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Quantum many-body physics with ultracold polar molecules:
Nanostructured potential barriers and interactions
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We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum
phases under current experimental conditions achieved for polar molecules. The main idea is to modulate both
single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers to
strongly enhance energy scales and, therefore, relax temperature requirements for observing new quantum phases
of engineered many-body systems. We consider and compare two approaches. In the first, nanoscale barriers are
generated with standing-wave optical light fields exploiting optical nonlinearities. In the second, static electric-
field gradients in combination with microwave dressing are used to write nanostructured spatial patterns on
the induced electric dipole moments, and thus dipolar interactions. We study the formation of interlayer and
interface bound states of molecules in these configurations, and provide detailed estimates for binding energies
and expected losses for present experimental setups.
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I. INTRODUCTION

Recent experimental progress with ultracold polar
molecules [1–14] opens up unique opportunities to design
novel quantum many-body systems [15–18]. Electric dipole
moments, induced by external electric fields in the manifold
of rotational molecular ground states, give rise to long-range
and anisotropic dipolar interactions, which are potentially
larger than those realized with magnetic interactions in atomic
systems [19–32]. Thus polar molecules promise the realiza-
tion of strongly interacting quantum many-body systems,
e.g., as Hubbard or spin models in optical lattices with strong
nearest-neighbor or long-range interactions [33–36], or in
bilayer systems with strong controllable interlayer coupling
which can be tuned attractive or repulsive [37–41]. In an
optical lattice, or a bilayer system created with standing-wave
laser fields, the interaction energy between dipolar particles
scales as Eint ∼ d2/w3 with d the (induced) dipole moment
and w the lattice or bilayer spacing provided by w = λ/2
as half the optical wavelength [37–41]. However, only polar
molecules with the largest electric dipole moments (LiRb
3.99 D and LiCs 5.39 D) fulfill the promise of large off-site
interactions approaching the scale of tens of kHz, comparable
to or larger than the other relevant energy scales. These
interactions can be quantified by the binding energy EB of a
pair of molecules in a head-to-tail configuration in a bilayer
system formed by a one-dimensional (1D) optical lattice
with w = λ/2 [see Fig. 1(a)]. In addition, EB must be larger
than available temperatures, EB, Eint � kBT ≈ 1 kHz h [8].
For polar molecules with small electric dipole moments,

meeting these requirements can be challenging: For KRb and
w ≡ λ/2 = 250 nm, and assuming d = 0.33 D (as the dipole
moment in debye induced by a dc electric field 12 kV/cm)
implies binding energies less than kHz.

Thus, the design of strongly interacting many-body sys-
tems with dipole moments less than 1 D will require, or
strongly benefit from, going to much smaller distance scales
than those provided by the optical wavelength scale [42–44].
In the present paper we explore various possibilities of de-
signing quantum many-body systems with polar molecules,
involving both nanostructured potential barriers and dipolar
interactions modulated on the scale of tens of nanometers,
where the goal is to enhance relevant energy scales. We
do this by exploiting the unique properties offered by polar
molecules: This includes the long lifetime of the molecular
rotational states in the ground state manyfold, and the pos-
sibilities of controlling induced electric dipole moments of
rotational states.

We will first discuss an all optical scheme (see Sec. II),
where following Refs. [45–49] for atoms a nanoscale barrier
can be realized by exploiting the nonlinear response of a
molecule exposed to spatially nonuniform optical light fields
in a � configuration. These nanostructured barriers allow us to
split a single well in a 1D optical lattice, thus forming a bilayer
system with separation on a scale of tens of nanometers.
This leads to significant interactions, and interlayer bind-
ing energies even for molecules with comparatively small
electric dipole moments. Assuming w = 60 nm, the binding
energy becomes EB > 10 kHz h for KRb for an induced dipole
moment given above. Table I provides a list of interaction
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FIG. 1. (a) Polar molecules in a bilayer system in a head-to-tail
dipolar configuration attract each other, and can form an interlayer
bound state. Here a nanoscale optical barrier separating the two
layers w � λ/2 provides provides strongly enhanced energy scales
for the binding energy EB (see Sec. II). (b) Strong electric-field
gradients allow the induced electric dipole moment of a molecule
d+

z (x) to change sign on a short spatial distance scale s (see text).
The resulting dipolar interaction allows the formation of interface
bound states (see Sec. III).

and binding energies for various molecules. Besides binding
energies, we analyze in detail loss rates expected for this
setup, � ≈ 10−2EB. For polar molecules there is in addition
the opportunity to choose a pair of rotational ground states in
the � system with induced dipole moments having opposite
sign. This results in repulsive interactions where one molecule
is inside the barrier, i.e., effectively increasing the barrier
height, and a corresponding suppression of the tunneling and
thus decay rate. This can be relevant for chemically reactive
molecules [16].

Second, we discuss an all electric scheme (see Sec. III),
where instead of the field gradients provided by an opti-
cal standing wave we exploit electric-field gradients [50],
resulting in position-dependent energy shifts of molecular
states. In contrast to the nanoscale optical (single-particle)
potential barrier discussed above, our aim is now to modu-
late the (two-particle) dipolar interaction between molecules
on a short distance scale. The underlying mechanism is
to couple a pair of rotational states with opposite in-
duced dipole moments d (1)

z = −d (2)
z with resonant microwave

(MW) fields. The resulting dressed states of this two-level
atom acquire position-dependent dipolar moments d+

z (x) =
d (1)

z [(x/s)/
√

1 + (x/s)2] illustrated in Fig. 1(b), with the
spatial scale of the variation set by the electric-field gra-
dient. Thus we design a two-body interaction V (ρ1, ρ2) =
d+

z (x1)d+
z (x2)/|ρ1 − ρ2|3, where ρ j = (x j, y j ) labels the po-

sition of the jth molecule in the xy plane [see Fig. 1(b)].
Molecules on different sides of the plane x = 0 will attract
each other, allowing for the formation of an interface bound
state. This state is stabilized by the position-dependent dipole-
dipole interaction, which vanishes as the molecules approach
x = 0 and becomes repulsive for molecules on the same side.
We find that a bound state occurs above a critical value
of dipolar interactions. For molecules with d > 3 D (as for
LiRb and LiCs) this results in binding energies of tens of
kHz for electric-field gradients ≈5 kV/(cm mm). We note that
while also in this scheme achievable binding energies are in
principle enhanced by the nanoscale separation of molecules
this enhancement is partially compensated by the reduction of

|˜0, 0〉
|˜1, 0〉

Ωp

Ωc(z)

Δ

|e〉

(a) (b)

(c)

FIG. 2. (a) Raman coupled � system. The two rotational states
|̃0, 0〉 and |̃1, 0〉 are coupled by the control and probe laser via the
electronically excited state |e〉. (b) The barrier VNA(z) arises as a
nonadiabatic correction to the slow motion of a molecule in the
dark-state Born-Oppenheimer channel of a � system with spatially
inhomogeneous Rabi frequencies. The control Rabi beam vanishes at
z = 0, which determines the position of the potential barrier VNA(z).
In the lower panel, the dark-state decomposition as a function of
position is schematically illustrated. (c) A double-well potential for
dipolar molecules is created by inserting an optical nanoscale barrier
VNA(z) into a single potential well generated by VL (z). In order to split
the potential well into two sites, the width l of VL (z) has to be smaller
than the ground state size aL of VL (z). The effective separation of the
molecules is w = 2aL .

the dipolar moment in the vicinity of the interface, and the
aforementioned scaling of Eint is not applicable in this case.
In Table II we summarize binding energies EB for various
molecules for typical parameters. This all electric scheme may
also be of interest when the optical manipulation of molecules
is not available.

II. INTERLAYER BOUND STATES
IN OPTICAL � SYSTEMS

We discuss below bilayer systems for polar molecules
with layer separation of tens of nanometers (see Fig. 2). Our
paper builds on earlier proposals [45,48] and experiments
[49] to realize an optical nanoscale barrier in � systems.
In Sec. II A we first summarize how molecular � systems
which consist of two rotational levels coupled by a Raman
transition can be trapped in a double-layer geometry with
sub-optical-wavelength spacing as illustrated in Fig. 2. In
Sec. II B we give a detailed account of loss channels in such
systems, and we identify a hierarchy of scales which ensures
the suppression of losses. Finally, in Sec. II C we study
the formation of interlayer bound states of molecules. The
model underlying our discussion is a heteronuclear diatomic
molecule in its electronic (X 1�+ for KRb [50]) and vibra-
tional ground state placed in a strong external electric field.
Under such conditions, the Stark effect dominates over the
hyperfine interactions (this happens already for electric-field
strengths of tens of V/cm [51,52]) and, omitting the latter, the
Hamiltonian for a molecule is given by

HM = HR − d̂ · ε, (1)
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(a) (b)

FIG. 3. Energy (a) and induced dipole moment (b) as a function
of applied electric field for the lowest-energy eigenstates of the
molecular Hamiltonian Eq. (1) with m = 0. ε�

0 and ε2LS
0 denote the

offset fields chosen in Secs. II and III, respectively.

where HR = h̄BN̂2 is the Hamiltonian of a rigid rotor, B is the
rotational constant, and N̂ is the orbital angular momentum
operator. Further, ε is the external electric field, d̂ = D r̂/|r̂| is
the dipole moment operator expressed in terms of the relative
nuclei position operator r̂, and D is the permanent molecule
frame dipole moment. For ε = 0, the eigenstates and energies
of HM = HR are |N, m〉 and EN = h̄BN (N + 1), respectively,
where N = 0, 1, 2, . . . denotes the angular momentum quan-
tum number, and m = −N,−N + 1, . . . , N denotes its pro-
jection onto the quantization axis. Here and in the following,
we choose both the quantization axis and the z-coordinate
axis along the direction of the electric field ε = εez, such that
the angular momentum projection quantum number m is con-
served. For ε �= 0, we denote the eigenstates of HM by |Ñ, m〉ε
and the corresponding energy levels EÑ,m(ε) are shown in
panel (a) of Fig. 3. Panel (b) depicts the induced dipole
moment which is given by the change of the energy with the
electric field ε, dÑ,m(ε) = −∇εEÑ,m(ε) = ε〈Ñ, m|d̂|Ñ, m〉ε.
The induced dipole moment is aligned along the electric
field, i.e., along the z axis. From this point on, to simplify
the notation, we drop the explicit dependency on ε for all
quantities.

As mentioned above, for strong electric fields the Stark ef-
fect dominates over the hyperfine interactions and, therefore,
the nuclear spins become decoupled from the orbital angular
momentum. In this case, both m and m1 + m2, where m1,2 is
the the nuclear spin projection of atom 1 and 2, respectively,
become good quantum numbers [51,52]. With an additional
magnetic field of a few hundred gauss, the remaining degen-
eracy among hyperfine states is lifted, making the individual
components m1 and m2 good quantum numbers. We therefore
consider the molecules to be in a single hyperfine state,
e.g., the hyperfine ground state mK = −4 and mRb = 3/2 for
40K87Rb [53].

A. Summary of nanoscale potentials in optical � systems

To prepare the ground for the discussion in Secs. II B and
II C and to fix the notation we find it worthwhile for the
reader to summarize how to engineer a potential barrier on the
nanoscale of size l as proposed in Refs. [45,48]. The potential
barrier is used to cut a single well of an optical potential
VL(z) into two sites as illustrated in Fig. 2(c). The optical
potential can be approximated in the vicinity of its potential

minimum z0 by VL(z) ≈ mω2
L(z − z0)2/2, where ωL is the

harmonic oscillator frequency. The size of the ground-state
wave function in this potential is aL = √

h̄/(mωL ) and in the
limit l � aL the potential well is split into two sites. To this
end, we consider the motion of a single molecule along the z
axis, which is described by

H� = p2
z

2m
+ VL(z) + H0

�(z), (2)

where pz = −ih̄∂z is the z component of the momentum oper-
ator p = −ih̄∇. For the moment, we consider only the motion
along the z axis, and we restore the full three-dimensional
(3D) form of the Hamiltonian in the next section. H0

�(z) is
a position-dependent � system Hamiltonian which is given in
a proper rotating frame by

H0
� = h̄

⎛⎝ −
 �c(z)/2 �p/2
�c(z)/2 0 0
�p/2 0 0

⎞⎠. (3)

As illustrated in Fig. 2(a), the first leg of the � system
is a weak control laser �p which couples the states |̃0, 0〉
and an electronically excited state |e〉. The second leg is a
strong standing-wave control laser �c(z) = �c sin(kcz) which
couples the states |̃1, 0〉 and |e〉. 
 denotes the detuning of the
Raman transition [see Figs. 2(a) and 2(b)]. In the case of KRb,
a possible candidate for |e〉 is a vibrational excitation of the
11� electronically excited state [54], for which the Franck-
Condon factor is maximized [55]. Rabi coupling between
the state 11� and the absolute ground state of KRb has
been demonstrated in Ref. [54] in the absence of an electric
offset field. We discuss the decay of molecules which results
from the finite lifetime of the electronically excited state in
Sec. II B.

A Raman coupled � system always hosts one dark state
at zero energy and two bright states, which we denote by |0〉z

and |±〉z, respectively. The corresponding eigenenergies are
given by

E�
0 = 0 and E�

± = h̄

2

[−
 ±
√

�2
p + �2

c (z) + 
2
]
, (4)

and, in particular, the dark state reads

|0〉z = 1√
1 + (z/l )2

(z/l |̃0, 0〉 − |̃1, 0〉), (5)

where we used that kc|z − z0| � kcaL � 1. The characteristic
length scale on which the structure of |0〉z changes is given by

l = �p/(�c kc). (6)

For |z| � l , the dark state is essentially equal to the internal
state |̃0, 0〉. The contribution to |0〉z from |̃1, 0〉 is relevant
only in a region of size l around the zero crossing of �c(z)
as illustrated in Fig. 2(b).

We consider the limit of slow motion of the molecules,
in which the eigenvalues and the eigenstates of H0

�(z) form
decoupled Born-Oppenheimer (BO) channels [56–60]. Nona-
diabatic corrections yield two types of contributions: On the
one hand, they describe nonadiabatic channel couplings; on
the other hand, they give rise to repulsive potential barriers.
Below, we discuss conditions under which the nonadiabatic
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(a) (b)

FIG. 4. (a) Spatial probability densities for the ground [ψR(z)]
and first excited state [ψL (z)] in the zero-energy BO channel.
The dashed baselines indicate the corresponding eigenenergies. The
peaks of the wave functions are separated by w = 2aL . Parame-
ters are l/aL = 0.3 and z0/aL = 0.3. Energies and the probability
density of ψR(z) correspond to the left-hand and right-hand axis,
respectively, and L denotes the numerical box size. The scale for
the probability density of ψL (z) is the same as for ψR(z), shifted
to the corresponding baseline. (b) Leakage for ψL (z) and ψR(z)
through the barrier as a function of l/aL with fixed ratio z0/aL = 0.3.

channel couplings are negligible. Then, the Hamiltonian for
the motion of a molecule prepared in the dark state, i.e., the
zero-energy channel, can be written as

H ad
�,00 = p2

z

2m
+ VL(z) + VNA(z), (7)

where the nonadiabatic potential barrier is independent of the
value of 
 and reads

VNA(z) = h̄2

2ml2

1

[1 + (z/l )2]2
, (8)

as introduced in Refs. [45,48] (see also Appendix A 1). The
characteristic scale l from Eq. (6), which defines both the
width and the height of the potential barrier VNA(z), is de-
termined by the Rabi frequencies �p and �c and the wave
vector kc (see Fig. 2). By choosing these parameters such
that aL � l , a single potential well generated by VL(z) is
split into two sites. This is illustrated in Fig. 4(a), where we
show the ground [ψR(z)] and first excited [ψL(z)] state in the
zero-energy BO channel, which are located, respectively, to
the right and left of the barrier. We obtain the states ψL,R(z)
by numerically diagonalizing the Hamiltonian in Eq. (7). An
analytical discussion of the suppression of wave functions
inside the barrier is provided in Appendix A.

B. Loss channels and hierarchy of scales

The Hamiltonian Eq. (7) ignores nonadiabatic channel
couplings. These couplings induce decay of states in the zero-
energy BO channel to the other channels. In the vicinity of
z = 0, the energies of the bright states give rise to trapping and
antitrapping of molecules in the + channel and − channels,
respectively. Therefore, at low energies, the + channel hosts
a discrete set of trapped states. None of these states are
resonant with the states ψL,R(z) in the zero-energy channel if
the minimal gap h̄�p/2 between the zero and the + channels
is larger than the spacing of levels ≈ h̄ωL in the zero-energy
channel. In contrast, the antitrapped states in the − channel

form a continuum, and resonant transitions between the states
ψL,R(z) and states in the − channel are possible. The decay
rate from the zero-energy BO channel to the − channel can
be obtained by using Fermi’s “golden rule.” The derivation
presented in Appendix A yields for 
 = 0

��

ωL
= 2.5β2 l

aL

√
κ exp(−1.75 κ ), (9)

where κ is the square root of the ratio of the gap between the
zero-energy and − channels and the height of the barrier, κ =
(h̄�p/2)/(h̄2/2ml2), and the number β � 0.34 is determined
by the exact position of the barrier and the wave function
of the trapped state. This result is valid in the limit κ � 1
or equivalently l/aL � √

ωL/�c, when �� is exponentially
suppressed. The gap between the zero-energy and − channels
and thus the parameter κ is enhanced in the far blue-detuned
regime in which 
 � |�p,c|, and where according to Eq. (4)
the size of the gap is equal to h̄
. In this case, Eq. (9) provides
only an estimate of the decay rate, because it does not take into
account the change of the nonadiabatic couplings with 
.

In contrast to rotational excitations, electronically excited
states have a non-negligible decay rate γe. If the motion of
molecules in the zero-energy or dark-state channel is perfectly
adiabatic, they are not affected by this decay. However, nona-
diabatic corrections couple the dark-state channel to the ± or
bright-state channels, and thus lead to a small admixture of
the electronically excited state |e〉 to the dark state, which in
turn can lead to inelastic scattering of photons. This effect is
strongly suppressed in the far blue-detuned regime: On the
one hand, for 
 � |�p,c|, the − BO channel is shifted down
energetically, and the mixing between the dark-state and −
channels is negligible. On the other hand, the gap between
the + and zero-energy channels is reduced. To estimate
the mixing between the dark-state and + channels, we first
analyze wave functions in the + channel. For 
 � |�p,c|
the + bright-state energy in Eq. (4) can be approximated
around z = 0 as a harmonic potential, E+(z) ≈ �2

c/(4
) +
mω2

+z2/2, where ω+ = �c

√
h̄2k2

c /(2m
) takes the role of the
harmonic oscillator frequency. The + channel hosts a barrier
which is for far blue detuning equivalent to the one in the zero-
energy channel. Therefore, as discussed in Appendix A 2,
eigenfunctions in the + channel are suppressed within the
barrier by a factor of l/a+, where a+ = √

h̄/(mω+) is the
oscillator length. The admixture of + channel wave functions
can be approximated to first order in the diabatic corrections
by c+ ≈ (l/aL )(l/a+)VNA(0)/
E , where the factors l/aL and
l/a+ describe the reduction of the dark-state and bright-state
wave functions, respectively. The coupling matrix element
is approximately given by the height of the barrier VNA(0)
[48], and 
E is the energy gap. For 
 > �c the gap to the
lowest-energy state in the + BO channel is 
E ≈ h̄ω+/2,
which yields a relatively small admixture, |c+|2 < 0.1 for
l/aL = 0.1. In the far blue-detuned limit, the amplitude of
the excited state |e〉 in the + channel is small and therefore
a reduced decay rate γ +

e ≈ γe�
2
p/(8
2) (see Sec. B2 in

the Supplemental Material of Ref. [45]) has to be used to
estimate the inelastic-scattering rate in the zero-energy BO
channel, γ 0

e ≈ γ +
e |c+|2 ≈ 10−4γe, where γe is typically on

the order of tens of MHz [54,61]. Inelastic light scattering
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is negligible when γ 0
e � ωL, which is indeed the case for

ωL ≈ 2π×88 kHz as considered in Sec. II D.
In addition to the decay of the states ψL,R(z) in the zero-

energy BO channel due to nonadiabatic channel couplings and
inelastic light scattering, the stability of a many-body system
that is loaded into the states ψL,R(z) is reduced by inelastic
collisions, like chemical reactions [62], which can occur at
short distances. These effects are minimized when ψL(z) and
ψR(z) are maximally localized on either side of the barrier. As
a measure of the degree of localization we calculate the wave-
function leakage OL,R = ∫∞,0

0,−∞ dz |ψL,R(z)|2. The leakage is
affected by the length scales aL, l , and z0, which determine
the shape of the wave functions. For z0/aL = 0.3, in Fig. 4(c)
we observe minimal leakage for a range of small values of
l/aL. In particular, leakage is negligible in the limit l/aL � 1.

Even when leakage of the eigenstates of the single-particle
Hamiltonian (7) is strongly suppressed, molecules which
are loaded into the potential well on one side of the bar-
rier can tunnel through the barrier and collide inelastically
with molecules on the other side. Tunneling through the
barrier can be estimated by the transmission coefficient t ≈√

4E/[π2VNA(0)] for an incoming plane wave with energy
E � VNA(0) [47]. The tunneling rate is then given by J =
t2E/h, where t2 is the probability for a molecule to tunnel
through the barrier and E/h is the attempt frequency. For a
particle prepared in ψL,R(z), we set E = EL,R, which yields
a tunneling constant of JL,R/ωL = 8/π3(l/aL )2E2

L,R/(h̄ωL )2.
For a stable bilayer system we require JL,R/ωL � 1, which is
achievable for l/aL � 1. In particular, for l/aL = 0.1 we get
JL,R/ωL � 0.01.

We obtain a hierarchy of conditions which have to be met
by combining the requirements of small leakage, tunneling,
and decay rates (9):

1 � l

aL
�

√
ωL

�c
. (10)

Engineering barriers to cut a single well into two sites is
possible if the above states’ hierarchy of scales is fulfilled.
We emphasize that our scheme has sufficiently many “tuning
knobs” to adjust each parameter independently. In the next
section, we discuss many-body effects arising from dipolar
interactions across the barrier.

C. Dipolar interaction and the interlayer bound state

We now turn to many-body physics of molecules in the
� configuration discussed above. As an illustrative example,
we consider the motion of two identical fermionic molecules.
In particular, we study the formation of bound states between
molecules on the left and right of the optical nanoscale barrier.
We assume a 3D geometry, in which the motion of molecules
is not restricted in the xy plane. For molecules in the zero-
energy BO channel, the position-dependent internal state is
given by |0〉z in Eq. (5). The induced dipole moment of this
state is oriented along the static electric field, i.e., along the
z axis. Therefore, the interaction of molecules within one of
the layers L or R is always repulsive [63], whereas molecules
in different layers experience attractive interactions when
their separation ρ = xex + yey in the xy plane has sufficiently

small magnitude ρ =
√

x2 + y2, so that their relative position
corresponds to a head-to-tail configuration. As illustrated in
Fig. 1, this can lead to the formation of a bound state.

To describe the bound state quantitatively, we start with
the Hamiltonian for the motion of two molecules j = 1, 2
with position coordinates r j = (x j, y j, z j ) in the � system
configuration described in the previous section, which reads

H2,� =
∑
j=1,2

(
p2

j

2m
+ VL(z j ) + H0

�(z j )

)

+ U (1)
� (t ) ⊗ U (2)

� (t )Vdd (r1, r2)U (2),†
� (t ) ⊗ U (1),†

� (t ),

(11)

where the dipolar interaction is given by

Vdd (r) = 1

|r|3
[

d̂1 · d̂2 − 3
d̂1 · r d̂2 · r

|r|2
]

(12)

and U ( j)
� (t ) = exp [−iω1t |̃0, 0〉〈̃0, 0| − iω2t |̃1, 0〉〈̃1, 0|] is the

rotating-frame transformation acting on the jth particle. The
frequencies ω1,2 are chosen such that 
= ω1 − (Ee − E0̃,0)/
h̄ = ω2 − (Ee − E1̃,0)/h̄ where Ee denotes the energy of the
electronically excited state.

When we project the Hamiltonian in Eq. (11) to the zero-
energy channel, the contribution H0

�(z j ) is replaced by the
effective BO potential in Eq. (8). The dipolar interaction for
two molecules in the zero-energy BO channel reads

V 0
dd (r1, r2) = z1〈0| ⊗ z2〈0|[U (1)

� (t ) ⊗ U (2)
� (t )

×Vdd (r1, r2)U (2),†
� (t ) ⊗ U (1),†

� (t )
]|0〉z1 ⊗ |0〉z2

≈ dz(z1)dz(z2)

r3
1,2

[
1 − 3

(z1 − z2)2

r2
1,2

]
, (13)

where r2
1,2 = (z1 − z2)2 + ρ2 denotes the relative distance of

the two molecules in three dimensions, and

dz(z) = z〈0|dz|0〉z = 1

1 + (z/l )2

[
(z/l )2d 0̃,0

z + d 1̃,0
z

]
. (14)

The above expression for the dipolar interaction is valid if
fast oscillating terms are neglected and the penetration of the
single-particle wave functions into the barrier is negligible,
which is the case for l/aL � 1. In summary, the projection of
the two-molecule Hamiltonian (11) to the zero-energy channel
reads

H0
2,� =

∑
j=1,2

[
p2

j

2m
+ VL(z j ) + VNA(z j )

]
+ V 0

dd (r1, r2). (15)

We assume in the following that the single-particle energy
scales associated with the nanoscale potential are dominant
as compared to the dipolar interaction, such that motion of the
two molecules in the regime of low energies is restricted to the
states ψL(z) and ψR(z). Under these conditions, the nanoscale
potential effectively implements a two-layer geometry, with
layers L and R which are parallel to the xy plane. As illustrated
in Fig. 4(a), the separation of the peaks of the wave functions
defines an effective layer separation given by w ≈ 2aL. The
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two-body wave function �(r1, r2) in the zero-energy channel
can then be written as

�(r1, r2) = �‖(ρ1, ρ2)
∑

α,β=L,R

cαβ ψα (z1) ψβ (z2). (16)

The component �‖(ρ1, ρ2), which describes motion in
the xy plane, can be decomposed further: First, the sys-
tem is translationally invariant, and therefore �‖(ρ1, ρ2) =
�rel(ρ)�COM(R) factors into contributions corresponding to
the relative and center-of-mass (COM) motion with respective
coordinates ρ = ρ1 − ρ2 and R = (ρ1 + ρ2)/2. Second, due
to the symmetry of the Hamiltonian under rotations around
the z axis, the wave function corresponding to the relative
motion can be decomposed into radial and angular compo-
nents, �rel(ρ) = ∑

mz∈Z χmz (ρ)eimzφ . To find a bound state it
is sufficient to consider mz = 0, since a nonvanishing angular
momentum adds an additional repulsive centrifugal barrier,
which increases the energy. Then, antisymmetry of the wave
function �(r1, r2) under the exchange of particles requires
that the motional state of the two molecules along the z axis
is an antisymmetric superposition of the single-particle states
ψL(z) and ψR(z), that is, the coefficients cαβ in Eq. (16) are
given by cLL = cRR = 0 and cLR = −cRL = 1/

√
2, so that

�(r1, r2) = 1√
2
χ0(ρ)�COM(R)

× [ψL(z1)ψR(z2) − ψR(z1)ψL(z2)]. (17)

With this ansatz, the Hamiltonian (11) yields the following
Schrödinger equation (SE) for the radial component of the
two-body wave function:[

− h̄2

2m

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
+ V2D(ρ)

]
χ0(ρ) = EBχ0(ρ). (18)

The effective two-dimensional (2D) dipolar interaction is
given by

V2D(ρ) = 1

2

∫
dz1dz2V

0
dd (r1, r2)

× [ψL(z1)ψR(z2) − ψR(z1)ψL(z2)]2. (19)

It can be decomposed into “direct” and “exchange” contribu-
tions, V2D(ρ) = V D

2D(ρ) − V E
2D(ρ), which read

V D,E
2D (ρ) =

∫
dz1dz2 ψL,L(z1)ψR,R(z2)

×Vdd (ρ, z1, z2)ψR,L(z2)ψL,R(z1). (20)

In the limit of small spatial wave-function overlap which is
realized for l/aL � 1, the exchange part of the interaction
gives a strongly suppressed repulsive contribution which we
neglect in the following.

A solution to Eq. (18) with EB < 0 corresponds to a bound
state. In Figs. 5(a) and 5(b), respectively, we show the bound-
state energy EB and the corresponding wave function for
different values of the dipolar length ã0,0

d = m (d 0̃,0
z /h̄)2. We

note that the dipolar length scales as ã0,0
d /aL ∝ D2m with a

prefactor which depends on l/aL and ε0. The dependence on
ε0 gives an experimental handle to tune the value of the dipolar
length.

(a) (b)

FIG. 5. (a) Energy and effective energy of the interlayer bound
state as a function of the dipolar length a0̃,0

d for ε0 = 3h̄B/D and
l/aL = 0.1. The dotted lines indicate that the results for |EB| > h̄ωL

should be interpreted as order-of-magnitude estimates. For these
values of EB, excited single-particle levels, which we neglect in our
analysis, begin to contribute to the bound state. (b) Comparison
of the interaction potentials V2D(ρ ) and V eff

2D (ρ ). As shown in the
inset, both potentials change sign at

√
2 w ≈ √

2 2aL . The orange
solid line is the radial probability density for the bound state χ0(ρ ),
and the dashed baseline indicates the corresponding binding energy.
Parameters are the same as in (a) at a0̃,0

d /aL = 6.9. L denotes the
numerical box size.

D. Experimental parameters

In this section we present experimental parameters for the
creation of a bilayer system separated on the nanoscale. As a
generic example, we consider KRb [8] with mass m = 127 u
and permanent molecule-frame dipole moment D = 0.57 D.
We choose the offset field ε0 = 3 h̄B/D, which implies
d 0̃,0

z = 0.58D = 0.33 D and ã0,0
d = 207 nm. For l/aL = 0.1,

z0/aL = 0.3, and a harmonic oscillator length of aL = 30 nm
the binding energy is |EB| = 2π×18 kHz h̄, well above typical
temperatures of 50 nK kB = 2π×1 kHz h̄ [8]. This enables an
experimental observation of such bound states, as well as
makes the entire BCS to Bose-Einstein condensate (BEC)
crossover [37–39] accessible. In Table I binding energies for
different polar molecules are summarized.

TABLE I. Parameters for a variety of experimentally relevant
fermionic polar molecules [65,66]. For all molecular species, the
offset field is chosen as ε0 = 3.0 h̄B/D, which implies d 0̃,0

z = 0.58D,
aL = 30 nm, and l/aL = 0.1. The last column presents the binding
energy Eλ/2

B achievable for a conventional bilayer system with in-
terlayer separation w = λ/2 = 250 nm and an electric offset field of
ε0 = 3.0 h̄B/D. The asterisk marks binding energies which exceed
the single-particle level spacing in the potential well, |EB| > h̄ωL ,
and thus go beyond the range of validity of our analysis, which
assumes that the molecules populate only the two lowest-energy
single-particle states. Therefore, these values of EB should be con-
sidered as order-of-magnitude estimates.

m
u

D
D

h̄B
h GHz

ε0
kV/cm

ã0,0
d
aL

|EB |
h kHz

|Eλ/2
B |

h kHz

KRb[8] 127 0.57 1.11 11.6 6.9 17.6 <0.1
Toy 100 1.00 1.00 6.0 16.8 78∗ 0.2
NaK[13,64] 63 2.72 2.83 6.2 78 >103∗

19
LiRb 91 3.99 7.61 11.4 242 >103∗

62
LiCs 139 5.39 6.54 7.23 676 >104∗

139∗
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From a single-particle point of view, we have to fulfill the
hierarchy of scales 1 � l/aL � √

ωL/�c from Eq. (10). The
first inequality ensures that the nonadiabatic barrier splits a
single potential well into two sides. The second inequality
guarantees stability against nonadiabatic channel couplings,
i.e., ��/ωL � 1 [see Eq. (9)]. To fulfill the hierarchy of scales
we choose �p = 100 ωL which leads to ��/ωL < 4×10−3.
For the sake of self-consistency we require �� < |EB| =
0.20 ωL. In absolute numbers, the Rabi frequencies are given
by �p = 2π×8.8 MHz and �c = 2π×330 MHz, where we
used λc = 660 nm [54]. To ensure single-level addressability
of rigid rotor eigenlevels it is necessary to have �c < B =
2π×1.1 GHz for KRb.

We note that with the chosen opposite dipole moments
(d 0̃,0

z ≈ −d 1̃,0
z /4) for the molecular levels forming the dark

state the interparticle interaction effectively increases the
height of the barrier because of the head-to-head or tail-to-tail
orientation of the dipole moments when one of the molecules
is under the barrier and the other is not. The resulting repulsive
dipole-dipole interaction V adds to the barrier potential and,
hence, suppresses the wave-function amplitude under the bar-
rier and, therefore, the tunneling JL,R and ��. The interaction
V can be estimated as V ≈ 2d 0̃,0

z d 1̃,0
z /a3

L ≈ 2π×300 kHz h̄
for the case of KRb, which is ≈0.1VNA(0). This reduces
approximately JL,R by 10% and �� by 5%.

We finally compare achievable binding energies for bilayer
systems separated by nanoscale potential barriers to those that
can be realized with standard optical lattices. To do so, we
define an effective layer separation as follows: The interaction
potential for dipolar particles which are held fixed at a relative
separation w along the z axis is given by [38]

V eff
2D (ρ) = d 0̃,0

z

2 ρ2 − 2w2

(ρ2 + w2)5/2
, (21)

and it changes sign at ρ = √
2w. As illustrated in Fig. 5(b),

also the effective dipolar interaction V2D(ρ) in Eq. (19) ex-
hibits a sign change at ρ ≈ √

22aL, and we are thus led to
identify the effective layer separation as w = 2aL. Deviations
of V2D(ρ) from the form given in Eq. (21) are most prominent
at small separations ρ, where V2D(ρ) exhibits a logarithmic
divergence due to the nonvanishing overlap of ψL(z) and
ψR(z). Nevertheless, the direct comparison in Fig. 5(a) shows
good quantitative agreement of the binding energies EB and
E eff

B which we obtain for V2D(ρ) and V eff
2D (ρ), respectively.

In conventional bilayer systems which are generated with
optical lattices, the layers are separated by λ/2, where λ is
the optical wavelength [38]. The interlayer interaction is then
described by the effective potential V eff

2D (ρ) in Eq. (21), where
w is given by λ/2. This should be compared to the value
w = 2aL which we obtained above for the nanoscale potential
barrier. For ã0,0

d /w � 1, the corresponding binding energies

can be estimated as Ew
B ≈ 2ã0,0

d h̄2/(mw3) [38]. Therefore,
reducing the effective layer spacing w from w = λ/2 �
250 nm to achievable harmonic oscillator lengths of w =
2aL = 60–120 nm increases the binding energy by one to two
orders of magnitude. Results for a variety of experimentally
relevant molecular species are summarized in Table I.

|˜0, 0〉

|˜2, 0〉
Ω

Δ2̃,0(x)

Δ0̃,0(x)

(a) (b)

(c)

FIG. 6. (a) The two rotational states |̃0, 0〉 and |̃2, 0〉 are cou-
pled by a microwave with Rabi frequency �. (b) The detunings

Ñ,0(x), where N = 0 and 2 are position dependent due to a spatially
nonuniform static electric field ε(x) = ε0 + ε ′x. (c) Therefore, the
microwave coupling is resonant with the position-dependent Stark
shifted energies (dashed lines) of two rotational states with opposite
induced dipole moments (up and down arrows) at a particular value
of the x coordinate which we choose as the origin of the coordinate
system. This gives rise to the two dressed channels with energies
E 2LS

± (x).

III. INTERFACE BOUND STATE OF MOLECULES
IN ELECTRIC GRADIENT FIELDS

We now consider the setup illustrated in Fig. 1, in which
the electric-field gradient created by a standing optical wave
is replaced by a static electric gradient field. Further, in
contrast to the � systems with optical transitions which we
considered in the previous section, we focus now on effective
two-level systems, which are formed by two rotational levels
that are coupled by MW fields. As we show, in the adiabatic
limit, when the single-particle dynamics occurs in a single
BO channel, bound states of two molecules can form at the
interface at which the induced dipole moment changes sign.

A. Single-particle physics

The key elements to engineer interface bound states are
a position-dependent electric field, ε(x) = ε0 + ε′x, which is
composed of both a homogeneous offset field ε0 as discussed
at the beginning of Sec. II and a gradient field ε′x = ε′ezx,
and a MW-induced Rabi coupling � of the molecular levels
|̃0, 0〉 and |̃2, 0〉 [see Figs. 6(a) and 6(b)]. Note that these
states can be coupled by a MW field because of the admixture
of the state |1, 0〉 in both of them for ε0 �= 0. The reason
for the choice of these internal states will be clarified below.
As illustrated in Fig. 3(b), the strong offset field ε0 induces
state-dependent dipole moments dÑ,m, which couple to the
gradient field ε′x and thus give rise to position-dependent
Stark shifts. To calculate these Stark shifts, we note that in
the present setup the motion of the molecules along the x
direction is restricted to a region of spatial extent l0 which
we determine below to be on the order of tens of nanometers,
and we assume ε0 � ε′l0, so that the gradient field can be
taken into account perturbatively. Then, to first order in the
gradient field, the Stark shift of the rotational energy levels
is EÑ,m[ε0 + ε′x] ≈ EÑ,m(ε0) − [dÑ,m(ε0) · ε′] x. To simplify
the notation, we omit the dependency on ε0 in the following.
Higher orders in the expansion in ε′x are negligible for the
large electric offset fields considered in the following sections.
As a result, the molecules move in a state-dependent linear
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potential, and the Rabi coupling between the internal states
is resonant only at a particular point, which we chose as
the coordinate origin. The Hamiltonian which describes the
motion of a single molecule in this configuration of electric
and MW fields is given by

H2LS = p2
x

2m
+ H0

2LS(x), (22)

where px = −ih̄∂x is the x component of the momentum oper-
ator. In a proper rotating frame, the MW coupling Hamiltonian
reads

H0
2LS(x) = h̄

(−
2̃,0(x) �/2
�/2 −
0̃,0(x)

)
, (23)

with linearly position-dependent detunings, 
Ñ,0(x)=
′
Ñ,0

x,

where 
′
Ñ,0

= −dÑ,0 · ε′/h̄. Due to its dependence on the po-

sition x, the Hamiltonian H0
2LS(x) couples internal and external

degrees of freedom. Typically, the energy scales associated
with the internal degrees of freedom are much larger than
those which characterize the motion of molecules. This allows
us to treat the internal dynamics in a BO approximation. To
wit, we first diagonalize the two-level system (2LS) Hamilto-
nian (23). Thereby, we treat the position x as a parameter. The
eigenvalues E2LS

± (x) of H0
2LS(x) are given by

E2LS
± (x) = h̄�

2

[
1 − δ

1 + δ

x

s
±
√

1 + (x/s)2

]
, (24)

as illustrated in Fig. 6(c), where −δ = 
′
0̃,0

/
′
2̃,0

= d 0̃,0
z /d 2̃,0

z

is the ratio of induced dipole moments in the states |̃0, 0〉 and
|̃2, 0〉, and

s = �


′
2̃,0

(1 + δ)
(25)

corresponds to the length scale which delimits the spatial
region in which the Rabi coupling is resonant. The corre-
sponding eigenvectors read

|+〉x = sin(θx/2)|̃2, 0〉 + cos(θx/2)|̃0, 0〉,
|−〉x = cos(θx/2)|̃2, 0〉 − sin(θx/2)|̃0, 0〉, (26)

where θx = atan(s/x) and 0 � θx � π . The states |±〉x are
superpositions of the rotational states |̃0, 0〉 and |̃2, 0〉 with
spatially varying amplitudes. In particular, |+〉x → |̃0, 0〉 and
|̃2, 0〉 for x → +∞ and −∞, respectively, with the transition
occurring in a spatial region of extent s. Correspondingly, the
limiting behavior of |−〉x is given by |−〉x → |̃2, 0〉 and |̃0, 0〉
for x → +∞ and −∞, respectively.

As already discussed in Sec. II A the BO approximation
[56–60] assumes that the internal state of the molecules adi-
abatically follows the external motion, where the parametric
dependence of the internal state on the position is given by
Eq. (26). In particular, the Hamiltonian for the motion of a
molecule prepared in the + channel is given by

H ad
2LS,++ = p2

x

2m
+ E2LS

+ (x) + VNA(x), (27)

where the nonadiabatic potential barrier is given by

VNA(x) = h̄2

2ms2

1

4

1

[1 + (x/s)2]2
. (28)

A detailed derivation of the adiabatic Hamiltonian from
Eq. (27) is provided in Appendix A 1. We focus on a param-
eter regime that is specified below, in which both the channel
coupling and the nonadiabatic contribution to the effective
BO potential from A2(x) are negligible. The validity of this
approximation is discussed in detail in Appendix A.

The effective BO potential corresponding to the eigenvalue
E+(x) forms a trap. This is because the induced dipole mo-
ments d 2̃,0

z and d 0̃,0
z have opposite sign as can be seen in

Fig. 3(b), and thus the position-dependent Stark shifts 
0̃,0(x)
for x � s and 
2̃,0(x) for x � −s have opposite signs. For
|x| � s we approximate the BO trapping potential E2LS

+ (x) by
a harmonic potential:

E2LS
+ (x) ≈ h̄�/2

[
1 − x2

0/s2 + (x − x0)2/s2
]

= 
E + mω2
0(x − x0)2/2. (29)

The harmonic approximation is characterized by the ef-
fective trap frequency h̄ω0 =

√
h̄� h̄2/(2ms2), the position

of the minimum x0/s = (1 − δ)/2
√

δ, and the energy shift

E = h̄�/2[1 − (x0/s)2]. In this harmonic potential, the size
of the ground state is given by l0 = √

h̄/(mω0), and for
self-consistency we require l0/s � 1. The effective potential
E−(x) in the BO channel corresponding to the eigenstate |−〉x

forms an inverted trap, and consequently this channel hosts a
continuum of scattering states. The coupling between the BO
channels leads to decay of the bound states in the + channel
to the continuum in the − channel. The decay rate can be
estimated by Fermi’s “golden rule” as

�2LS

ω0
≈ 2

√
π

l0
s

exp

[
−8

(
s

l0

)2
]
. (30)

A detailed derivation is provided in Appendix A. The adi-
abatic limit requires �2LS/ω0 � 1, which is achieved for
l0/s � 1, in agreement with the harmonic approximation of
E+(x). Because of the exponential factor in the rate Eq. (30) a
moderately small ratio of l0/s = 1/

√
2 is sufficient to obtain

a strongly suppressed decay rate of �2LS/ω0 < 10−6. In the
next section, we focus on the + channel and discuss bound
states of pairs of molecules due to spatially inhomogeneous
dipole moments.

B. Dipolar interaction and the interface bound state

Since the state |+〉x defined in Eq. (26) changes from
|+〉x → |̃0, 0〉 for x → +∞ to |+〉x → |̃2, 0〉 for x → −∞,
also the induced dipole moment dD

z (x) defined in Eq. (35)
below varies in space and takes limiting values with opposite
signs given by dD

z (x) → d 0̃,0
z and d 2̃,0

z for x → +∞ and
−∞, respectively. Therefore, two molecules in the + channel
experience attractive induced dipolar interactions if they are
located on opposite sides of the point x0 where the dipole
moment dz(x) changes sign. If they are on the same side, they
repel each other [63]. As we show in the following, this gives
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rise to the formation of bound states of two molecules close to
x0.

We consider now the full 3D geometry with a harmonic
confinement V⊥(z) = mω2

⊥z2/2 in the z direction, whereas
motion along the y axis is unrestricted. The Hamiltonian
for the motion of two molecules j = 1 and 2 with position
coordinates r j = (x j, y j, z j ) and momenta p j is then given by

H2,2LS =
∑
j=1,2

[
p2

j

2m
+ H0

2LS(x j ) + 1

2
mω2

⊥z2
j

]

+ U (1)
2LS(t ) ⊗ U (2)

2LS(t )Vdd (r1 − r2)

× U (2),†
2LS (t ) ⊗ U (1),†

2LS (t ), (31)

where the dipolar interaction is given in Eq. (12)
and the rotating-frame transformation U ( j)

2LS(t ) =
exp [−i(E2̃,0 − E0̃,0)t/h̄ |̃0, 0〉〈̃0, 0|] for the jth particle.
The wave function for two molecules in the + BO channel
can be written as

|�〉 =
∫

dr1dr2 �(r1, r2)|r1, r2〉 ⊗ |+〉x1 ⊗ |+〉x2 . (32)

In the following, we neglect nonadiabatic corrections to
the BO approximation. Upon projecting the Hamiltonian in
Eq. (31) to the + channel, the contribution H0

2LS(x j ) is re-
placed by the effective potential E+(x j ). Further, the dipolar
interaction for two molecules in the + channel is given by

V +
dd (r1, r2) = x1〈+| ⊗ x2〈+|[U (1)

2LS(t ) ⊗ U (2)
2LS(t )

×Vdd (r1 − r2)U (2),†
2LS (t ) ⊗ U (1),†

2LS (t )
]|+〉x1

⊗|+〉x2 . (33)

Due to the rotating-frame transformation U ( j)
2LS(t ), certain con-

tributions to the dipolar interaction acquire rapidly oscillating
phase factors. These contributions average to zero, and we
only keep the time-independent components. Then, the dipo-
lar interaction can be written as

V +
dd (r1, r2) = dD

z (x1)dD
z (x2) + 2dE

z (x1)dE
z (x2)

|r1 − r2|3

×
[

1 − 3
(z1 − z2)2

|r1 − r2|2
]
, (34)

where the “direct” dipole moments are

dD
z (x) = x〈+|(|̃2, 0〉〈̃2, 0|d̂z |̃2, 0〉〈̃2, 0|

+ |̃0, 0〉〈̃0, 0|d̂z |̃0, 0〉〈̃0, 0|)|+〉x

= d 2̃,0
z

(
1 − δ

2
− 1 + δ

2

x√
s2 + x2

)
, (35)

and the “exchange” moments, which correspond to interaction
processes that exchange the internal states of the molecules,
read

dE
z (x) = x〈+|̃2, 0〉〈̃2, 0|d̂z |̃0, 0〉〈̃0, 0|+〉x

= 〈̃2, 0|d̂z |̃0, 0〉1

2

s√
s2 + x2

. (36)

In the following, we neglect contributions to V +
dd (r1, r2)

which involve dE
z (x). This is justified since |〈̃2, 0|d̂z |̃0, 0〉| �

|d 2̃,0
z |, |d 0̃,0

z |. We note that a corresponding relation does not
apply, for example, for the pair of states |̃0, 0〉 and |̃1, 0〉.
We further remark that the diagonal matrix elements of the
dipole moment operator which enter Eq. (35) are not affected
by the rotating-frame transformation which is used to obtain
the 2LS Hamiltonian (23). The position x0 of the zero crossing
of dD

z (x) coincides with the minimum of E+(x) from Eq. (24)
given above. For l0 � s we expand

dD
z (x0 + x) ≈ −d 2̃,0

z

4δ3/2

(1 + δ)2

x

s
(37)

to linear order in x/s around x0. Here and in the following,
the x coordinates x1,2 of the molecules are measured from the
zero crossing x0 of the induced dipole moment (35). Then,
the projection of the two-molecule Hamiltonian (31) to the +
channel reads

H+
2,2LS =

∑
j=1,2

[
p2

j

2m
+ E2LS

+ (x j ) + 1

2
mω2

⊥z2
j

]
+ V +

dd (r1, r2).

(38)

Since the induced dipole moment (35) is oriented along the
z axis, inelastic head-to-tail collisions of the two molecules
can be suppressed through tight confinement in this direction.
We assume that the trapping frequency ω⊥ is sufficiently large
such that excited states in the potential V⊥(z) are energetically
inaccessible, and the molecules reside in the ground state.
Then, the wave function �(r1, r2) in Eq. (32) factorizes
as �(r1, r2) = �‖(ρ1, ρ2) φ0

⊥(z1) φ0
⊥(z2) where ρ j = (x j, y j ).

The harmonic oscillator ground-state wave function reads

φ0
⊥(z) = 1√

l⊥
√

π
exp

(
− z2

2l2
⊥

)
, (39)

where l2
⊥ = h̄/(mω⊥) is the corresponding oscillator length.

Under these conditions, which also imply l⊥ � l0, the motion
of the molecules is confined to the xy plane, and the system
becomes effectively 2D. Up to the zero-point energy in the
harmonic confinement in the z direction, the Hamiltonian for
the 2D motion of the two molecules is given by

H2D =
∑
j=1,2

[
p2

j

2m
+ E2LS

+ (x j )

]
+ V2D(ρ1, ρ2). (40)

We obtain the effective 2D dipolar interaction by integrating
out the tightly confined z direction, which yields

V2D(ρ1, ρ2) =
∫

dz1dz2 |φ0
⊥(z1)|2 |φ0

⊥(z2)|2 V +
dd (r1, r2)

= dD
z (x1)dD

z (x2)v2D(ρ). (41)

That is, the effective 2D dipolar interaction can be written
as the product of position-dependent dipole moments dD

z (x j )
and an interaction potential v2D(ρ) which depends only on the
relative distance in the xy plane, ρ2 = (x1 − x2)2 + r2

y , where
ry = y1 − y2 is the relative coordinate in the y direction. The
interaction potential is given by

v2D(ρ) = 1√
8π l3

⊥
exp

(
ρ2

4l2
⊥

)[(
2 + ρ2

l2
⊥

)
K0

(
ρ2

4l2
⊥

)

− ρ2

l2
⊥

K1

(
ρ2

4l2
⊥

)]
. (42)
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(a) (b)

(c)

FIG. 7. (a) Energy of the bound state in units of E0 = h̄2/2ml2
0

as a function of the dipolar length a2̃,0
d defined in Eq. (44)

for several values of l0/l⊥ and s = √
2l0. (b) Probability density∫

dRx|ψ (rx, Rx, ry )|2 of the bound state, where rx = x1 − x2 and
Rx = (x1 + x2)/2 are the relative and COM coordinates in the x
direction, for l0 = 1.5l⊥ and ad/l0 = 69. L denotes the box size used
in the numerical diagonalization of Eq. (43). (c) Effective potential
(45) for the simplified model discussed in the main text.

Here, Kn(z) is the modified Bessel function of the second
kind. At large distances ρ � l⊥, the interaction potential
assumes the characteristic dipolar form v2D(ρ) ∼ 1/ρ3; At
short distances ρ � l⊥ it diverges logarithmically, v2D(ρ) ∼√

2/π/l3
⊥ ln(ρ/l⊥).

The setup we consider is translationally invariant along
the y axis and, therefore, the motion of two molecules in
this direction factorizes into COM and relative components,
�‖(ρ1, ρ2) = ψ (x1, x2, ry) ξ (Ry), where Ry = (y1 + y2)/2 is
the COM coordinate. Possible bound states are negative-
energy solutions of the two-body SE:⎡⎣∑

j=1,2

(
− h̄2

2m

∂2

∂x2
j

+ 1

2
mω2

0x2
j

)
− h̄2

m

∂2

∂r2
y

+ V2D(x1, x2, ry)

⎤⎦ψ (x1, x2, ry)

= (EB + h̄ω0)ψ (x1, x2, ry), (43)

where we replaced the effective potential E+(x) in the +
BO channel by its harmonic approximation (29), and we
omitted the energy offset 
E . The binding energy EB is
measured from the ground-state energy of the noninteracting
two-particle problem, which is 2×h̄ω0/2.

We solve Eq. (43) numerically. Details are discussed in
Appendix B, and we present our results in Fig. 7. As shown in
Fig. 7(a), a bound state occurs for sufficiently strong induced

dipolar interactions, where the strength of dipolar interactions
is characterized by the ratio ã2,0

d /l0 with

ã2,0
d = m

[
d 2̃,0

z

h̄

4δ3/2

(1 + δ)2

]2

. (44)

We note that while achievable binding energies are boosted if
the characteristic length scale l0 of this setup is on the order of
tens of nanometers the scheme suffers from a reduction of the
dipolar moment in the vicinity of the interface. Figure 7(b)
shows the wave function of the bound state for l0 = 1.5l⊥
and ã2,0

d = 69l0. Numerically, we find that the threshold value
for the formation of a bound state depends only slightly on
l⊥. This is because V2D(x1, x2, ry) is only modified in regions
where (x1 − x2)2 + r2

y � l2
⊥, and in these regions the proba-

bility amplitude |ψ (x1, x2, ry)|2 is suppressed. The existence

of a threshold value of the ratio ã2,0
d /l0 implies that strong

harmonic confinement suppresses the formation of the bound
state.

These results can be understood qualitatively within a
simplified model which we obtain from Eq. (43) by setting
both the COM coordinate in the x direction, Rx = (x1 + x2)/2,
and the relative coordinate in the y direction to zero, Rx =
ry = 0. This yields an effective SE for the component of
the wave function which describes the relative motion of the
two molecules in the x direction. The corresponding effective
potential, which depends only on the relative coordinate rx =
x1 − x2, contains contributions from the harmonic confine-
ment and the dipolar interaction and is given by

Veff (rx ) = 1
4 mω2

0r2
x + V2D(rx/2,−rx/2, 0). (45)

Figure 7 shows the effective potential for ã2,0
d /l0 = 0 and 69.

In the former case, Veff (rx ) reduces to a harmonic potential.
Then, the state with lowest energy is just the corresponding
harmonic oscillator ground state. For ã2,0

d /l0 = 69, the effec-
tive potential exhibits two minima at rx = ±rx,0 �= 0. In this
situation, it is energetically advantageous for the molecules to
“pay the price” of climbing up to the first excited state in the
harmonic potential and thus effectively increase their relative
distance, since this allows them to reduce their total energy
due to the contribution from the dipolar interaction in Eq. (45).
Evidently, the formation of a bound state can be suppressed by
increasing the strength of the harmonic confinement.

The above simplified model does not take symmetry re-
quirements on the wave function for two identical fermions
into account. To discuss this point, we return to the full SE
(43). We note that a Hamiltonian which describes the motion
of identical particles has to be symmetric under the exchange
ρ1 ↔ ρ2 of the coordinates of the particles. The Hamiltonian
in Eq. (43) obeys an even stronger symmetry: It is symmetric
under the exchange of both only the x coordinates, x1 ↔ x2,
and only the y coordinates, y1 ↔ y2. Therefore, also its eigen-
functions have definite parity under these operations, i.e.,
ψ (x1, x2, ry) = ±ψ (x2, x1, ry) and ±ψ (x1, x2,−ry). Overall,
the two-body wave function for identical fermions has to
be antisymmetric, ψ (x1, x2, ry) = −ψ (x2, x1,−ry). Numeri-
cally, we find that the bound-state wave function is antisym-
metric with respect to x1 ↔ x2, and symmetric under y1 ↔ y2

(or, equivalently, ry → −ry). Finally, we note that fermionic

023320-10



QUANTUM MANY-BODY PHYSICS WITH ULTRACOLD … PHYSICAL REVIEW A 102, 023320 (2020)

statistics imply that the probability of a close encounter of
the molecules is strongly suppressed, i.e., ψ (x1, x2, ry) → 0
for x1 → x2 and ry → 0. In comparison to bosonic molecules,
this enhances the stability of fermionic molecules against
chemical reactions [62]. Apart from reduced stability, bound
states also occur for pairs of bosonic molecules in the 2LS
configuration. However, for bosons we expect an increased
threshold value of the dipolar length. This expectation is based
on the simplified model described above and on symmetry
arguments: The simplified model suggests that in order to
form a bound state the relative motion of two molecules in the
x direction has to populate excited harmonic oscillator states.
For fermions, antisymmetry of the total wave function implies
that excited states with odd harmonic oscillator quantum
numbers are admissible, and the lowest-lying state that is
compatible with this requirement is the first excited state.
However, this state is excluded for bosons by symmetry. The
necessity to invest at least two harmonic oscillator excitation
quanta results in a higher threshold to form a bound state.

C. Experimental parameters

In this section, we discuss the optimal choice of experi-
mental parameters for the realization of an interface bound
state. From a single-particle point of view we require the
decay rate of molecules in the + channel given in Eq. (30)
to be small, �2LS/ω0 � 1, which is guaranteed for l0/s � 1.
However, even a moderately small ratio of l0/s = 1/

√
2 leads

to �2LS/ω0 < 10−6, such that the lifetime of molecules in
the + channel is well above any experimentally relevant time
scale. The relation l0/s = 1/

√
2 can be rearranged as

h̄� = 2

[
ε′d 2̃,0

z (1 + δ)
h̄√
m

]2/3

, (46)

such that � is fixed for a given value of ε′. This can be used
to determine the harmonic oscillator length in the adiabatic
regime as

l0 =
√

2

(
h̄2

2m

1

ε′d 2̃,0
z

1+δ
2

)1/3

. (47)

As l0 sets the length and energy scale of the problem, the
denominator in the above expression should be as large as
possible. In current experiments, the electric-field gradient is
limited by the apparatus. Therefore, the difference between
induced dipole moments |d 2̃,0

z (1 + δ)| = |d 2̃,0
z − d 0̃,0

z | has to
be maximized. This boils down to finding the optimal value
of the electric offset field, which is ε0 = 7.5 h̄B/D. In turn,
this implies d 0̃,0

z = 0.74D, d 2̃,0
z = −0.26D, and δ = 2.81. As

an example, we consider the LiRb molecule with parameters
m = 91 u and D = 3.99 D. Further, we take the electric-field
gradient to be ε′ = 3.5 (kV/cm)/mm. Then, with the optimal
value ε0 = 7.5 h̄B/D of the offset field, the harmonic oscil-
lator length evaluates to l0 = 36 nm, which is considerably
below optical length scales. For the same parameters, the
dipolar length is given by ã2,0

d /l0 = 69, which is above the
threshold value for the appearance of a bound state. As can be
seen in Fig. 7(a), the corresponding binding energy is |EB| =
2π×66 kHz h̄ for the given parameters. In comparison, recent
experiments with KRb [8] reached temperatures which cor-

TABLE II. A list of relevant parameters for different fermionic
polar molecules [65,66]. For all molecular species, the offset field
is chosen as ε0 = 7.5 h̄B/D and the gradient field is fixed to ε ′ =
3.5 (kV/cm)/mm and l0 = 1.5 l⊥ holds. The asterisk marks binding
energies which exceed the single-particle level spacing in the poten-
tial well along the confined z axis, |EB| > h̄2/(2ml2

⊥), and thus go
beyond the range of validity of our analysis, which assumes that the
molecules populate only the lowest-energy single-particle state.

m
u

D
D

h̄B
hGHz

ε0
(kV/cm)

l0
nm

ã2,0
d
l0

|EB |
hkHz

�

kHz

KRb[8] 127 0.57 1.11 28.9 61 1.2 0 86
Toy 100 1.00 1 14.9 54 3.1 0 135
NaK[13,64] 63 2.72 2.83 15.5 46 17 0 307
LiRb 91 3.99 7.61 28.4 36 69 66 351
LiCs 139 5.39 6.54 18.1 28 241 564∗ 374

respond to a much lower energy of 50 nK kB = 2π×1 kHz h̄.
We list additional parameters for different species of polar
molecules in Table II.

We finally point out that the dipolar length scales as
ã2,0

d /l0 ∝ D2(Dε′)1/3m4/3 with a prefactor that depends on the
value of the offset field ε0. In experiments, this dependence on
ε0 can be used to tune the dipolar length by adjusting the value
of ε0, and thus cross the threshold for the formation of a bound
state.

D. Adiabatic loading

To conclude this section, we present an experimental proto-
col to adiabatically prepare molecules in the + channel. The
electric offset field is kept at a constant value ε0 throughout
the protocol, while the gradient field ε′ as well as the Rabi
coupling � in the 2LS Hamiltonian (23) are set to zero
initially. Further, we assume that the molecules are prepared
in the rotational state |̃0, 0〉, and that they are trapped in an
auxiliary optical potential Vaux(x), which is switched off at the
end of the protocol.

The first step is to turn on the Rabi coupling in the 2LS
Hamiltonian (23), where the detunings are chosen such that

2̃,̃0 = 
2̃,0 − 
0̃,0 < 0 and |
2̃,̃0|/� � 1, implying |+〉 ≈
|̃0, 0〉. Next, the magnitude of the detunings is adiabatically
reduced (|∂t
2̃,̃0|/�2 � 1) to zero. Under this condition,
the molecules remain in the instantaneous excited eigenstate
|+〉 and at the end of the adiabatic sweep this state is
given by |+〉 = (|̃0, 0〉 + |̃2, 0〉)/

√
2. The final step to prepare

molecules in |+〉x from Eq. (26) is to adiabatically turn off the
auxiliary optical potential while ramping up the electric gradi-
ent field ε′, such that the effective harmonic confinement in the
+ channel [E2LS

+ (x) + Vaux(x)] stays approximately constant.
At the same time, states in the − channel evolve from being
trapped to being antitrapped. Due to nonadiabatic channel
couplings, there are narrow avoided crossings between ex-
cited motional states in the − channel and states in the +
channel. These avoided crossings are exponentially small (see
Appendix A 3 c) and have to be passed nonadiabatically.

IV. CONCLUSION AND OUTLOOK

To summarize, we presented two approaches for engi-
neering quantum many-body systems with polar molecules
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by employing the coupling of rotational states via external
laser or MW fields and electric-field gradients. The first
approach builds on Raman coupled � systems, where the
strong electric-field gradient of a standing laser field leads
to the generation of a single-particle potential barrier on the
nanoscale. The second scheme generates spatially modulated
electric dipoles and thus dipolar interactions by MW mixing
in the presence of electric dc field gradients.

Nanostructured optical barriers in combination with optical
lattice potentials enable the generation of bilayer systems,
where the layers are separated by only a few tens of nanome-
ters. The resulting many-body systems are described by a
Hamiltonian of the form

H = HL + HR +
∑
iL, jR

VLR(ρiL − ρ jR ), (48)

where Hα = ∑
i(−h̄2/2m)∇2

iα +∑
i< j Vαα (ρiα − ρ jα ) is the

Hamiltonian which describes the motion and interactions
of molecules within the layer α = L, R; ρiα is the position
of molecule i in the layer α = L, R; and VLR describes the
interaction between molecules in different layers. The strong
enhancement of VLR due to the small layer separation makes
interesting few- and many-body physics experimentally ac-
cessible for molecules with a dipole moment of less than 1
D. Examples include the formation of interlayer bound states
as discussed in this paper, the BCS to BEC crossover for
fermionic molecules [37–40], bilayer quantum Hall physics,
and—if the motion of molecules within each layers is re-
stricted further to a one-dimensional channel—ladder physics;
see, for example, Ref. [17] and references therein. (Note,
however, that in bilayer systems a further increase of the
interlayer interaction and the two-body binding energy does
not necessarily result in a higher transition temperature; see,
for example, Ref. [37].) Furthermore, this scheme can be ap-
plied to atoms carrying magnetic dipole moments as originally
proposed in Ref. [45].

The second, all electric, approach enables the realization
of many-body systems in which the induced dipole moment
d+

z (z) changes sign on a spatial scale of tens of nanometers.
The corresponding many-body Hamiltonian is given by

H =
∑

i

[
− h̄2

2m
∇2

i + E2LS
+ (xi )

]
+
∑
i< j

d+
z (xi )d+

z (x j )

|ρi − ρ j |3
, (49)

where E2LS
+ (x) is an effective single-particle potential, the

explicit form of which is stated in Eq. (24). At x = 0, the
induced dipole moment vanishes. Two molecules which are
located on opposite sides of this interface at x = 0 interact
attractively and can form bound states, while molecules on
the same side of the interface always repel each other. The
observation of these bound states under current experimental
conditions is possible for molecules with dipole moments
of a few debye. In a system of fermionic molecules, the
formation of interface bound states can cause a transition from
fermionic to bosonic behavior, and it is an interesting question
for further studies which quantum phases can be realized in
such systems. We finally note that this all electric scheme can
be applied with molecules for which the complexity of the
level structure makes the optical manipulation with laser light
challenging. Moreover, this technique can also be adapted

to atoms or molecules with magnetic dipole moments by
coupling to an external magnetic field gradient [67,68], which
requires gradients on the order of thousands of G/mm [69].

In summary, the promise of enhanced energy scales and
novel interaction terms modulated on spatial scales of tens
of nanometers provides an interesting new avenue for many-
body physics, including BCS-BEC or fractional quantum Hall
phases.
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APPENDIX A: VALIDITY OF THE BORN-OPPENHEIMER
APPROXIMATION

Due to the large separation of typical energy scales be-
tween the internal rotational and the external motional degrees
of freedom of polar molecules, the internal state of a molecule
follows its motion essentially adiabatically, as discussed in
the main text Secs. II and III. In particular, the internal state
changes according to the spatial variation of applied electric
fields. Deviations from such fully adiabatic dynamics are dis-
cussed in this Appendix. First, we discuss the transformation
of the Hamiltonian into the BO basis and classify diagonal
and off-diagonal corrections. Then, we study the impact of
diagonal nonadiabatic corrections on wave functions in the
BO channels of interest, which is the zero-energy channel
in the � system and the + channel in the 2LS. Last, we
quantify the decay of states in these BO channels due to
nonadiabatic channel couplings. We estimate the correspond-
ing decay rates, which are given in Eqs. (9) and (30) in the
main text, using Fermi’s “golden rule,” and show that they are
exponentially suppressed.

1. Basis transformation

For the sake of completeness we summarize how to per-
form the BO approximation [56–60] for the � system [45,48]
discussed in Sec. II A and apply these ideas to the TLS
from Sec. III A. As a first step the system Hamiltonian has
to be transformed into the spatially dependent BO basis. In
particular, we consider the Hamiltonians in Eqs. (2) and (22),
which describe the dynamics of a single molecule in the
� system and 2LS setups, respectively. By introducing an
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index α ∈ {�, 2LS}, these Hamiltonians can be brought to the
common form

Hα = p2
z

2m
+ δ�,α VL(z) + H0

α (z). (A1)

The Kronecker delta δ�,α ensures that the external confine-
ment VL(z) is only present in the � system. We further note
that in the 2LS the z coordinate has to be replaced by x.
The adiabatic or BO basis is formed by the eigenvectors of
H0

α (z), which satisfy H0
α (z) |σα〉z = Eα

σ (z)|σα〉z and depend
on the position z. For the � system, where σ = 0,±, the
eigenvectors and energies are given in Eqs. (4) and (5); for
the 2LS, σ = ±, and the eigenvectors and energies are given
in Eqs. (24) and (26). To transform the Hamiltonian (A1) to
the BO basis, we expand the state of a molecule as |�〉 =∫

dz
∑

σ �σ (z)|z〉 ⊗ |σα〉z, where |z〉 is an eigenstate of the
position operator. The effective Hamiltonian H ad

α for the wave
functions �σ (z) in the adiabatic basis can be obtained from
Eq. (A1) by shifting the momentum operator according to
pz → pz − Aα (z), where Aα (z)σ,σ ′ = −z〈σα|pz|σ ′

α〉z can be
interpreted as a gauge potential,

H ad
α = p2

z − {pz, Aα (z)} + A2
α (z)

2m
+ Dα (z), (A2)

with BO potentials

D�(z) = VL(z) + diag[E�
+ (z), 0, E�

− (z)],

D2LS(z) = diag[E2LS
+ (z), E2LS

− (z)].

The gauge potential for the � system can be found in the
supplementary material of Ref. [45] or in the main text of
Ref. [48] and is given by

A�(z) = ih̄

l
√

2

1

1 + (z/l )2

⎛⎝ 0 1 0
−1 0 1
0 −1 0

⎞⎠ (A3)

for 
 = 0 and l � λc. For the 2LS, the gauge potential reads

A2LS(z) = ih̄

2s

1

1 + (z/s)2

(
0 −1
1 0

)
. (A4)

The contributions from Aα (z) are twofold: Since Aα (z) is
purely off diagonal in the adiabatic basis spanned by the
states |σα〉z, the term {pz, Aα (z)} describes nonadiabatic chan-
nel couplings. On the other hand, Aα (z)2 contains for the
� system both off-diagonal channel couplings and diagonal
contributions, and for the 2LS only diagonal contributions.
Diagonal contributions give rise to repulsive potential barriers.
If nonadiabatic channel couplings are negligible, the Hamilto-
nian for a BO channel σ is given by

H ad
α,σσ = p2

z

2m
+ Dα (z)σσ + VNA(z), (A5)

where VNA(z) = (Aα )2
σσ /2m is the nonadiabatic potential

barrier. For σ = 0 and + we obtain the Hamiltonians in
Eqs. (7) and (27) for the � system and 2LS, respectively. In
the following sections, we specify the conditions under which
nonadiabatic channel couplings are negligible.

2. Harmonic confinement in the presence of the barrier

The dynamics of molecules in the zero-energy channel in
the � system and in the + channel in the 2LS is described
by the Hamiltonians in Eqs. (7) and (27), respectively. Both
Hamiltonians take the same form if we treat for the 2LS the
effective BO potential E+(x) in the + channel in the harmonic
approximation (29) and neglect the energy shift 
E . Then, the
generic Hamiltonian in the BO channel of interest reads

H = − h̄2

2m

d2

dz2
+ 1

2
mω2

Lz2 + h̄2

2ml2

1 − λ2

(1 + z2/l2)2
, (A6)

where the last term corresponds to the diagonal nonadiabatic
correction. The parameter λ takes the value λ = 0 for the
� system. Instead, for the 2LS, λ = √

3/2, and one should
replace the z coordinate by x, ωL by ω0, and l by s.

In the 2LS, we are interested in the limit l0/s � 1, where
l0 = √

h̄/(mω0) is the characteristic length scale associated
with the frequency ω0. This inequality implies that the spacing
of energy levels in the harmonic potential in Eq. (A6) is much
larger than the strength of the nonadiabatic potential, h̄ω0 �
h̄2/(2ms2). Under this condition, the nonadiabatic potential is
indeed only a negligibly small perturbation.

In contrast, in the � system, we require the inverted
relation aL � l , where aL is the length scale associated with
ωL. This condition guarantees that the nonadiabatic potential
barrier is much narrower than a single well in an optical
lattice potential as illustrated in Fig. 4(a). As we show in
the following, this condition also implies that low-energy
eigenstates of the Hamiltonian (A6) are strongly suppressed
inside the barrier. We thus consider the eigenvalue equation of
the Hamiltonian (A6):

Hψλ(z) = Eψλ(z). (A7)

It is convenient to introduce the new independent variable z =
z/l and rewrite this equation as[

− d2

dz2 + l4

a4
L

z2 + 1 − λ2

(1 + z2)2

]
ψλ(z) = 2ml2

h̄2 Eψλ(z). (A8)

For energies smaller than the height of the barrier, E � h̄2/

(2ml2), and inside the barrier, |z| � 1, one can neglect both the
harmonic potential and the right-hand side of this equation,
such that the behavior of low-energy wave functions becomes
energy independent. To establish this universal behavior, we
consider the zero-energy solution ϕλ(z) of the SE (A8):[

d2

dz2 − 1 − λ2

(1 + z2)2

]
ϕλ(z) = 0. (A9)

We can find a general solution of this equation by introducing
the new independent variable y = arctan(z), such that the
equation takes the form[

d2

dy2
− 2 tan(y)

d

dy
− (

1 − λ2
)]

ϕλ(z) = 0. (A10)

After introducing the new unknown function gλ(y) = ϕλ(y)/
cos(y), we finally obtain(

d2

dy2
− λ2

)
gλ(y) = 0. (A11)
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This equation can easily be solved and the general solution of
Eq. (A9) then reads

ϕλ(z) =
√

1 + z2

{
A cos[λ arctan(z)] + B

λ
sin[λ arctan(z)]

}
,

(A12)

where A and B are unknown constants. The general solution
ϕλ(z) can be used to formulate the effective “boundary condi-
tions” which connect the wave function and its derivative on
different sites of the barrier. These conditions are applicable
for wave functions which change on a scale that is much larger
than the width of the barrier. In other words, the corresponding
eigenenergies are much smaller than the height of the barrier.
The boundary conditions are given by

ψ ′
λ(0+) + ψ ′

λ(0−) = sλ tan

(
πλ

2

)
[ψ ′

λ(0+) − ψ ′
λ(0−)],

ψλ(0+) − ψλ(0−) = −sλ cot

(
πλ

2

)
[ψ ′

λ(0+) + ψ ′
λ(0−)],

(A13)

where ψλ(0±) and ψ ′
λ(0±) are the values of the wave function

and its derivative, respectively, on the right and left side of the
barrier.

To derive the above conditions, let us consider the asymp-
totics of ϕλ(z) for z � 1,

ϕλ(z) ≈
[

Aλ sin

(
πλ

2

)
− B cos

(
πλ

2

)]
+
[

A cos

(
πλ

2

)
+ B

λ
sin

(
πλ

2

)]
z, (A14)

and for z � −1:

ϕλ(z) ≈
[

Aλ sin

(
πλ

2

)
+ B cos

(
πλ

2

)]
+
[
−A cos

(
πλ

2

)
+ B

λ
sin

(
πλ

2

)]
z. (A15)

These asymptotics have to be matched with the wave function
and its derivatives for z ∼ ±1, ψ (z) ≈ ψλ(0±) + ψ ′

λ(0±)z.
This gives

ψλ(0±) = Aλ sin

(
πλ

2

)
∓ B cos

(
πλ

2

)
,

ψ ′
λ(0±) = ±A cos

(
πλ

2

)
+ B

λ
sin

(
πλ

2

)
. (A16)

After excluding the unknown constants A and B, and restoring
the original units, we arrive at the conditions presented in
Eq. (A13).

The boundary conditions in Eq. (A13) allow us to estimate
the suppression of the wave function in the barrier region. For
this purpose we restore the harmonic potential in Eq. (A6)
characterized by the frequency ωL and the harmonic length
aL, which we assume to be much larger than the width of the
barrier l , aL � l . The eigenenergies and eigenfunctions of this

problem can be obtained by matching the solution

y+ (̃z) = C+ exp(−̃z2/2)

[
1

�( 1−ν
2 )

�

(
−ν

2
;

1

2
; z̃2

)
− 2̃z

�(− ν
2 )

�

(
1 − ν

2
;

3

2
; z̃2

)]
(A17)

which decays exponentially for z̃ → +∞ where z̃ = z/aL,
with the solution

y− (̃z) = C− exp(−̃z2/2)

[
1

�
(

1−ν
2

)�(−ν

2
;

1

2
; z̃2

)

+ 2̃z

�
(− ν

2

)�(1 − ν

2
;

3

2
; z̃2

)]
(A18)

which decays exponentially for z̃ → −∞, in the region of
the barrier. Here, �(̃z) is the gamma function, �(a; b; z̃) is
the degenerate hypergeometric function, and ν = 2E/h̄ωL

is the energy measured in units of the harmonic oscillator
spacing. For low-energy eigenstates, E � h̄2/(2ml2), we can
use the boundary conditions (A13), which give the following
equations:[

1

�
(

1−ν
2

) + l

aL

2

�
(− ν

2

)λ tan

(
πλ

2

)]
(C+ + C−) = 0,

(A19)[
1

�
(

1−ν
2

) 1

λ
tan

(
πλ

2

)
− l

aL

2

�
(− ν

2

)](C+ − C−) = 0.

(A20)

These equations determine the eigenenergies ν. The eigenen-
ergies of states which are symmetric with respect to z̃ → −̃z
fulfill

1

�
(

1−ν
2

) + l

aL

2

�
(− ν

2

)λ tan

(
πλ

2

)
= 0, (A21)

where C+ = C− follows from Eq. (A19). The corresponding
eigenfunctions for |z| � l have the form

ysym(z) ∼ exp
(−z2

/
2a2

L

)[ l

aL
λ tan

(
πλ

2

)
×�

(
−ν

2
;

1

2
;

z2

a2
L

)
+ |z|

aL
�

(
1 − ν

2
;

3

2
;

z2

a2
L

)]
.

(A22)

The eigenenergies of antisymmetric solutions, for which
C+ = −C− results from Eq. (A20), satisfy the equation

1

�
(

1−ν
2

) 1

λ
tan

(
πλ

2

)
− l

aL

2

�
(− ν

2

) = 0, (A23)
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and the wave functions for |z| � l are

yasym(z) ∼ exp
(−z2

/
2a2

L

)[
sign(z)

l

aL

λ

tan
(

πλ
2

)
×�

(
−ν

2
;

1

2
;

z2

a2
L

)
+ z

aL
�

(
1 − ν

2
;

3

2
;

z2

a2
L

)]
.

(A24)

From Eqs. (A22) and (A24), we see that as stated above the
wave function in the region of the barrier, |z| � l , is reduced
by a factor l/aL � 1, as compared to its typical values outside
the barrier for |z| � l .

3. Nonadiabatic channel couplings

We now turn to nonadiabatic channel couplings, which
correspond to the terms CNA = [−{pz, A(z)} + A2(z)]/(2m)
and −{px, A(x)}/(2m) in Eq. (A2) for the � system and
2LS, respectively. In the � system, we are interested in
the zero-energy BO channel. The external potential confines
the zero-energy BO channel, whereas the effective potential
in the − channel does not confine states with energy big-
ger than zero. Therefore, the − channel hosts a continuum
of scattering states, and the nonadiabatic channel coupling
[−{pz, A(z)} + A2(z)]/(2m) induces decay of states in the
zero-energy BO channel into the continuum in the − chan-
nel. Below, we estimate the corresponding decay rate using
Fermi’s “golden rule.” In the 2LS, we are interested in the
+ channel, for which the effective potential is given by the
BO potential in Eq. (27). Decay occurs again to the open −
channel.

a. Density of states in the open channel

According to Fermi’s “golden rule,” the rate of decay of
a given initial state to an open channel hosting a continuum
of final states is determined by the product of the transition
matrix element between the initial and final states, and the
density of states (DOS) in the open channel. In this section, we
derive the DOS in the open channel, which corresponds to the
− BO channel in both the � system and the 2LS. We neglect
nonadiabatic corrections to the effective potential in the −
channel . Moreover, for the � system we are only interested
in a spatial region of extension |z − z0| � aL � 2π/kc; thus
we expand sin(kcz) ≈ kcz, and for simplicity we consider for
the 2LS the symmetric case δ = 1. Then, for both systems,
the effective BO potential in the − channel can be written as
−U (z) = −h̄

√
(�/2)2 + (
′z)2, where we use Table III. For

the 2LS the z coordinate has to be replaced by x, and for the
� system we consider the resonant case with 
 = 0. Since
we are interested in the resonant decay from energetically
higher channels into the − channel, only states with energy
E > −�/2 are relevant. Such states can be described in the
WKB approximation. To write down the corresponding wave
functions, we assume that the system is contained in a large
box of size 2L, |x| � L. (The size L will disappear from the
final result for the decay rate.) Then, the normalized wave

TABLE III. System-dependent parameters for the effective BO
potential U (z) (see text).

� 
′

2LS � 
′
2̃,0

� system �p �ckc/2

function can be written as

ψ
(−)
E (z) = 1

L1/4

1√
2

[

′

E + U (z)

]1/4

× sin / cos

{
1

h̄

∫ z

0
dz′√2m[E + U (z)]

}
, (A25)

where we neglect terms of order �/
′L � 1. The choice
of sin{. . .} or cos{. . .} corresponds to either symmetric or
antisymmetric parity of the wave function, respectively. The
corresponding eigenenergies E = En can be obtained from the
WKB quantization condition

1

h̄

∫ L

−L
dz′√2m[En + U (z)] = π

(
n + 1

2

)
. (A26)

It follows from this equation that the DOS is given by

dn

dE
≈ 2

√
2

π

√
mL

h̄3
′ , (A27)

where we neglect terms vanishing for L → ∞.

b. Decay rate in the Lambda system

We now derive the decay rate of the zero-energy BO chan-
nel in the � system for the resonant case 
 = 0. As discussed
in Appendix A 2, for aL � l the nonadiabatic potential barrier
has a strong influence on the wave function in the zero-energy
channel. However, to estimate the decay rate, we neglect
the effects of the barrier on the open-channel wave function
ψ

(−)
E (x). This is legitimate because the height of the barrier

h̄2/(2ml2) is much smaller than the gap �p/2 between the −
channel and the zero-energy channel. Therefore, we can use
Eq. (A25) with E = 0 for the final wave function ψ

(−)
E (x) in

the open channel:

ψ
(−)
E=0(z) ≈ 1

L1/4

1√
2

[

′

−E�− (z)

]1/4

× sin / cos

{
1

h̄

∫ z

0
dz′
√

−2mE�− (z)

}
= 1

(Ll )1/4

1√
2

1

(1 + z2)1/8

× sin / cos

{
κ

∫ z

0
dz′(1 + z′2)1/4

}
, (A28)

where z = z/l , E�
− (z) is defined in Eq. (4), and κ is the

square root of the ratio of the gap between the channels and
the height of the barrier, κ = [ml2�p/h̄]1/2. The nonadiabatic
channel coupling −{pz, A(z)}/(2m), where A(z) is given by
Eq. (A3), is nonzero only inside the barrier for |z| � l , where
the behavior of the wave function in the zero-energy channel
is governed by the universal solution in Eq. (A12) with λ = 0:

ϕ0(z) =
√

1 + z2[A + B arctan(z)]. (A29)

023320-15



ANDREAS KRUCKENHAUSER et al. PHYSICAL REVIEW A 102, 023320 (2020)

The coefficients A and B in the above expression depend
on details of the behavior of the wave function outside the
barrier and on the position of the barrier. We can estimate
these coefficients as follows: The typical value of the wave
function localized in a spatial area of size aL is ϕ ∼ 1/

√
aL.

Further, according to our discussion in Appendix A 2, the
wave function within the barrier is reduced by a factor of l/aL.
This yields the estimate A ∼ B ∼ l/a3/2

L . The nonadiabatic
coupling matrix element then reads

M = −
∫ L

−L
dz ψ

(−)
E=0(z)

h̄2

ml2
√

2

[
1

1 + z2

d

dz

− z

(1 + z2)2

]
ϕ0(z)

= − h̄2

ml
√

2

∫ L/l

−L/l
dz ψ

(−)
E=0(z)

B

(1 + z2)3/2
. (A30)

We note that the term which is proportional to A in ϕ0(z)
gives a vanishing contribution. A nonvanishing result can be
obtained only if one includes the correction to ϕ0(z) of first
order in 2ml2E/h̄2 � 1 in Eq. (A8). After substituting the
expression (A28) for ψ

(−)
E=0(z), we obtain

M = h̄2

2ml

B
4
√

Ll

∫ ∞

−∞
dz

1

(1 + z2)13/8

× cos

{
κ

∫ z

0
dz′ (1 + z′2)1/4

}
, (A31)

where, using L/l � 1 and convergence of the integral over z,
we extend the limits of the integration to infinity. To calculate
the integral in Eq. (A31), we write it as∫ ∞

−∞
dz (1 + z2)−13/8 exp

{
iκ
∫ z

0
dz′ (1 + z′2)1/4

}
, (A32)

and consider it as a contour integral in the complex z plane.
To uniquely define the multivalued integrand, we make two
branch cuts on the imaginary axis: from i to i∞ and from −i
to −i∞. We then move the contour of integration from the
real axis to the upper half plane where the integrand decays
exponentially. The new contour is around the upper branch cut
and consists of three parts: The first one is from i∞ to i over
the left-hand side of the cut where z = i + y exp(−i3π/2)
with real y ∈ [ε,∞] and ε infinitesimal and positive; the
second one is around the circle of radius ε around i in
the counterclockwise direction, z = i + ε exp(iφ) with φ ∈
[−3π/2, π/2]; and the third one is over the right-hand side of
the cut, z = i + y exp(iπ/2). We note that every integral over
individual parts diverges when ε → 0, and only their sum is
finite.

On the new integration contour, the integral in the exponent
in Eq. (A32) can be written as∫ z

0
dz′ (1 + z′2)1/4 =

∫ i

0
dz′ (1 + z′2)1/4

+
∫ z

i
dz′ (1 + z′2)1/4

≈ iI + 4

5
2−1/4eiπ/8(z − i)5/4, (A33)

where

I =
∫ 1

0
dx(1 − x2)1/4 =

√
2π3/2

6�(3/4)
≈ 0.874, (A34)

and the second integral is calculated by keeping only the
leading term in the expansion of (1 + z′2)1/4 in powers of z′ −
i because for κ � 1 only the region |z′ − i| � κ4/5 � 1 is
important. After substituting (A33) into (A32) and expanding
(1 + z2)13/8 around z = i to leading order, we find for the
integral (A32) the result

e−κI 2−5/8

√
κ

4

5
2−1/4 ∈∞

0
ds√

s
e−s

×
[

cos

(
s + π

8

)
+ sin

(
s + π

8

)]
= e−κI 2−5/8

√
κ

4

5
2−1/4

√
π

√
2 =

√
2π

5
κe−κI . (A35)

To obtain this result, we first integrate by parts in the y
integrals over the sides of the branch cut (this, in combination
with the integral over the circle, eliminates the divergences for
ε → 0), then we take the limit ε → 0, and introduce the new
integration variable s = 4κy5/42−1/4/5.

With this result, the final expression for the coupling matrix
element reads

M = h̄2

2ml

B
4
√

Ll

√
2π

5
κe−κ I . (A36)

An analogous calculation shows that the channel coupling
A2

�(z) from Eq. (A2) yields a matrix element which is smaller
than M in Eq. (A36) by a factor of order O[(l/aL )

√
ωL/�]

and thus negligible. With the matrix element Eq. (A36) and
the DOS from Eq. (A27), using Fermi’s “golden rule” we
obtain for the decay rate

�� = 4π

5

h̄B2

ml

√
κe−2κ I . (A37)

We note that the exponential factor in Eq. (A37) coincides
with the results obtained in the absence of harmonic confine-
ment as considered in Ref. [48]. For the harmonic confinement
in the dark-state channel with frequency ωL one has B =
βl/a3/2

L with |β| � 1 and aL = √
h̄/mωL [for the barrier in

the center of the harmonic trap, β = β0 ≈ (4/π5)1/4 = 0.34,
such that actually |β| � β0]. The ratio of the decay rate to the
oscillator frequency ωL then reads

��

ωL
≈ 4π

5
β2

(
l

aL

)3/2(
�p

ωL

)1/4

exp

(
−2

√
�p

ωL

l

aL
I

)

= 2.5 β2

(
l

aL

)3/2(
�p

ωL

)1/4

exp

(
−1.75

√
�p

ωL

l

aL

)
,

(A38)

as written in Eq. (9). We note that the above derivation
requires the following hierarchy of scales:

1 � l

aL
�

√
ωL

�
, (A39)

for which ��/ωL is exponentially suppressed.
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c. Decay rate in the 2LS

We proceed to calculate the rate of decay from the + BO
channel to the − channel in the 2LS. For simplicity, we focus
on the symmetric case δ = 1, and we consider the ground state
in the harmonic approximation (29) to the effective potential
in the + channel as the initial state:

φ0(x) = 1√
l0

√
π

exp

(
− x2

2l2
0

)
, (A40)

where l0 = √
h̄/(mω0) and we set x0 = 0. The validity of the

harmonic approximation is controlled by the inequality l0 �
s, where s, which is given in Eq. (25), denotes the width of the
resonant region. This inequality will be of crucial importance
for the following discussion.

The state φ0(x) in the + channel is coupled to the state
described by the wave function ψ

(−)
E (x) in Eq. (A25) in the −

channel by the operator CNA = −{px, A(x)}/(2m), which oc-
curs as a nonadiabatic channel coupling in Eq. (A2). Using the
aforementioned inequality, this operator can be approximated
as

CNA = h̄2

2m

[
s

s2 + x2

d

dx
− sx

(s2 + x2)2

](
0 −1
1 0

)
≈ h̄2

2m

[
1

s

d

dx
− x

s3

](
0 −1
1 0

)
. (A41)

As a result, the coupling matrix element M which enters
Fermi’s “golden rule” is

M = h̄2

2m

∫ L

−L
dx φ0(x)

[
1

s

d

dx
− x

s3

]
ψ

(−)
E (x) = M1 − M2.

(A42)

Since φ0(x) is a symmetric function of x, the matrix element
M is different from zero only if ψ

(−)
E (x) is an antisymmetric

function. Therefore, one has to choose the sin{. . . } solution in
Eq. (A25). Furthermore, one can easily see that the contribu-
tion from M2 is smaller than that of M1 by a factor which is
O[(l0/s)2], and thus

M ≈ M1 = h̄2

2m

1

s

∫ L

−L
dx φ0(x)

d

dx
ψ

(−)
E (x). (A43)

The calculation of the above integral can be simplified sig-
nificantly by using the inequality l0 � s, which yields the
following simplified expression of ψ

(−)
E (x) for |x| ∼ l0:

ψ
(−)
E (x) ≈ 1

L1/4

1√
2

[

′

2̃,0

E + h̄�/2

]1/4

× sin

{
1

h̄
x
√

2m[E + h̄�/2]

}
. (A44)

Further, we can expand the oscillatory factor, because the
neglected terms are much smaller than unity if ω0/� � 1.
Within this approximation, we obtain for E ≈ h̄�/2 the ma-
trix element

M ≈ 1

L1/4

h̄2

2m

1√
2l0

(
π

2s

)1/4 l0
s

p̃ exp

[
−1

2
( p̃l0)2

]
, (A45)

where p̃ = √
4m�/h̄. This result for the matrix element and

the DOS from Eq. (A27) yield the ratio of the decay rate �2LS

to the oscillator frequency ω0 given in Eq. (30):

�2LS

ω0
≈ 2

√
π

l0
s

exp

[
−8

(
s

l0

)2
]
. (A46)

In particular, we find that the decay rate of the + channel
for the 2LS is determined by the ratio l0/s and is suppressed
exponentially for l0 � s.

APPENDIX B: INTERFACE BOUND STATE—DETAILS
OF NUMERICAL ANALYSIS

The wave function and eigenenergies for the bound state
shown in Fig. 7 of the main text Sec. III B are the solutions of
a numerical diagonalization of Eq. (43). For all calculations
we use the linear approximation of the dipole moment,

dD
z (x) ≈ −d 2̃,0

z

4δ3/2

(1 + δ)2

x

s
, (B1)

as introduced in the main text. It is convenient to express the
SE (43) from the main text also along the x direction in relative
and COM coordinates, rx = x1 − x2 and Rx = (x1 + x2)/2,
respectively. This leads to

h̄2

2ml2
0

[
−1

2

∂2

∂R̃2
x

− 2
∂2

∂ r̃2
x

− 2
∂2

∂ r̃2
y

+
(

2R̃2
x + 1

2
r̃2

x

)

+V2D
(
R̃x + r̃x

2 , R̃x − r̃x
2 , r̃y

)
h̄2

2ml2
0

⎤⎦�(R̃x, r̃x, r̃y)

= E�(R̃x, r̃x, r̃y), (B2)

where we measure distances in units of the confinement in
the x direction l0, r̃x = rx/l0, r̃y = ry/l0, and R̃x = Rx/l0. To
obtain the binding energy one has to subtract from E twice
the ground-state energy of the noninteracting system, i.e.,
EB = E − h̄ω0. The explicit form of the interaction potential
is given by

V2D
(
R̃x + r̃x

2 , R̃x − r̃x
2 , r̃y

)
h̄2

2ml2
0

= 1√
2π

ad l0
s2

l3
0

l3
⊥

(
R̃2

x − 1

4
r̃2

x

)
exp

(
ρ̃2

4

l2
0

l2
⊥

)
×
[(

2 + ρ̃2 l2
0

l2
⊥

)
K0

(
ρ̃2

4

l2
0

l2
⊥

)
− ρ̃2 l2

0

l2
⊥

K1

(
ρ̃2

4

l2
0

l2
⊥

)]
,

(B3)

where we define ρ̃2 = r̃2
x + r̃2

y . Due to the spatial dependence
of the dipole moment dD

z (x) it is not possible to separate the
relative and COM motion along the x axis. It is convenient to
expand the COM motion in eigenfunctions of the harmonic
potential described by the SE:

h̄2

2ml2
0

[
−1

2

∂2

∂R̃2
x

+ 2R̃2
x

]
�n(R̃x ) = h̄2

2ml2
0

2

(
n + 1

2

)
�n(R̃x ).

(B4)
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That is, we use the ansatz

�(R̃x, r̃x, r̃y) =
N∑

n=0

�n(R̃x )φn(̃rx, r̃y), (B5)

where we only keep the lowest N eigenfunctions in the above
harmonic potential. We note that the required cutoff N to
reach convergent results for the bound state and bound-state
energy is usually much smaller than the number of grid points
one needs to obtain comparable results from a brute-fore dis-
cretization in real space. The above ansatz yields the following
SE for the amplitudes φn (̃rx, r̃y):

h̄2

2ml2
0

N∑
m=0

{[
−2

∂2

∂ r̃2
x

− 2
∂2

∂ r̃2
y

+ 1

2
r̃2

x + 2

(
n + 1

2

)]
δm,n

+V
m,n
2D (̃rx, r̃y)

}
φm (̃rx, r̃y) = (EB − h̄ω0)φn (̃rx, r̃y). (B6)

Amplitudes φn (̃rx, r̃y) with different n are coupled by the
interaction matrix elements

V
m,n
2D (̃rx, r̃y)

=
∫ ∞

−∞
dR̃x�m(R̃x )

V2D
(
R̃x + r̃x

2 , R̃x − r̃x
2 , r̃y

)
h̄2

2ml2
0

�n(R̃x )

= 1√
2π

ad l0
s2

l3
0

l3
⊥

exp

(
ρ̃2

4

l2
0

l2
⊥

)[(
2 + ρ̃2 l2

0

l2
⊥

)
K0

(
ρ̃2

4

l2
0

l2
⊥

)
− ρ̃2 l2

0

l2
⊥

K1

(
ρ̃2

4

l2
0

l2
⊥

)]
1

4

{√
(n + 1)(n + 2)δm,n+2

+ [
(2n + 1) − r̃2

x

]
δm,n +

√
n(n − 1)δm,n−2

}
. (B7)

For the parameters used in Fig. 7, we obtain convergence for
N < 9, a numerical box size of |̃rx,y| < 10, and a uniform grid
of 600×600 for the two relative coordinates.
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