. We find that although spin correlations
decay substantially at large distances and on long timescales, for induction of spin currents, the rotated states
behave similarly to the ground states on experimentally observable timescales.
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I. INTRODUCTION

Control over cold atoms in optical lattices has led to oppor-
tunities to realize a range of spin-model Hamiltonians, arising
from the superexchange of spinful fermions and bosons [1,2].
Important recent progress has been made in the realization of
magnetically ordered states in such systems, with the observa-
tion of antiferromagnetic ordering of fermions, corresponding
to a Heisenberg spin model [3–7]. These states are generally
produced by adiabatic loading of atoms into the lattice po-
tential. In this context, there have been a significant number
of proposals for adiabatic manipulation of spin Hamiltonians
in optical lattices, in order to obtain low-entropy states, even
when the energy gap in the ground state is small [8–13]. This
usually involves loading the lattice in a regime where the
energy gap is large and then manipulating the Hamiltonian
parameters time dependently.

At the same time, recent experiments can prepare well-
defined initial product states, which are not eigenstates of
the system, and then probe their subsequent nonequilibrium
dynamics [14,15]. Locally, these product states can appear
as the mean-field state corresponding to the quantum phase
associated with the ground state. For a particular phase, it is
possible to directly probe in experiments to what extent the
initial mean-field magnetic states, and the states they evolve
into, are different from the true ground state for the same
Hamiltonian parameters. For example, in the case of spin-1/2
models, Barmettler et al. [16] considered the evolution of a

perfect Néel state in one dimension (1D) under an antiferro-
magnetic Heisenberg Hamiltonian. As a result of the dynam-
ics, the magnetic ordering is found to decay exponentially in
time, thus demonstrating important differences between the
mean-field and the true ground state in 1D.

In this article, we address such questions in the different
context of spin-superfluid phases, which can be realized with
multicomponent bosons in optical lattices [17]. Such spin
superfluids can also be identified with an XY ferromagnet,
and proposals for their adiabatic state preparation have been
discussed, especially for the spin-1 case that occurs with
two particles per site [13]. On the other hand, an ideal XY-
ferromagnetic state can also be well approximated by a mean-
field description, where all of the spins point in the XY plane.
For large spins, this corresponds to approximating the spin
superfluid by a product of spin coherent states, analogously to
a superfluid state of bosons on a lattice [18,19]. Moreover,
such states can be prepared in a relatively straightforward
experimental sequence. Beginning in a Mott insulator (MI)
state in which all spins are initially prepared aligned along the
z axis, we can apply an rf transition to rotate the state into the
XY plane, and we call this state the rotated state.

We compare and contrast exact quantum ground states of
spin-1/2 and spin-1 models to their rotated spin (mean-field)
counterparts. Focusing on the 1D case, we compute ground
and thermal states as well as the many-body dynamics of
the system using tensor network methods based on matrix
product state (MPS) and matrix product operator (MPO)
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techniques [20–24]. We first quantify how far the initial spin
coherent mean-field state is from the true XY-ferromagnetic
ground state. We then study the evolution of this state, which
is a consequence of interspecies interactions (anisotropies
in the effective spin models) leading to the initial state not
being an exact eigenstate of the Hamiltonian. We find that
for short times, “ideal” XY correlations remain relatively
robust. For longer times and small anisotropies, the dynamics
produces states with exponentially decaying spin correlations,
resembling thermal states. We analyze the dependence of
correlation lengths on anisotropies. For large anisotropies, the
thermalization picture breaks down and a nonequilibrium state
very different from the ferromagnet builds up quickly. Lastly,
we show how the effective magnetic ordering, i.e., spin super-
fluidity, can be probed by inducing spin currents. We propose
a way to probe the magnetic ordering by measuring spin
currents generated by an effective magnetic field gradient. We
compare spin currents following from true ground states of the
system and for initial spin coherent states.

The remainder of this article is organized as follows: In
Sec. II, we review the two effective spin models we consider
in this work (spin 1 and spin 1/2), and how they arise from
a two-species Bose-Hubbard model. In Sec. III, we explore
the differences between ground, rotated, and thermal states in
out-of-equilibrium dynamics. In Sec. IV, we discuss methods
to probe these states by observing spin currents of bosons in an
optical lattice. Lastly, we provide a summary and an outlook
in Sec. V.

II. SPIN MODELS FROM TWO-COMPONENT BOSONS

In this section, we introduce the two effective spin models
that we will analyze in this work. Both can appear as effective
models in Mott insulating states of two components (e.g., two
internal spin states) of bosons trapped in the lowest band of an
optical lattice [25,26], and such systems exhibit a rich ground-
state phase diagram [17]. The system is described by a two-
species Bose-Hubbard Hamiltonian,

Ĥ = −ζ
∑

〈i, j〉
(â†

i â j + b̂†
i b̂ j ) + UAB

∑

j

â†
j â j b̂

†
j b̂ j

+ UA

2

∑

j

â†
j â

†
j â j â j + UB

2

∑

j

b̂†
j b̂

†
j b̂ j b̂ j . (1)

Here, âi and b̂i are the bosonic annihilation operators for the
two species denoted as A and B, respectively. The notation
〈i, j〉 denotes a sum over all nearest-neighbor sites, ζ is
the tunneling rate, and UA,UB the intraspecies and UAB the
interspecies on-site interaction energy strength. We denote
the average occupation of particles per site as n. We will
consider equal intraspecies interactions U ≡ UA = UB, which
describes very well the situation for 87Rb atoms.

In the case of integer n, when the intraspecies interac-
tions are large compared with the tunneling, UA,UB � ζ , the
ground state of the model is a MI state with particles exponen-
tially localized at each lattice site and with small local number
fluctuations. In second-order perturbation theory, analogous
to a Schrieffer-Wolf transformation producing the Heisenberg

FIG. 1. Effective spin models for two-component bosons.
(a),(b) Correspondence of local particle states to spin states for a
spin-1 model and a spin-1/2 model, respectively. (c) Rotated state:
A π/2 spin rotation around the x axis is applied to a state with all
spins initially aligned along the z axis. The rotated states |ψr〉 are
superpositions of the different local particle states. (d),(e) Sketch of
local superpositions of particle states, corresponding to the mean-
field picture of the ground-state phases in different regimes for the
spin-1 and spin-1/2 model, respectively.

model from the Hubbard model [17], we obtain an effective
spin Hamiltonian acting in the low-energy subspace.

A. Spin-1 model

For n = 2, the low-energy subspace on a site l can be repre-
sented by three different states |+1〉l , |0〉l , |−1〉l , as depicted
in Fig. 1(a), comprising effective eigenstates of a diagonal
spin-1 operator, Ŝz

l , with eigenvalues Sz
l = +1, 0,−1. The

effective spin states correspond to the respective particle states
â†

l â†
l |0〉, â†

l b̂†
l |0〉, and b̂†

l b̂†
l |0〉, where |0〉 denotes the empty

lattice state.
Considering the case of an equal number of A and B bosons

(nA = nB), the effective Hamiltonian is an anisotropic spin-1
Heisenberg model [17],

ĤSP1 = −J
∑

〈i, j〉
Ŝi · Ŝ j + u

∑

j

(
Ŝz

j

)2
. (2)

Here, u = U − UAB, J = 4ζ 2/UAB, and Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) is a

vector of the three spin-1 operators.
The ground-state phase diagram of Eq. (2) has been studied

in [27]. The magnetic ordering in the ground state depends on
the interactions. When U � UAB, the ground state will exhibit
a spin insulator or spin-Mott state configuration, with Sz

i → 0
for all sites i. Interactions of similar size, UAB � U , lead to an
XY-ferromagnetic ground state, induced by the superexchange
term. The rotated product state, which would represent a
mean-field XY-ferromagnetic state, is a superposition of all
three spin states on each site [as sketched in Fig. 1(d)]. Note
that while in the Mott phase of two species of atoms the
net overall transport of atoms is suppressed, the XY phase
corresponds to a state with a counterflow (i.e., the currents of
the two species are equal in absolute values but opposite
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directions), and can be nondissipative (supercounter-
flow) [1,26]. Finally, for UAB > U , the ground state is a
z ferromagnet.

B. Spin-1/2 model

In the case of n = 1, the resulting effective Hamiltonian is
a spin-1/2 XXZ Heisenberg model, where a single A boson is
mapped to spin-up |↑〉 j and B boson to spin-down |↓〉 j on site
j [cf. Fig. 1(b)] [17],

ĤSP1/2 = −J
∑

〈i, j〉
σ̂ i · σ̂ j + �

∑

〈i, j〉
σ̂ z

i σ̂ z
j , (3)

where J = 4ζ 2/UAB and � = 8ζ 2/UAB − 8ζ 2/U is the
anisotropy. σ̂ i = (σ̂ x

i , σ̂
y
i , σ̂ z

i ) is a vector of the three Pauli
matrices.

We note that in an experiment, variations in �/J corre-
spond to variations of u = U − UAB, as defined in the spin-1
case, which we can rewrite as �/J = 2u/U . The realizable
range of �/J values is thus dependent on our ability to tune
UAB in an experiment.

In the spin-1/2 case, a phase transition occurs at UAB = U ,
i.e., for � = 0. When UAB � U (� � 0), the ground state
of the system is XY ferromagnetic (or spin superfluid), in
contrast to the Z ferromagnet for UAB > U (� < 0) [see
Fig. 1(e)]. Note that for UAB = U/2 (� = J), the Ising cou-
pling vanishes, i.e., the model becomes equivalent to that of
noninteracting hard-core bosons (or noninteracting fermions),
and for UAB < U/2 (� > J), the sign in front of the Ising
coupling term becomes negative (antiferromagnetic). In this
work, we focus on the regime of 0 � � � 2J , for which the
true ground state exhibits quasi-long-range order.

Note that in 1D, the spin-1/2 XXZ Heisenberg model has
been extensively studied (see, e.g., [28]). Note that it is gen-
erally integrable, i.e., it can be diagonalized by a Bethe ansatz
solution, which can lead to certain exact solutions for simple
observables in equilibrium. For the situation considered here,
the XXZ model is gapless in the thermodynamic limit and can
be described by a Luttinger model. More generally, universal
valid predictions on correlation dynamics after quenches in
the gapless phase of the spin-1/2 XXZ Heisenberg model (as
studied below) have been made from conformal field theories
(CFT) [29,30], even though such theories are technically valid
only for low-energy quenches and in the thermodynamic limit.

III. ROTATED STATES AND OUT-OF-EQUILIBRIUM
DYNAMICS

In this section, we will first discuss the preparation of the
spin-rotated states and then study their differences to true
XY-ferromagnetic ground states. Second, we will look at the
dynamics of the system and analyze the dynamically prepared
states, e.g., as a function of the anisotropies.

A. Preparation of spin-rotated states

The ideal mean-field XY-ferromagnetic state can be pre-
pared by beginning with all spins aligned along the z axis
(|ψ0〉 = |↑↑↑↑↑↑↑ . . .〉), and then rotating that state lo-
cally into the XY plane, of every atom simultaneously [see
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FIG. 2. Energy difference per particle between the reference state
(rotated state) and the ground state of the Hamiltonian, for different
systems sizes M and different anisotropy u/J, �/J , for the effective
(a) spin-1 and (b) spin-1/2 models of two-component bosons on an
optical lattice. The bond dimension used for the MPS calculations
was D = 64, with open boundary conditions.

Fig. 1(c)]. In an experiment, this could be achieved by
beginning in a single-component MI with the correct filling
factor, and then applying an rf/microwave drive that corre-
sponds to a π/2 rotation around the x axis (see, e.g., [31]), as
generated by the operator

R̂x =
∏

j

e−i π
2 Ŝx

j . (4)

The rotated initial state is then

|ψr〉 = R̂x |ψ0〉 . (5)

The operation is calculated analogously for the spin 1/2 with
operators σ̂ x. We will now analyze how close the state |ψr〉
is to the true XY-ferromagnetic ground state and how the
dynamics will modify it.

B. Comparison of the rotated state with the ground state

To obtain a first idea about the similarities of |ψr〉 and the
ground state of the system, we compute the energy difference
�E = Er − EGS per spin of the two states. Figure 2 shows �E
for various values of the anisotropy (u/J and �/J) for spin-1
and spin-1/2, respectively. The results are for a 1D chain
with a varying number of sites M, and computed using MPS
techniques. There is no energy difference without anisotropy,
and the result is very close to the ground state for small values
of u/J,�/J in each case. The energy difference increases
with the anisotropy and, for large system sizes, the value of
energy difference per spin is independent of the system size.

It is difficult to compare these differences directly be-
tween the two models because the Hamiltonians and their
corresponding energy scales are significantly different. We
also note that the variation in U − UAB that is required for
a change in �/J for the spin-1/2 model is much larger than
the variation for a given value of u/J in the spin-1 model, as
for the Mott insulator regime in which we are working, U/J
is substantial.

Naturally, the energy difference only gives us a first indi-
cation of similarities or differences between the rotated state
and the ground states. In the next sections, we will look at the
time evolution of correlation functions and then the behavior
of spin currents induced in the system.

023321-3



ARACELI VENEGAS-GOMEZ et al. PHYSICAL REVIEW A 102, 023321 (2020)

0 20 4 60 0
0

0.1

0.2

0.3

0 20 40 60
0

0.1

0.2

0.3

0 20 4 60 0
0

0.5

1

0 20 40 60
0

0.5

1(a) (b)

(c) (d)

FIG. 3. Comparison of the decay of the correlations with dis-
tance at different snapshots in the time evolution (tJ = 0, tJ =
0.5, tJ = 1.2, tJ = 2.4, tJ = 4). The black dash-dotted line indi-
cates the value of the correlations for the ground state (GS) of
the corresponding Hamiltonian. Results are for the (a),(b) spin-1
and (c),(d) spin-1/2 model, respectively. The different panels con-
trast the evolution for different anisotropies. The red dotted lines
indicate the exponential decay of the corresponding thermal states
with the correlation lengths calculated in Fig. 5. (The calculations
were performed for a system size M = 100, bond dimension for the
MPS calculations D = 128 for spin-1 and D = 256 for spin-1/2, and
open boundary conditions.)

C. Dynamics of correlation functions

We now look at the out-of-equilibrium dynamics after
a preparation of |ψr〉; in particular, we will focus on the
dynamics of spin-spin correlations in the system. To compute
the time evolution under each Hamiltonian, we use the time-
evolving block decimation (TEBD) algorithm [23,24,32,33]
for MPS. The corresponding bond dimensions required for
convergence are indicated in the figure captions.

The correlation functions are calculated as

� j = |〈S+
i S−

i+ j〉| = 1

M − 2b − j

M−b− j∑

i=1+b

| 〈Ŝ+
i Ŝ−

i+ j〉 |, (6)

where i denotes the index of the site, j is the distance or
number of sites, and b = M/5 is a number of sites at the
boundary that we omit to reduce the open boundary effects.
The correlations are calculated analogously for the spin 1/2
with operators σ̂+

i , σ̂−
i+ j .

In Fig. 3, we show the correlations at different times and
compare them with correlations of the corresponding ground
state. In both models, the correlations for the rotated state
begin at a larger value at long distances because of the choice
of initial state, but then decay rapidly in time, especially
at long distances. This decay is clearly faster for increased
anisotropy in both models and is especially rapid in the spin-
1/2 model for � = 0.6J . In the spin-1 case, for u = 0.2J the
decay of the correlations at tJ = 4 is minimal, indicating that
for a small value of the anisotropy u/J , the magnetic order
remains relatively robust under time evolution. For u = 0.6J ,
in contrast, the correlations decay faster with time, but still
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FIG. 4. Example fits to the exponential decay of (a) correlations
at short distances within the light cone (at tJ = 2.5), and (b) mag-
netization as a function of time (at late times, but before boundary
effects) in the spin-1/2 model. (c) Scaling of the fitted correlation
lengths (ξl ) and the magnetization decay time (τm, scaled) from
(a) and (b) as a function of the anisotropy �. Results are also
shown for the spin-1 model as a function of u. (M = 40, MPS bond
dimension D = 256, open boundaries.)

conserve the magnetic ordering at long distances. In the spin-
1/2 case, even for a small value of the anisotropy � = 0.2J ,
we can see how the correlations decrease quickly on the
timescale of a few tunneling times. For � = 0.6J , the spin
ordering vanishes rapidly to zero.

The observed dynamics in the decay of correlations in
Fig. 3 is consistent with a usual light-cone spreading of entan-
gled quasiparticle excitations, as is predicted for the spin-1/2
model, e.g., by CFT [30]. In particular, for short distances,
within the light-cone (i.e., for distances |i − j| < vmt , with
vm the maximum velocity of entangled excitations spread-
ing through the chain), one expects |〈σ̂+

i σ̂−
j 〉| ∝ exp(−(|i −

j|/ξl ) with some characteristic correlation length ξl . This
spatial correlation decay is expected to be related to the
time-dependent decay of local observables, such as the mag-
netization, which should decay as mx(t ) = (1/M )

∑
i〈σ̂ x

i 〉 ∝
exp(−t/τm) on some characteristic timescale τm ∝ ξl . We test
those predictions in Fig. 4 for our simulations in a M = 40
site system and an initial state polarized along the x direction.
Note that our scenario is different from the case of an initial
Néel state considered, e.g., in [28]. While for the Néel state
the staggered z magnetization decays slower when increasing
� (i.e., when moving away from the isotropic point), here the
x magnetization is conserved at the isotropic point and decays
faster with increasing �.

In agreement with the CFT prediction, in Figs. 4(a)
and 4(b), we observe exponential decay of both |〈σ̂+

i σ̂−
j 〉| in

space at short distances, and for mx(t ) in time (for sufficiently
long times, before boundary effects become important, typ-
ically at tJ ∼ 2.5 for � ∼ J). In Fig. 4(c), we compare the
scaling of ξl and τm as a function of �. We expect ξl ∝ vt
with a velocity proportional to v = √

2� − �2/ arccos(1 −
�) [34]. Indeed, we observe a very similar scaling of both
quantities τm and ξl . The slightly stronger dependence on
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� of τm than ξl may be attributed either to the difficult
fitting procedure in the relatively small system considered
here (especially in the limits of large and small �) or to the
fact that our setup is outside of the expected validity of the
CFT approach, as our quench produces a high-energy state in
the middle of the many-body energy spectrum [30].

We also repeated the same analysis for the nonintegrable
spin-1 model, and results for the scaling of τm and ξl are
also shown in Fig. 4(c). Interestingly, we find a very similar
behavior as in the spin-1/2 case, with a difference between
the scaling of τm and ξl . Note that the observed exponential
decay of correlations within the light cone is also consistent
with thermal states (see the red dashed lines in Fig. 3). It is
quite surprising that this thermal behavior at short distances is
more pronounced in the integrable spin-1/2 case compared to
our simulations in the nonintegrable spin-1 model. This makes
such setups interesting for possible larger-scale experimental
tests. We will analyze the thermalization behavior in the
following sections in more detail.

D. Thermal states

In this section, we now compare the dynamically obtained
states to a thermal state, ρ̂th ∝ exp(−βĤ ), with an inverse
temperature β = 1/T (kB ≡ 1) such that the energy of the
thermal state matches the energy of the rotated state,

〈E〉β = tr(ρ̂thĤ ) = Er . (7)

The state ρ̂th describes the system in the long-time limit
effectively for simple observables if it thermalizes, e.g., for
nonintegrable models in the absence of localization [35–41].
In order to compute properties of the system (for large sys-
tem sizes) at finite temperatures, we use an imaginary-time
evolution of the density matrix in MPO form [23]. At the
initial point of the evolution, the system is considered at the
infinite temperature, i.e., its density matrix is proportional to
the identity, ρ0 ∝ 1, where all states have equal probability of
occupation. Then, the next step is to evolve the density matrix
to finite temperatures, ρ̂(β ) ∝ e−βĤ . We use a purification
technique [23,42] to preserve positive semidefiniteness of the
density matrix, and hence rewrite this expression as ρ̂(β ) ∝
e−βĤ/2ρ0e−βĤ/2. Since ρ0 = ρ2

0 = ρ0ρ
†
0 , only one side of the

above expression needs to be evolved, ρ̄(β ) ≡ e−βĤ/2ρ0, and
the thermal expectation value of an arbitrary operator Ô can
be obtained as

〈Ô〉β = tr[Ôρ̄(β )ρ̄†(β )]

tr[ρ̄(β )ρ̄†(β )]
. (8)

We find that the time-dependent variational principle
(TDVP) algorithm [43–46] is a very efficient integrator for
time propagation at finite temperatures in terms of the balance
between the speed and accuracy; however, other methods may
be useful in terms of accuracy, for instance, Runge-Kutta [47].

The accuracy of the method is verified by comparing the
numerical calculations with the exact solution (using exact
diagonalization) in the case of smaller systems. For bigger
system sizes, the convergence of numerical results to the exact
solution is checked by increasing the MPO and MPS bond
dimension, D. We verified the validity of all our results by
comparing the convergence of this method with respect to the
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FIG. 5. Properties of thermal states with identical energy as the
rotated state for both the spin-1 and spin-1/2 model. (a) Correlation
length ξ obtained from an exponential fit to the decay of 〈Ŝ+

i Ŝ−
i+r〉

with r (9). Shown is ξ as a function of the anisotropies u/J and
�/J . Here, M = 40, correlations calculated as in (6). (b) Entropy
per particle, S/(kBM ), as a function of the anisotropies, M = 40. The
bond dimension used for these MPS calculations was D = 64, with
open boundaries.

observables we are interested in, and we confirm the conver-
gence in the bond dimension by running multiple calculations
with increasingly large D.

In the ground state of our spin models, we see that the
correlations decay algebraically (as shown by the black lines
in Fig. 3). However, this effect will be destroyed by thermal
effects: at high temperatures, spin orientations become ran-
domized and the correlations will exponentially decrease with
increasing distance r,

〈Ŝ+
i Ŝ−

i+r〉 ∝ e− r
ξ (T ) , (9)

with ξ being the correlation length (analogously for the spin-
1/2 with operators σ̂+

i , σ̂−
i+r). The properties of the thermal

states corresponding to the energies of the rotated states are
summarized in Fig. 5. There we compare results for the
correlation lengths (obtained from an exponential fit) and for
the entropy per lattice site.

In both models, the correlation length decreases with the
anisotropy. For the spin-1 model, we find that a large corre-
lation length is attained for smaller anisotropy, demonstrating
that for a thermal state (in the long-time limit), a state with
significant correlations may be stabilized for small u/J . In
contrast, for the spin-1/2 case, we find that except for very
small �/J , the correlation lengths obtained are shorter.

Note that in performing an effective imaginary-time evo-
lution as described above, the exponential factor will always
provide an instability towards the ground state, where numer-
ical noise biases the final state towards the ground state, espe-
cially for large β. Thus, in our calculation for thermal states,
the calculations become inaccurate in the low-temperature
limit. For the spin-1 model, this limited our comparisons to the
regime u � 0.2J , where the correlation length for the spin-1
model becomes comparable to the system size.

E. Thermalization dynamics

The relaxation and comparison with thermal states in the
previous section can be extended to consider to what extent
local observables relax to values we might expect for cor-
responding thermal states. In general, we expect that closed
quantum systems will thermalize in the long-time limit in the
sense that local observables in a small subsystem appear to
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FIG. 6. Thermalization behavior of correlations, for both the
(a),(b) spin-1 and (c),(d) spin-1/2 models. The figures show corre-
lation functions in comparison to those of expected thermal states
of energy Er (dotted lines), as a function of time. As an observable,
we consider the correlations 〈Ô j〉 for different distances (a),(c) j =
2 and (b),(d) j = 3, always with b = 18. [The calculations were
performed for a system size M = 40 and system averaged as in
Eq. (6), bond dimension for the MPS time-evolution calculations
D = 128 for spin-1 and D = 256 for spin-1/2, and open boundary
conditions.]

be described by a thermal density matrix, ρ̂th ∝ exp(−βĤ ),
with the (inverse) temperature set by the energy-matching
condition with the initial state, 〈ψ0| Ĥ |ψ0〉 = tr(ρ̂thĤ ). This
thermalization behavior is expected for Hamiltonians without
simple and local conserved degrees of freedom (integrable
models) and in situations without disorder. The mechanism
behind such thermalization can be analyzed, e.g., via the
eigenstate thermalization hypothesis [35–41].

Here we ask to what extent local observables relax towards
thermal values on short timescales in different parameter
regimes. Ideally, a comparison would be made at long times,
but we are naturally limited by the ability to compute time-
dependent dynamics of large systems (for methods based on
tensor networks, this is related to the growth of entanglement
entropy [24]). To avoid finite-size effects of the whole system,
we consider the time-dependent expectation value of the local
subsystems of M = 40 spins, specifically choosing an exam-
ple observable 〈Ô j〉 = 〈Ŝ+

i Ŝ−
i+ j〉 (analogously for the spin-1/2

with operators σ̂+
i , σ̂−

i+ j), and perform a system average as in
Eq. (6).

In Fig. 6, we show the relaxation behavior of these corre-
lations, both for the spin-1/2 and the spin-1 models, and for
correlations at a separation of two sites and three sites. In each
case, we show the equivalent values of the correlations from
thermal states with the same mean energy. We note that in the
spin-1/2 model, the spins relax on a short timescale to values
close to the equivalent thermal value. For the spin-1 case,
the values reached are also close, but quantitative agreement
becomes worse for larger values of u and larger separations.

To summarize the results for different parameter regimes,
we can compute 〈Ô j〉 averaged over a timescale t0 ∈ [tin, tfin],

0.5 1 1.5 2
0

0.05

0.1

0.15

FIG. 7. Thermalization behavior of correlations for the spin-1
model. The figure shows the differences of time-averaged correlation
functions (Ô j , for different distances j, and b = 18) to those of
expected thermal states of energy Er , where a value of zero indicates
dynamics towards a thermal state. This difference is shown for a
long-time average t0J ∈ [2, 5], and as function of the anisotropies.
[The calculations were performed for a system size M = 40 and
system averaged as in Eq. (6), bond dimension for the MPS time
evolution calculations D = 128, and open boundary conditions.]

〈Ô j〉t0
, and compare the result to a thermal state with the

energy of the initial state, ρ̂th. We then evaluate |〈Ô j〉t0
−

〈Ô j〉th|, and the results for different parameters, and correla-
tion functions with different site separations are summarized
in Fig. 7 for spin 1. As implied by Fig. 6, we again see better
agreement with thermal values for short distances and small
anisotropy u. This relaxation would be expected to be better
in a counterflow superfluid regime, and relaxation is less likely
to produce the thermal state in the gapped spin-Mott regime,
once u ≈ 1J . We do not see a strong transition at this point,
which is not surprising for the short-time dynamics observed
here. This would be interesting to investigate further in an
experimental setting, where we expect that dynamics could
be observed over longer times.

For spin 1/2, we do not plot the results, as the discrepancies

from the thermal values, |〈Ô j〉t0
− 〈Ô j〉th| � 0.01, and the

variation with � reflect only differences in the oscillations
of the function relative to the averaging time window. With
the spin-1/2 model being integrable, we might have expected
to see deviations from thermal behavior. However, for these
relatively local observables, it seems that the relationship to
the energy spectrum is sufficiently simple to allow the short-
time values after initial dephasing to reflect the thermal values.
Again, it would be interesting to look at this for longer times in
experiments, in combination with more complex correlation
functions.

Note that for the spin-1/2 case, the possible continuous
Luttinger model description [34] of Hamiltonian (3) makes it
possible to observe correlation and thermalization dynamics
similar to those in setups with 1D Bose gases [48,49]. Cal-
culations in those cases thus observe very similar correlation
spreading, e.g., in terms of the evolution of the relative phase
of tunnel-coupled Bose gases [50], displaying very similar
results to those in Fig. 3.
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IV. PROBING SPIN CURRENTS

Lastly, we consider how the rotated initial spin states
and ground states respond to imposed spin currents. In an
experiment, we can realize this by applying a magnetic field
gradient for a short time.

In each of our models, this corresponds to applying the
following kick operator to our states of interest:

κ̂ () =
M∏

l

e−iŜz
l l, (10)

where  denotes a quasimomentum or “kick strength.” By
applying this operator, we simulate a short (in time) magnetic
field gradient in an experiment, which induces a spin current.
Note that for the spin-1/2 model, applying operator (10)
to our initial spin-rotated state is equivalent to preparing
“spin spiral states” as in recent experiments for studying spin
diffusion [31].

We define the spin current Ĉ as

Ĉ = 1

M

∑

l

ĉl , (11)

with operators

ĉl = − 1

2i
(Ŝ+

l Ŝ−
l+1 − Ŝ−

l Ŝ+
l+1), (12)

arising from the continuity equation [51,52]

d

dt
Ŝz

l = [
iH, Ŝz

l

] = −ĉl + ĉl−1. (13)

Note that in contrast to single-particle current measure-
ments [53], the spin currents correspond to relative momen-
tum distributions of the two atomic species, and correlations
between them could be probed via noise-correlation measure-
ments [54,55].

We compute the currents for spin 1/2 and spin 1, in each
case considering the behavior of the current in the ground state
and the rotated state. We perform calculations by applying
the “kick” operator as a matrix product operator to the MPS
representation of our state, and computing the corresponding
time evolution. For an ideal superfluid, we would expect no
decay of the current, but interactions will always lead to decay
of the current once a critical strength of the kick is exceeded.

The resulting currents are compared in Fig. 8, for both
spin 1 and spin 1/2, and for situations where the kick is
applied to the ground states (on the left-hand side of the
figure) or the rotated states (on the right-hand side of the
figure), for different values of the anisotropies and momenta
/π . We can clearly distinguish regimes where the currents
are stable and regimes where they are unstable. Note that
for the spin-1/2 case, we find that the current imposed to
the ground and spin-rotated states both clearly become in-
creasingly stable with increasing 0 � � � J , which may be
expected as for � = J , the Hamiltonian starts to conserve the
current. The same result has furthermore been found for the
current stability after imposing a “flux quench” on interacting
spinless fermions, a model equivalent to our XXZ Heisenberg
model [56].

Comparing the behavior of the rotated and ground states,
we see qualitatively that up to tJ = 2, the decay of the
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FIG. 8. Spin current time evolution after a momentum  is
imposed onto the ground state of the Hamiltonian (left column)
and the rotated state (right column). The spin current dependence
is studied on the anisotropy u/J for spin-1 (top four) and �/J for
spin-1/2 (bottom four) cases, after (a),(b),(e),(f) a small  = 0.1π

and (c),(d),(g),(h) a large  = 0.4π momentum kick. (The numer-
ical calculations were performed for M = 40 spins with periodic
boundary conditions; the numerical convergence was achieved with
the MPS bond dimension D = 256.)

current is very similar for both states in the case of each
model. We further observe that the rotated state exhibits a
smaller initial current; this is related to a broader initial
relative momentum distribution for the two spins (as when
the momentum distribution is broader, typically the same
translation in quasimomentum will cause less of a change in
the average group velocity [57]). Furthermore, we find that
in some cases where [especially for spin 1/2, as in Fig. 8(f)]
the current is nondecaying for the ground state, we notice a
decay for the rotated state with time, as the decay of the long-
range correlations [shown in Fig. 3(d)] becomes important.
The reason why this is particularly visible for spin 1/2 is
because the most robust currents occur for larger anisotropy,
where there is a bigger difference between the rotated state
and the ground state, and hence a faster decay of the correla-
tions.
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FIG. 9. Relative difference � 〈C〉 between the spin current at
the time tJ = 1 and at the beginning of the evolution (14). The
figures show the time evolution after a quasimomentum  of various
strength is imposed onto the rotated state for different anisotropies
u/J, �/J . (a) spin-1, (b) spin-1/2 model. All calculations are per-
formed for M = 40, and with periodic boundaries. The bond dimen-
sion used for these MPS calculations was D = 256.

To emphasize the dependence of the current stability on
anisotropy and , in Fig. 9 we plot the relative difference
between the current after short time evolutions and at the
beginning of the evolution,

� 〈Ĉ〉 = | 〈Ĉ〉tJ=1 − 〈Ĉ〉tJ=0+ |
〈Ĉ〉tJ=0+

. (14)

We also find that when the kick is applied to the rotated states,
we can clearly quantify a crossover between two regimes of
persistent and decaying currents, in both models.

For the spin-1 model, a phase transition occurs for the
ground state in the thermodynamic limit between spin super-
fluid (XY) and spin Mott at u ≈ 1J . We observe the effects
of this as a crossover in the decay rate of currents in our
finite-size systems. Specifically, currents rapidly decay as the
system becomes more strongly anisotropic, in analogy to spin
currents for bosons in a 1D Bose-Hubbard model [57–60].
For infinitesimal kicks  → 0, the currents remain constant
in the XY-ferromagnetic phase regime, and start to decay once
entering into the spin-Mott region. This can be seen along the
vertical axis in Fig. 9(a). For a larger , as we go towards
the isotropic point, the current will still decay after a certain
critical  value is reached (crossover value). This value
decreases as we go towards the critical value of u to enter
the spin-Mott phase. Again, as in the 1D case for currents in
a Bose-Hubbard model [57], this is not a sharp transition, but
rather a gradual crossover, as shown in Fig. 9(a).

In contrast, for spin 1/2, we are always in the XY-
ferromagnetic phase, where the currents will remain constant
for any infinitesimal kick strength , except exactly at the
isotropic point. From [59], we know at the same time that
the crossover value of  increases from zero with increasing
anisotropy �/J , and we see that the value of  above which
we observe substantial decay of the current increases with
increasing �/J . For � = J , we see essentially nondecaying
currents at any time and kick strength from the ground state,
which we expect as the XX model can be mapped to nonin-
teracting fermions.

V. SUMMARY AND OUTLOOK

For XY-ferromagnet states of 1D spin models for two
bosonic species in an optical lattice, we have compared and

contrasted the dynamics of the ground state and a product state
of spins rotated into the XY plane, as a function of anisotropy
in both spin-1 and spin-1/2 models. By computing the out-
of-equilibrium dynamics, we have shown that in both cases,
if we begin in rotated product spin states, the correlations
decrease rapidly in time, faster for a higher anisotropy. We
also compared the rotated state to thermal correlation lengths
and entropies. For the time evolution of spin currents, we
observed different behavior between the spin-1/2 and the
spin-1 models. For the spin-1/2 model, currents are more
stable for higher anisotropies, in contrast to the spin-1 case.
This is due to the crossover velocity in the system increasing
with system size. At longer times, we begin to see decay of
currents for the rotated states that occurs earlier than for the
ground states, which is where the influence of the correlation
decay becomes significant in the dynamics. For the spin-
1 model, we observed a crossover between regions where
the currents were essentially stable (counterflow superfluid
regime or XY ferromagnet) and unstable (moving towards a
spin-Mott state), in analogy to to similar results in superfluid
states of 1D Bose-Hubbard models.

By using rf techniques to rotate an initial single-species
Mott insulator state, these states can be directly realized
in ongoing experiments with optical lattices. It is an in-
teresting prospect to probe the difference between mean-
field spin states and the true ground states experimentally,
for the effective spin models not only in 1D. For larger
dimensions, we expect the rotated state to be closer to the
true ground state as the mean-field assumption is gener-
ally becoming better with the dimensionality. In particu-
lar in this regime, which is hard for fully exact numer-
ical approaches, an experimental investigation would be
interesting.

Using a beyond mean-field formalism for the spin-1/2
model in 3D, there have been predictions for persistent
currents after creating spin-spiral states [61], depending
on the selected wave vector. Also, in 1D, such persis-
tence has been understood due to the integrability of the
model [62,63]. It would be interesting to also test the
fate of such predictions for the nonintegrable spin-1 case,
both theoretically and experimentally. Generally, such ef-
forts would provide an interesting basis for further investiga-
tion of spin superfluidity in multicomponent bosonic lattice
models.

The data for this manuscript is available in open access
at [64].
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