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Dynamical excitation of maxon and roton modes in a Rydberg-dressed Bose-Einstein condensate
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We investigate the dynamics of a three-dimensional Bose-Einstein condensate of ultracold atomic gases with
a soft-core-shaped long-range interaction, which is induced by laser dressing the atoms to a highly excited
Rydberg state. For a homogeneous condensate, the long-range interaction drastically alters the dispersion relation
of the excitation, supporting both roton and maxon modes. Rotons are typically responsible for the creation of
supersolids, while maxons are normally dynamically unstable in BECs with dipolar interactions. We show that
maxon modes in the Rydberg-dressed condensate, on the contrary, are dynamically stable. We find that the maxon
modes can be excited through an interaction quench, i.e., turning on the soft-core interaction instantaneously. The
emergence of the maxon modes is accompanied by oscillations at high frequencies in the quantum depletion,
while rotons lead to much slower oscillations. The dynamically stable excitation of the roton and maxon modes
leads to persistent oscillations in the quantum depletion. Through a self-consistent Bogoliubov approach, we
identify the dependence of the maxon mode on the soft-core interaction. Our study shows that maxon and roton
modes can be excited dynamically and simultaneously by quenching Rydberg-dressed long-range interactions.
This is relevant to current studies in creating and probing exotic states of matter with ultracold atomic gases.
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I. INTRODUCTION

Collective excitations induced by particle-particle interac-
tions play an important role in the understanding of static
and dynamical properties of many-body systems. The ability
to routinely create and precisely control properties of ultra-
cold atomic gases opens exciting prospects to manipulate
and probe collective excitations. In weakly interacting Bose-
Einstein condensates (BECs) with s-wave interactions [1–4],
phonon excitations reduce the condensate density, giving rise
to quantum depletion [5]. It has been shown [6] that quantum
depletion can be enhanced by increasing the s-wave scattering
length through Feshbach resonances [7,8]. By dynamically
changing the s-wave scattering length [9], phonon excitations
can alter the quantum depletion, momentum distribution [10],
correlations [11], contact [12,13], and statistics [14] of the
condensate. Moreover, phonon-induced quantum depletion
plays a vital role in the formation of droplets in BECs [15].

When long-range interactions are introduced, the disper-
sion relation corresponding to the quasiparticle spectrum of a
BEC is qualitatively different, where the excitation energies
of the collective modes depend nonmonotonically on the
momentum. Previously BECs with dipole-dipole interactions
have been extensively examined [16–22]. In two-dimensional
(2D) dipolar BECs [23], roton and maxon modes emerge,
with roton (maxon) modes corresponding to local minima
(maxima) in the dispersion relation. The strength of dipolar in-
teractions can be tuned by either external electric or magnetic
fields [19]. When instabilities of roton modes are triggered, a
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homogeneous BEC undergoes density modulations such that
a supersolid phase could form. The existence of roton modes
has been supported by a recent experiment of ultracold dipolar
gases [24]. Maxon modes, on the other hand, normally appear
at lower-momentum states [23]. It was shown, however, that
the maxon modes in dipolar BECs are typically unstable and
decay rapidly through Beliaev damping [20,21].

Strong and long-range interactions are also found in gases
of ultracold Rydberg atoms [25–29]. Rydberg atoms are in
highly excited electronic states and interact via long-range
van der Waals (vdW) interactions. The strength of the
vdW interaction is proportional to N 11, with N being the
principal quantum number in the Rydberg state. For large
N (current experiments exploit N typically between 30
and 100), the interaction between two Rydberg atoms can
be as large as several megahertz at a separation of several
micrometers [30]. However, lifetimes in Rydberg states are
typically 10–100 μs, which is not long enough to explore
spatial coherence. As a result, Rydberg dressing, in which a
far-detuned laser couples electronic ground states to Rydberg
states, is proposed. The laser coupling generates a long-range,
soft-core type interaction between Rydberg-dressed atoms
[31–41]. The coherence time and interaction strength can
be controlled by the dressing laser [35]. With this dressed
interaction, interesting physics, such as magnets [42],
transport [43], supersolids [31,34,44,45], etc., have been
studied. Signatures of the dressed interaction have been
experimentally demonstrated with atoms trapped in optical
lattices and optical tweezers [42,46].

In this paper, we study excitations of roton and maxon
modes in three-dimensional (3D) Rydberg-dressed BECs in
free space at zero temperature. Three-dimensional uniform
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trapping potentials of ultracold atoms have been realized
experimentally [47]. When the soft-core interaction is strong,
both the roton and the maxon modes are found in the dis-
persion relation of the collective excitations. Starting from a
weakly interacting BEC, roton and maxon modes are dynam-
ically excited by instantaneously switching on the Rydberg-
dressed interaction. Through a self-consistent Bogoliubov
calculation, we show that the roton and maxon modes lead
to nonequilibrium dynamics, where the quantum depletion
exhibits slow and fast oscillations. Through analyzing the
Bogoliubov spectra, we identify that the slow oscillations
correspond to the excitation of the roton modes, while the fast
oscillations come from the excitation of the maxon modes.
The dependence these modes have on the quantum depletion
in the long-time limit is determined analytically and numeri-
cally.

The paper is organized as follows. In Sec. II, the Hamilto-
nian of the system and properties of the soft-core interaction
are introduced. Bogoliubov methods, which are capable of
studying static as well as dynamics of the excitation, are
presented. In Sec. III, dispersion relations are found using the
static Bogoliubov calculation, where roton and maxon modes
are identified. We then examine the dynamics of the quantum
depletion due to the interaction quench. Excitations of the
roton and maxon modes are studied using a self-consistent
Bogoliubov method. The asymptotic behavior of the BEC at
long times is also explored. Finally, in Sec. IV we conclude
our work.

II. HAMILTONIAN AND METHOD

A. Hamiltonian of the Rydberg-dressed BEC

We consider a uniform 3D Bose gas of N atoms that
interact through both s-wave and soft-core interactions. The
Hamiltonian of the system is given by (h̄ ≡ 1)

Ĥ =
∫

ψ†(r)

(
− ∇2

2m
− μ

)
ψ (r) dr

+ 1

2

∫
ψ†(r)ψ†(r′)g̃(r − r′)ψ (r)ψ (r′) dr dr′, (1)

where ψ (r) is the annihilation operator of the bosonic field, μ

is the chemical potential, m is the mass of a boson, and ∇ is
the 3D nabla operator on coordinate r = {x, y, z}. The interac-
tion potential is described by g̃(r − r′) = g0δ(r) + Ṽ (r − r′),
where g0 = 4πas/m is the short-range contact interaction
controlled by the s-wave scattering length as [3]. Ṽ (r − r′)
is the long-range soft-core interaction,

Ṽ (r − r′) = C0

R6 + |r − r′|6 , (2)

where C0 is the strength of the dressed interaction potential
and R is the soft-core radius [35]. Both these parameters can
be tuned independently by varying the dressing laser [35].
The interaction potential saturates to a constant, i.e., Ṽ (r) →
C0/R6 when |r| � R, and approaches a vdW type at distances
of |r| � R, i.e., Ṽ (r) → C0/|r|6. An example of the soft-core
potential is shown in Fig. 1(a). The Fourier transformation of
the soft-core potential is V (k) = U0 f (k), where U0 = C0/R6

FIG. 1. Soft-core interaction and quench scheme. (a) The soft-
core interaction as a function of the interatomic distance r. The
energy is scaled by R6/C0, with R and C0 the soft-core radius and
dispersion coefficient. The interaction is constant when r � R and
becomes a vdW type when r � R. (b) Fourier transformation of
the soft-core interaction. The minimum of the interaction is located
at krR ≈ 5π/3, where the interaction is attractive. (c) The quench
scheme. A weakly interacting BEC with s-wave interactions is first
prepared. The laser dressing is applied at t > 0, which induces the
soft-core interaction.

determines the strength and f (k) has an analytical form,

f (k) = 2π2e− kR
2

3kR

[
e− kR

2 − 2 sin

(
π

6
−

√
3kR

2

)]
,

which characterizes the momentum dependence of the inter-
action. Though the interaction is repulsive in real space, i.e.,
Ṽ (r) > 0, it contains negative regions in momentum space,
as shown in Fig. 1(b). The negative part of V (k) appears at
a momentum around kR ∼ 5π/3. Previously, it was shown
that the attractive interaction is crucially important to the
formation of roton instabilities, as revealed by the Bogoliubov
approximation [23].

B. Time-independent Bogoliubov approach

In momentum space, we expand the field operators using a
plane-wave basis, ψ (r) = 1/

√
�

∑
k eik·râk. The many-body

Hamiltonian can be rewritten as

Ĥ =
∑

k

(εk − μ)â†
kâk +

∑
q,k,k′

gk

2�
â†

k+qâ†
k′−qâkâk′ , (3)

where â†
k (âk) is the creation (annihilation) operator of the

momentum state k, and � the volume of the BEC. The
kinetic energy is εk = k2/2m with k = |k|, while the Fourier
transformation of the atomic interaction g̃(r − r′) is given by
gk = g0 + V (k).

For a homogeneous condensate and in the stationary
regime, we apply a conventional Bogoliubov approach [48,49]
to study the excitation spectra. At zero temperature we as-
sume a macroscopic occupation in the condensate, which
allows us to replace â0 ≈ √

N0, with N0 being the number of
condensed atoms. We then apply a canonical transformation
on the bosonic operators of the nonzero momentum states
[3], âk �=0 = ūk b̂k − v̄∗

k b̂†
−k, where bk (b̂†

−k) is the annihilation
(creation) operator for bosonic quasiparticles and ūk and
v̄k are complex numbers such that |ūk|2 − |v̄k|2 = 1, which
satisfies the bosonic commutation relation [3]. The excitation
spectra of the Bogoliubov modes for different momentum
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components give the dispersion relation,

Ēk =
√

εk[εk + 2gkn0], (4)

with n0 = N0/� being the density of the condensed atoms.
The coefficients in the Bogoliubov transformation are [3]

ūk =
√

1

2

[
εk + gkn0

Ēk
+ 1

]
,

v̄k = −
√

1

2

[
εk + gkn0

Ēk
− 1

]
. (5)

The distribution of the noncondensed atoms is given by
nk = 〈a†

kak〉 = |v̄k|2. Taking into account contributions from
all noncondensed components, the quantum depletion in the
stationary state is evaluated as n̄d = 1/�

∑
k �=0 |v̄k|2.

C. Self-consistent Bogoliubov approach for the quench
dynamics

The quench of the soft-core interaction consists of two
steps. The system is initially in the ground state of a weakly
interacting BEC, i.e., U0 = 0 when t � 0. At time t > 0 the
Rydberg dressing is switched on immediately. The scheme
is depicted in Fig. 1(c). The time dependence of the atomic
interaction is described by a piecewise function as follows:

gk =
{

g0 when t � 0,

g0 + U0 f (k) when t > 0.
(6)

We assume that the s-wave interaction is not affected during
the quench. Hence we use the parameter α = U0/g0 to char-
acterize the strength of the soft-core interaction with respect
to the s-wave interaction.

A time-dependent Bogoliubov approach is applied to study
the dynamics induced by the interaction quench. It is an
extension of the conventional Bogoliubov approximation,
where the canonical transformation becomes time depen-
dent, âk �=0(t ) = uk (t )b̂k − vk (t )∗b̂†

−k, where uk (t ) and vk (t )
are time-dependent amplitudes with the relation |uk (t )|2 −
|vk (t )|2 = 1, which preserves the bosonic commutation rela-
tion. This approach has been widely used to study excitation
dynamics in BECs with or without long-range interactions
[10–12,14,20]. It provides a good approximation when the
condensate has not undergone significant depletion.

Using the Heisenberg equation of the bosonic operators,
we obtain the equations of motion of uk (t ) and vk (t ),

i

[
u̇k (t )
v̇k (t )

]
=

[
εk + gknc(t ) gknc(t )
−gknc(t ) −εk − gknc(t )

][
uk (t )
vk (t )

]
, (7)

where nc(t ) is the condensate density. The total density con-
sists of the condensate and depletion densities as n = nc(t ) +
nd (t ), with the total density of the excitation, i.e., quantum
depletion, given as

nd (t ) = 1

�

∑
k

nk (t ) = 1

2π2

∫ ∞

0
nk (t )k2 dk, (8)

where nk (t ) ≡ 〈â†
kâk〉 = |vk (t )|2 is the distribution of momen-

tum states. When the excitation from the condensate is weak,

nd ≈ 0, we can approximate nc(t ) ≈ n. Equation (7) can be
solved exactly,[

uk (t )
vk (t )

]
=

[
cos(Ek (t )t )I − i

sin(Ek (t )t )

Ek (t )

×
(

εk + gknc(t ) gknc(t )
−gknc(t ) −εk − gknc(t )

)][
uk (0)
vk (0)

]
,

(9)

where I is the identity matrix, and the dispersion relation
Ek (t ) = √

εk[εk + 2gknc(t )]. The initial values of uk (t ) and
vk (t ) are [3]

uk (0) =
√

1

2

[
εk + g0n

Ek (0)
+ 1

]
,

vk (0) = −
√

1

2

[
εk + g0n

Ek (0)
− 1

]
. (10)

We kept nc(t ) explicitly in Eq. (9) to indicate that uk (t ) and
vk (t ) are time-dependent quantities, while the total density n
is time independent. Using the time-dependent solutions, we
calculate the momentum distribution nk (t ),

nk (t ) = |vk (0)|2 + gknc(t )[gknc(t ) − g0n]

× εk[1 − cos(2Ek (t )t )]

2Ek (t )2Ek (0)
. (11)

Equation (11) shows that nk (t ) encodes the dispersion rela-
tion. One can see this after carrying out a Fourier transform of
nk (t ) to the frequency domain [50].

As we consider very weak quantum depletion, the conven-
tional Bogoliubov approach can already describe the dynam-
ics well. To take into account the corrections due to the weak
quantum depletion, we additionally employ a self-consistent
method through iterative calculations. From Eq. (9), we obtain
the quantum depletion and hence nc(t ). As we still have
nc(t ) ≈ n, nc(t ) will be treated as an adiabatically changing
quantity such that we can again use Eq. (9) to calculate the
quantum depletion in which the weak time dependence of
nc(t ) is considered. This procedure is iterated until nc(t ) is
self-consistently obtained, i.e., additional iterations will no
longer change nc(t ). Note that the procedure used here is
approximately applicable, as the quantum depletion is small.
When the depletion is strong, one could apply the rigorous
self-consistent procedure presented in Ref. [12].

In the following calculations, we scale the energies,
lengths, and times with respect to the interaction energy
g0n, coherence length ζ = (mg0n)−1/2, and coherence time
τ = tg0n of the initial condensate. The zero-range interaction
strength is fixed by the s-wave scattering length. To be con-
crete we set as = 0.1n−1/3 throughout this work.

III. RESULTS AND DISCUSSION

A. Stationary dispersion relation

The soft-core interaction drastically alters the dispersion
relation of the Bogoliubov excitations. To illustrate this, we
first examine dispersion relations of a static BEC by assuming
that the soft-core interaction is present. When the soft-core
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FIG. 2. Roton and maxon modes. (a) Bogoliubov spectra in the
stationary state for α = 0 (thin dashed black line), α = 1 (dot-dashed
blue line), α = 6 (thick dashed green line), and α = 7.7 (solid
purple line), when R = 15. The energy gaps γr and γm, indicating,
respectively, the roton and maxon energies are marked for the green
curve. For α > 7.7, the spectra become unstable. (b) Critical value
αr vs R. Analytical calculations (black line) agree with the numerical
data (dotted red line). (c) Roton energy γr . With an increase in α,
the roton energy decreases. For large α, the analytical (solid black
line) and numerical (dotted red line) results agree. At small α, roton
minima become weak and eventually disappear, which leads to the
deviation. Data points in red are the energies taken numerically
from the dispersion. (d) The maxon energy γm increases with α.
The analytical (solid black line) and numerical data agree nicely. In
(c) and (d) R = 15.

interaction is weak, i.e., α is small, the dispersion relation
resembles that of a weakly interacting BEC. The excitation
energies increase monotonically with momentum k [3] [see
Fig. 2(a)]. Upon increasing α, the shape of the Bogoliubov
spectra changes significantly. For different α values, the dis-
persion intersects at a momentum determined by V (k) = 0
[see Fig. 1(b)], where the mode energies of the Rydberg-
dressed BEC coincide with that of a weakly interacting BEC
(dashed curve). More importantly, a local maximum and min-
imum can be seen in the dispersion relation when α is large
[Fig. 2(a)]. At the maximum, special modes called maxon
modes form, while roton modes emerge around the minima
[23]. In the following, we denote the energies of the maxons
and rotons γm and γr , as the local maximal and minimal values
of the dispersion relation.

The roton and maxon modes depend on the soft-core
interaction nontrivially. With increasing α, γr decreases while
γm increases, as shown by the examples in Fig. 2(a). For
sufficiently large α, the roton gap vanishes as the energies
become complex. Due to the roton instability, the homoge-
neous state becomes dynamically unstable, which leads to
interesting physics. It has been shown that the emergence of
the roton instability can cause a first-order phase transition

where the ground state changes from a uniform condensate
to a supersolid state [35,51,52]. We note that instabilities in
dipolar BECs are caused by angular-dependent interactions
with both attractive and repulsive components [16], while
the instability in the dressed BEC is induced by stronger,
isotropic interactions. We show in the following section that
switching on the dressed interaction induces exotic dynamics
even without triggering the roton instability.

We now obtain the critical value at which the roton mode
becomes unstable. In Fig. 1(b), the Fourier transform of
the soft-core potential has the most negative value around
kr ≈ 5π/3R. The roton minimum takes place around this
momentum. By substituting kr into the dispersion relation, we
can identify the critical α at which the roton energy becomes
complex:

αr = 5e5π/3(36R2 + 25π2)

72πR2
[
2e5π/6 sin

(
π
6 − 5π

2
√

3

) − 1
] . (12)

To check the accuracy of this critical value, we numerically
find the instability point from the dispersion relation for vari-
ous α values. Both numerical and analytical values are shown
in Fig. 2(b). The analytical result agrees with the numerical
values very well. This supports the assumption that the roton
minimum happens around momentum kr .

Knowing the momentum kr , we can obtain the roton en-
ergies by inserting it into Eq. (4). It is found that the roton
energy γr decreases with increasing α [see Fig. 2(c)]. The
roton energy from the numerical calculations agrees with the
analytical data, especially when the soft-core interaction is
strong. Decreasing the soft-core interaction, the roton modes
disappear for sufficiently small α, as our numerical calcula-
tions indicate. Here large deviations between the two methods
are found in this regime.

On the other hand, the location of the maxon modes in mo-
mentum space is difficult to find. By analyzing the dispersion
relation, the momentum corresponding to the maxon mode is
approximately given by km ≈ kr/2. Using this approximation,
we substitute this momentum value into Eq. (4) and calculate
the maxon energy. The result is shown in Fig. 2(d), where the
approximate value matches the numerical values with a high
degree of accuracy.

Recently, the stationary states of 2D and 3D Rydberg-
dressed BECs have been examined [53]. It was shown that
the increased occupation around the roton modes leads to
instabilities in the ground state in the form of density waves. It
was also shown that the strong interparticle interactions lead
to a large depletion of the condensate.

B. Roton and maxon excitation

Depending on the parameters of the soft-core interaction,
the stationary dispersion relation could support roton and
maxon modes. One example is displayed in Fig. 3(a). Now
if we quench the interaction, the dispersion relations of the
initial and final states are different. The system is driven out
of equilibrium, such that the momentum distributions nk (τ )
evolve with time. In Fig. 3(b), snapshots of the momen-
tum density nk (τ )k2 are shown. At τ = 0, the BEC is in a
stationary state, which depends on the initial condition, v̄k .
The respective momentum density is a smooth function of
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FIG. 3. Excitation of the roton and maxon modes. (a) Dispersion for a static BEC. The momentum of the roton and maxon modes decreases
with increasing soft-core radius R. Without soft-core interactions, the excitation energy monotonically increases with the momentum (thin
dashed black curve). The location of the maxon modes for the red curve is highlighted by the arrow. (b, c) The interaction quench is applied.
Momentum densities nkk2 at time τ = 30 are shown in (b). The dashed black curve shows the momentum distribution of the initial state.
The quantum depletion damps slightly at early times and then oscillates rapidly with negligible damping over a long time (c). (d) This leads
to sharp peaks in the respective Fourier transformation. The nonzero width of the peaks results from the damping at the early stage of the
evolution. The frequency νm at the major peaks is determined by the maxon frequency. Minor peaks corresponding to other frequencies are
almost invisible. In (a)–(d), three soft-core radii, R = 8 (thick solid red curve), R = 10 (thick dashed green curve), and R = 12 (thin solid
blue curve), are considered, while the interaction strength is fixed at α = 4. (e) Dispersion, (f) momentum distribution, (g) quantum depletion,
and (h) Fourier transformation of the quantum depletion for R = 10 and α = 5 (thin solid blue curve), α = 6.5 (thick dashed green curve),
and α = 7.99 (thick solid red curve). Approaching the roton instability (e), the momentum density distribution (f) develops a large occupation
around modes at kr at τ = 30. Both the roton and the maxon momenta are highlighted by arrows in this case. The depletion dynamics maintains
a slower oscillation (g) as the interaction strength is increased, which can be seen from the Fourier transformation of the quantum depletion
(h). The lower peak frequency νr is determined by the roton mode. The major peaks at higher frequencies are due to the excitation of maxons.
When α = 7.99, both the roton and the maxon modes are dynamically stable, giving narrow Fourier spectra. While the above spectra were
calculated, the system was allowed to evolve up to time τ = 600.

k. When t > 0, different momentum states are modified by
the presence of the soft-core interaction, causing dynamical
evolution of the quantum depletion.

The dynamics of the quantum depletion depends vitally
on the parameters R and α in the soft-core interaction. After
switching on the interaction, the excitation of the Bogoliubov
modes significantly affects the momentum distribution. We
first investigate the oscillatory behavior of the quantum de-
pletion. For moderate soft-core interactions, many momentum
modes are excited by the soft-core interaction, as shown in
Fig. 3(b). The quantum depletion increases rapidly at short
times and then oscillates around a constant value [Fig. 3(c)].
Its amplitude decreases slowly when τ < 100 but then reaches
a constant. The Fourier transformation ñd (ν) of the quantum
depletion, characterizing the spectra of the dynamics, shows a
sharp peak [Fig. 3(d)]. The finite width of the peak is largely
due to the damping of the quantum depletion at the early stage
of the evolution. The peak positions, i.e., frequency of the
oscillations, decrease gradually when the soft-core radius is
increased.

For stronger soft-core interactions, the roton mode moves
towards the instability point [see Fig. 3(e)]. As the inter-
action strength approaches αr , the momentum density de-
velops a large occupation at momentum values matching
kr [see Fig. 3(f)]. Around the maxon momentum km, there
are also large occupations. A new, lower-frequency pattern
develops on top of the fast oscillation in the quantum depletion
[Fig. 3(g)]. This changes the Fourier spectra of the quantum

depletion, where a new peak is found at a lower frequency
[Fig. 3(h)].

Importantly, the peak positions in ñd (ν) are determined
by the roton and maxon energies, where fast oscillations
are due to the excitations of the maxon modes, while slow
oscillations are due to the roton modes. To verify this, we
first obtain the maxon and roton frequencies by substituting
the corresponding momenta km and kr into Eq. (4). We then
compare them with the frequency at the peak positions in
the Fourier spectra. Note that the oscillation frequency (i.e.,
peak frequency of the Fourier spectra) in the quantum de-
pletion is twice the Bogoliubov energy, as can be seen in
Eq. (11). As shown in Fig. 4, the numerical data for both
the maxon mode [Figs. 4(a) and 4(b)] and the roton mode
[Figs. 4(c) and 4(d)] agree with the analytical calculations.
When the interaction strength is varied, the maxon (roton)
frequency increases (decreases) with increasing α. If we
increase the soft-core radius, the frequencies of both modes
decrease.

The agreement between numerical and analytical calcula-
tions confirms that both roton and maxon modes are excited
via quenching of the soft-core interaction. The dynamically
excited modes are stable, as both the fast and the slow
oscillations are persistent for a long time. In our numerical
simulations, the oscillations will not dampen even when the
simulation time τ > 1000. Such persistent oscillatory dynam-
ics also leads to the sharp peaks in the Fourier transformation
of the quantum depletion.
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FIG. 4. (a, b) Maxon frequency and (c, d) roton frequency.
Circles represent numerical data from the Fourier spectra. Solid
curves are the analytical results 2γm in (a) and (b) and 2γr in
(c) and (d) obtained from the Bogoliubov dispersion. The maxon
(roton) frequency increases (decreases) with increasing interaction
strength. At the critical point αr , the roton mode loses stability. The
frequencies of both modes tend towards 0 for larger R values as
the soft-core interaction becomes weaker. In (a) and (c) R = 15. In
(b) and (d) α = 4.

We want to emphasize that the quench dynamics in the
dressed BEC is in sharp contrast to BECs with either s-wave
or dipolar interactions. In a weakly interacting BEC, the quan-
tum depletion grows exponentially to a steady value ∝ζ− 1

3 ,
while oscillatory patterns are not present in the depletion
[11], due to the fact that low-energy phonon modes domi-
nate the quench dynamics. In dipolar BECs [19,20,24,54,55],
on the other hand, roton modes are formed due to the
interplay between long-range dipolar and s-wave interac-
tions [19,20,24,54,55]. These roton modes can be excited
by quenching of the dipolar interaction, while maxon modes
are typically unstable in the dynamics (see Appendix A for
examples).

C. Quantum depletion in the long-time limit

In the long-time limit τ � 1, the quantum depletion oscil-
lates rapidly around a mean value [Figs. 3(c) and 3(g)]. In the
following, we evaluate the asymptotic value of the quantum
depletion. First, we derive an analytic expression using the
following approximations. In the long-time limit, the time-
averaged quantum depletion is largely determined by the low-
momentum modes. Moreover, we neglect the oscillation terms
in Eq. (11), as they are related to the rotons and maxons. Using
these approximations, the asymptotic form of the momentum
distribution n∞

k is obtained,

n∞
k ≈ 1

2

(
k2 + 1√

k2(k2 + 4)
− 1

)
+ α f (k)

4k

ncs∞

n
, (13)

where ncs∞ is the asymptotic condensate density. After car-
rying out the integral over momentum space, the approximate

FIG. 5. Asymptotic quantum depletion. (a) The asymptotic quan-
tum depletion increases with increasing α, which is shown by both
the analytical and the numerical calculations. (b) The quantum
depletion n∞

d decreases with increasing soft-core radius. The lines
are found analytically using Eq. (14), while the data points are found
by numerically solving Eq. (8) and taking the mean value at later
times between τ ≈ 50 and τ ≈ 150. Parameters in (a) are R = 3
(open black diamonds, dashed line) and R = 4 (filled diamonds, solid
line). Parameters in (b) are α = 1 (open black diamonds, dashed line)
and α = 3.5 (filled red diamonds, solid line).

quantum depletion when τ → ∞ is obtained,

n∞
d

n
≈ 2�

(
R2 + απ

3R2 + 2πα�

)
, (14)

where � = (2π2ζ 3n)−1. This result predicts that the quantum
depletion approaches a constant value n∞

d /n → 2�/3 in the
limit R → ∞. This resembles the result of the weakly inter-
acting BEC, i.e., the soft-core interaction plays no role in the
dynamics.

To verify the analytical calculation, we numerically find
the mean value of the quantum depletion when the time
is large. Both the numerical and the analytical results are
shown in Fig. 5. For small α, low-momentum states are
populated by switching on the soft-core interaction. This is
the regime where the approximation works. Here we find
a good agreement between the numerical and the analytical
calculations. With an increasing interaction strength, more
and more higher-momentum components are populated [see
Fig. 3(f)], causing larger depletion. When α is fixed, the
quantum depletion decreases with increasing R, as shown in
Fig. 5(b). This results from the fact that the quench only
affects momentum components k < kr/R [see Fig. 1(b)]. For
momentum k � kr/R, the dispersion is largely unaffected by
the soft-core interaction as the respective V (k) → 0. There-
fore increasing R leads to a weaker quantum depletion.

023319-6



DYNAMICAL EXCITATION OF MAXON AND ROTON MODES … PHYSICAL REVIEW A 102, 023319 (2020)

IV. CONCLUSION

We have studied the dynamics of 3D BECs in free space,
with Rydberg-dressed soft-core interactions. An interaction
quench is implemented by turning on the soft-core inter-
action instantaneously, starting from a weakly interacting
BEC. The Bogoliubov spectrum of the BEC displays local
maxima and minima, which are identified as maxon and roton
modes. Through a time-dependent Bogoliubov approach, we
have calculated the dynamics of the quantum depletion self-
consistently. Our results show that both roton and maxon
modes are excited by switching-on of the soft-core interaction.
The excitation of roton and maxon modes generates slow
and fast oscillatory dynamics in the quantum depletion. Our
simulations show that the excited roton and maxon modes
are stable in the presence of the soft-core interaction, which
is observed from the persistent oscillations of the quantum
depletion. We have found the frequencies of the roton and
maxon modes approximately, and they are confirmed by the
numerical simulations.

Our study shows that exotic roton and maxon excitations
can be created in Rydberg-dressed BECs through interaction
quenches. Properties of the maxons and rotons can also be
seen from condensate fluctuations (see Appendix B for de-
tails) and density-density correlations (see Appendix C). The
results studied in this work might be useful in identifying
the soft-core interaction, by measuring the frequencies and
strength of the quantum depletion. In the future, it would
be worth studying the stability of the maxon mode due to
Beliav damping [56,57]. Maxon modes are also present in
strongly correlated 4He [58,59], where the maxon decays into
phonons at the Pitaevskii plateau. Whether the maxons in
Rydberg-dressed BECs will decay through this mechanism is
an open and interesting research question. Another interesting
question is whether the soft-core interaction can lead to the
formation of droplets in Rydberg-dressed BECs.
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APPENDIX A: DYNAMICS OF 2D DIPOLAR SYSTEMS

Quench dynamics in BECs with dipolar interactions are
drastically different. The dipolar interaction is given by

Ṽdd(r − r′) = g0δ(r) + d2

|r − r′|3 [1 − 3 cos2(θ )], (A1)

where d is the dipole moment, θ is the angle between the
dipoles and the molecular axis, and g0 is the short-range
contact interaction as before. In three dimensions, the Fourier
transform of the dipolar interaction has no momentum de-
pendence [19]. In a 2D trapped dipolar Bose gas [17,18], the

FIG. 6. Quantum depletion in a dipolar BEC. Solid red curves
represent αd = 2.1; dashed blue curves, αd = 2.7. Black dashes
correspond to the noninteracting dispersion relation. The axial con-
finement is set to lz = 0.1n−1/2. We show the dispersion relation in
(a), while the momentum distribution at time τ = 30 is shown in
(b). The quantum depletion and corresponding Fourier spectra are
shown in (c) and (d), respectively. Inset: A maxon mode is excited
for αd = 2.1. However, the signal is very weak and almost invisible.
The axes in the inset are the same as in (d).

interaction potential displays a strong momentum dependence
[20].

We consider a quasi-2D setup [20], where a strong confine-
ment is applied in the perpendicular z direction while atoms
are left free to move in the x-y plane. The dipoles are polarized
along this z axis. This leads the axial confinement as lz, which
provides a natural rescaling of r �→ r/lz [17,18,20–22]. After
integrating Eq. (A1) in the z axis, we obtain the Fourier
transformation of the quasi-2D dipolar interaction [20]

gdd(k) = g0 + d2[2 − 3k
√

πErfc(k)ek2
], (A2)

where Erfc(k) is the complementary error function. A di-
mensionless parameter αd = 2πd2/3g0 is used to charac-
terize the strength of the dipolar interactions, such that the
interaction after the quench is given as gdd(k)/g0 = 1 +
αd [2 − 3k

√
πErfc(k)ek2

]. The quench scheme for the dipolar
case is similar to the procedure outlined in the text. We switch
on the dipolar interaction instantaneously, while keeping the
s-wave interaction unchanged.

The dispersion relation for the dipolar BEC is shown in
Fig. 6(a), where both roton and maxon modes are shown.

When the dipolar interaction is compared to the Rydberg-
dressed BEC [e.g., Fig. 2(a)], the energies of the low-
momentum modes remain low, as shown by directly compar-
ing the dispersion relations. The absence of these high maxon
energies means that the mechanism behind the dipolar interac-
tions prevent the oscillations that we previously attributed to
the maxon modes from reaching high amplitudes [Fig. 6(b)]
[20,21,60].
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The energy spectrum of dipolar BECs [Fig. 6(a)] shows
that the maxon energies are slightly above the energy of a
weakly interacting BEC (dashed black line). In comparison,
Fig. 2(a) in the text shows that the maxon energy in the
Rydberg-dressed interaction is much higher. The absence of
high-frequency oscillations in the dipolar BECs might be
attributed to this lack of high-energy maxon modes.

We follow the same self-consistent process to obtain the
condensate fraction. We calculate the quantum depletion as
before, as nd/n = 1/(2π l2

z n)
∫ ∞

0 nkk dk. When αd is small,
the dynamics develops maxon oscillations, which dampens in
short time scales, as shown in Fig. 6(c). When αd is large, the
roton frequency completely overpowers the maxon frequency
in the dynamics. The absence of a stable maxon mode is also
seen in the Fourier spectra [Fig. 6(d)].

APPENDIX B: CONDENSATE FLUCTUATION

In this section, we evaluate the fluctuation of the conden-
sate for the Rydberg-dressed BEC. The condensate fluctuation
is defined as

�nc =
√〈

n2
c

〉 − 〈
nc

〉2
=

√〈
n2

d

〉 − 〈
nd

〉2
= 1

�

√ ∑
kk′ �=0

[〈
â†

kâkâ†
k′ âk′

〉 − 〈
â†

kâk
〉〈

â†
k′ âk′

〉]
,

where we have assumed that the total density n is a constant.
Using the Bogoliubov transformation, the fluctuation of the
condensate is obtained:

�nc = 1

�

√
2

∑
k �=0

nk (1 + nk ). (B1)

One can numerically evaluate the fluctuation by inserting
Eq. (11) into the above equation. For convenience, the rel-
ative fluctuation,

√
N�nc/n, is calculated. Some examples

are shown in Fig. 7(a). The fluctuation increases rapidly and
then saturates at an asymptotic value when the time is large.
The fluctuation oscillates around the asymptotic value. The
maxon modes lead to fast oscillations. When the roton mode
is significantly populated, a slower oscillation is found.

The asymptotic value of the fluctuation depends on the
soft-core interaction. With increasing α, the asymptotic value
increases [see Figs. 7(a) and 7(b)]. We can estimate the
asymptotic value of the density fluctuation by replacing nk

with its asymptotic value, Eq. (13), in Eq. (B1), which yields
√

N�ncs∞

n
=

√
2�

∫ ∞

0
n∞

k

[
1 + n∞

k

]
k2dk. (B2)

Further assuming that the fluctuation depends solely on low-
momentum states, we obtain the approximate result of the
fluctuation when τ → ∞,

√
N�ncs∞

n
≈

√
2�π2[1 + π2α(6

√
3 + παC)]

27R
, (B3)

with the constant C = [4
√

3π − 3 log ( 27
16 )]. The approxima-

tion result shows that fluctuation of the condensate decreases

FIG. 7. Condensate fluctuation. (a) Dynamics of the condensate
fluctuation. We fix R = 10 and evolve the system for α = 5 (lower,
blue curve), α = 6.5 (middle, green curve), and α = 7.99 (upper,
purple curve). The dashed line is the fluctuation without the soft-
core interaction, i.e., α = 0. Inset: Fluctuations when α = 7.99,
highlighting the low-frequency oscillations due to rotons. The axes
in the inset are the same as in (a). Mean values of the fluctuations for
different (b) α and (c) R when the time τ → ∞. We consider R = 3
(open black diamonds, dashed line) and R = 4 (filled red diamonds,
solid line) in (b) and α = 1 (open black diamonds, dashed line) and
α = 3.5 (filled red diamonds, solid line) in (c). Diamonds correspond
to the numerical data, while lines represent the analytical expression.
Other parameters can be found in Fig. 5 in the text.

(increases) with increasing R (α). In Figs. 7(b) and 7(c),
numerical and approximate results are both shown. The two
calculations agree when α is small or R is large, where
the depletion and fluctuation are both small. Though a large
discrepancy is found when α is large or R is small, the trends
found from both numerical and analytical calculations are the
same.

APPENDIX C: DENSITY-DENSITY CORRELATION

Finally, we evaluate the density-density correlation func-
tion [10,11]

g(2)(r, t ) =
∑

k,k′,q

eik.r 1

�2
〈â†

k+q(t )âk(t )â†
k′−q(t )âk′ (t )〉. (C1)

Within the Bogoliubov transformation, this can then
be expressed in terms of the condensate density as
〈1/�2 ∑

k,k′ â†
k+q(t )âk(t )â†

k′−q(t )âk′ (t )〉 = n2 + n/�
∑

k

[4|vk|2 − u∗
kvk − ukv

∗
k]. Defining D = |r − r′ |/ζ as the

scaled interatomic distance, the correlation function is given
as [11]

g(2)(D, τ ) − 1 = 4�

D

∫ ∞

0
k dk sin(kD)

×[
nk − Re[u∗

k (τ )vk (τ )]
]
. (C2)
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FIG. 8. Density-density correlation. (a) Density-density correla-
tions as a function of D and τ , with R = 15 and α = 7.7. (b) Cor-
relations at D = 5 (thick red curve) and D = 25 (thin blue curve)
(c) Corresponding Fourier spectrum of the correlation function. In
the Fourier spectra, the peaks at lower and higher frequencies are
due to the excitation of roton and maxon modes.

We see in Fig. 8(a) that the correlations immediately de-
velop both slow and fast oscillations. The slow oscillations
correspond to the excitation of roton modes when γr is
small. The fast oscillations attributed to the maxon occupation
are more easily observed when looking at a specific value
of D [Fig. 8(b)]. The corresponding Fourier transformation
g̃(2)(D, ν) − 1 clearly shows the associated frequency peaks.
When the distance D < R, g(2)(D, τ ) − 1 oscillates with high
amplitudes and can have negative values, i.e., strong repulsive
interactions lead to anticorrelations. Around the soft-core
radius, the correlations are positive and reach their maximal
values. When D � R, the correlations tend to 0 at large
times.

FIG. 9. Evolution of Bogoliubov amplitudes. Using the same pa-
rameters as the thick red curve in Fig. 3(g), the amplitudes (a) |uk (τ )|
and (b) |vk (τ )| are shown for k = 0.3. Solid red curves correspond
to our self-consistent algorithm, while blue dots are obtained by the
rigorous calculation from Ref. [12].

APPENDIX D: SELF-CONSISTENT CALCULATION
COMPARISON

The dynamical condensate density is found by calculating
the quantum depletion self-consistently. In our calculation
we have chosen parameters such that quantum depletion is
small in the initial state and also in the dynamical evolution.
With this condition at hand, the calculation is carried out by
treating nc as an adiabatically changing parameter. Here a
crucial step in the derivation of Eq. (9) in the text is that
we assume nc = n during the first iteration. With this crude
approximation, Eq. (7) can be integrated, leading to Eq. (9).
After the first iteration, the value of nc is updated and then
reinserted into the next iteration in Eq. (9). As the corrected
nc is still very close to n, we directly iterate Eq. (9) instead of
solving Eq. (7) numerically.

A more rigorous approach was presented in Ref. [12] and
should be followed in the event of large quantum depletion.
Due to nc ≈ n, we can replace the phase term

φ =
∫ t

0
dt ′nc(t ′) (D1)

in Ref. [12] with nct in our calculations. These two calcula-
tions appear to agree well when using the parameter regimes
considered in the work. Some examples are given in Fig. 9,
where we show the dynamical evolution of uk (t ) and vk (t )
obtained by the two different calculations. The blue curves are
obtained from the rigorous approach used in Ref. [12], and the
red curves using our calculations.
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