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Quantum droplets in one-dimensional Bose mixtures: A quantum Monte Carlo study
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We use exact quantum Monte Carlo techniques to study the properties of quantum droplets in two-component
bosonic mixtures with contact interactions in one spatial dimension. We systematically study the surface tension,
the density profile and the breathing mode as a function of the number of particles in the droplet and of the ratio
of coupling strengths between intraspecies repulsion and interspecies attraction. We find that deviations from the
predictions of the generalized Gross-Pitaevskii equation are small in most cases of interest.
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I. INTRODUCTION

One of the recent progresses in ultracold atoms is the
observation of liquid quantum droplets which were first ob-
served in dipolar gases [1–6] and later in Bose mixtures
[7–11]. In the case of dipolar atoms, the discovery initially
came as a surprise because the stable droplets observed in
the experiment were not compatible with mean-field theories
which predicted a collapse of the system. It was later realized
that repulsive quantum fluctuations contrast the mean-field
attraction and stabilize the system in a liquidlike phase [5]. In
nature, liquids can arise as a result of a competition between
attraction and repulsion. In dipolar gases, the repulsion is
provided by the short-range interaction whereas the attraction
is provided by the long-range dipolar force. However, the
presence of a long-range interaction is not essential to the
droplet formation mechanism. For instance, a similar mech-
anism arise in bosonic mixtures subject to contact forces
which provide repulsive interactions between particles of the
same species and attractive interactions between particles
of different species. In this case, the formation of quantum
droplets was first predicted theoretically [12] and then con-
firmed experimentally [7].

In three dimensions (3D) uniform mixtures are predicted
to collapse, according to mean-field theory, when the inter-
species attraction exceeds the intraspecies repulsion. How-
ever, when quantum fluctuations are included in the theory,
their repulsive effect can balance the mean-field attraction,
and the system becomes stable. Moreover, the energy acquires
a minimum at a nonzero density, which is the hallmark of a
liquid state at zero temperature. Furthermore, it was shown
that liquid states can arise also in lower dimensions [13] and,
in particular, in one-dimensional (1D) configurations [14]. In
1D, the problem is enriched compared to the 3D case by the
enhanced role of quantum fluctuations [14,15]. Mixtures in
1D can be realized experimentally by loading the atoms in
elongated tubes confined by a two-dimensional optical lattice
[16] or using microtraps [17]. In contrast to 3D where it is
difficult experimentally to reach strongly correlated regimes
because of three-body losses, in 1D, such losses are greatly
reduced [18]. Furthermore, the effective 1D scattering length
can be tuned from the weakly to the strongly interacting

regime, up to the limit of infinite repulsion, also called Tonks-
Girardeau gas [19–21].

Since quantum fluctuations play an important role, it is
crucial to rely on theoretical approaches able to describe
beyond mean-field corrections. For homogeneous systems
in the thermodynamic limit, the Bogoliubov theory includes
perturbatively fluctuations at the lowest order and provides
an adequate description in the weakly interacting limit [14].
However, experiments deal with nonuniform droplets formed
by surface effects and containing a finite number N of
particles. In the few-particle limit, one expects to form a
small self-bound cluster, whereas, for large N , one expects
to form a droplet with a mostly flat density profile except
at the boundaries, which reminds of the shape of a water
puddle. To describe static and dynamic properties of these
finite-size droplets many theoretical studies use a generalized
Gross-Pitaeskii (GGP) equation which includes quantum fluc-
tuations within a local-density approximation [12,13,22–25].
However, the validity of this approach is not clear, even in the
weakly interacting limit. To assert the validity of the theory,
it is, therefore, important to benchmark its predictions against
microscopic nonperturbative theories.

The ground state of the microscopic Hamiltonian can be
investigated numerically using exact quantum Monte Carlo
(QMC) techniques [26]. These methods were used to study
the properties of the liquid state in 3D Bose mixtures, both in
the case of uniform systems and nonuniform quantum droplets
[27,28]. In 1D, the few-body problem was investigated in
Ref. [29], and uniform mixtures in the thermodynamic limit
were investigated using QMC techniques in Ref. [14]. In
particular, it was found that the ground state of a uniform
system is a liquid, i.e., the energy displays a minimum at a
nonzero density, above a critical ratio r ≈ 0.45(3) between
attractive and repulsive coupling constants. Below this critical
ratio, the minimum in the energy corresponds to zero density,
and the ground state is a gas. Above the critical ratio, a
finite system is expected to form self-bound clusters. So far,
however, no exact results are available in the literature for
these nonuniform droplets.

In this article, we study the properties of 1D nonuniform
quantum droplets at zero temperature using exact QMC tech-
niques. We calculate the surface energy, the density profiles,
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and the frequency of the breathing mode, and we system-
atically compare our results with the predictions of GGP
theory. We find that the GGP equation describes quite well our
results, even at small particle numbers and small ratio between
attraction and repulsion strength in regimes where the theory
cannot be a priori justified.

The structure of the paper is as follows: In Sec. II, we
introduce the main theoretical ingredients of our analysis
which include the Hamiltonian defining the model of 1D Bose
mixtures and the GGP approach for the homogeneous liquid
phase, and for the droplet, the many-body droplet model and
the sum-rule approach used to extract the frequency of the
breathing collective mode. In Sec. III, we briefly discuss the
QMC numerical technique employed to calculate the ground-
state properties of the liquid droplets. Finally, in Sec. IV,
we present our results for the surface energy, the droplet
density profiles as a function of the number N of particles,
and the frequency of the breathing mode. We also provide
a quantitative comparison with the predictions of the GGP
theory. Section V contains our concluding remarks.

II. MODEL

A. Hamiltonian

In this paper, we consider a two-component mixture of
bosons at zero temperature with contact interactions. The
Hamiltonian of the system is given by

H = − h̄2

2m1

N1∑
i=1

∂2

∂x2
i

− h̄2

2m2

N2∑
α=1

∂2

∂x2
α

+ g11

∑
i< j

δ(xi − x j )

+ g22

∑
α<β

δ(xα − xβ ) + g12

∑
i,α

δ(xi − xα ), (1)

where m1 and m2, respectively, are the masses of the bosons of
the first and second components, g11 and g22 are the coupling
constants for the intraspecies two-body interaction between
atoms of the same component, and g12 is the interspecies two-
body coupling constant. Furthermore, the labels i, j and α, β,
respectively, refer to the coordinates of particles belonging to
the first and second components. For the sake of simplicity,
we only consider symmetric mixtures with equal masses m1 =
m2 = m, equal intraspecies coupling constants g11 = g22 = g,
and equal particle numbers N1 = N2 = N/2. Moreover, we
will consider repulsive intraspecies interactions with g > 0 to
ensure the stability of the system and an attractive interspecies
interaction with g12 < 0.

B. Generalized Gross-Pitaevskii equation

Here, we review the GGP approach to study bosonic
mixtures in 1D as described in Refs. [13,22]. For a uniform
mixture in the weakly interacting regime, one can apply the
Bogoliubov theory which yields the following energy per unit
volume [13],

E

V
= (g − |g12|)

4
n2

−
√

mn3/2

3
√

2π h̄
[(g + |g12|)3/2 + (g − |g12|)3/2]. (2)

The first term in Eq. (2) is the mean-field interaction term
containing the total density n = n1 + n2. The second term
arises, instead, from quantum fluctuations treated at the lowest
order, also called Lee-Huang-Yang (LHY) corrections. The
above energy functional is applicable in the high-density limit
n|a| � 1, where a = − 2h̄2

mg is the 1D scattering length between
atoms. Note that this behavior is different from the 3D case
where Bogoliubov theory is applicable only in the opposite
limit of very low density. Note also that the LHY corrections
only make sense if |g12| < g, and they are negative. As a
consequence, the compressibility becomes negative, and the
system collapses when |g12| > g. Instead, when |g12| < g but
|g12| is close to g, the attractive LHY correction can balance
the mean-field repulsion. Crucially the mean-field and the
quantum fluctuation terms scale with different powers of
the density, and the energy functional acquires a minimum
at the equilibrium density neq given by

neq = 2m

h̄2

(
[(g + |g12|)3/2 + (g − |g12|)3/2]

3π (g − |g12|)
)2

. (3)

The presence of a finite density minimizing the energy
means that the ground state is a liquid. Note also that neq

increases as the ratio |g12|/g between attraction and repulsion
increases, and, in the limit |g12| → g, the equilibrium density
becomes large. As mentioned above, this regime, correspond-
ing to n|a| � 1, is the condition required for the validity of
the GGP theory. However, in a system with a finite number of
atoms, the effect of surface tension leads to a rearrangement
of the particles in a self-bound nonuniform configuration. To
describe such nonuniform systems, one can use an approach
based on density functional theory with the energy given by
Eq. (2). This approach yields the following time-dependent
equation,

ih̄
∂ψ

∂t
= − h̄2

2m

∂2

∂x2
ψ + 1

2
(g − |g12|)|ψ |2ψ

−
√

m

h̄π23/2
[(g + |g12|)3/2 + (g − |g12|)3/2]|ψ |ψ,

(4)

where ψ is the wave function of the system whose modulus
square is equal to the total density n. We refer to Eq. (4) as
the GGP equation. The solutions of the above equation were
investigated and discussed in detail in Ref. [22].

C. The liquid-droplet model

The liquid-droplet model relates finite-size energy correc-
tions with the surface energy of the droplet. In particular, it
predicts that, in the limit of large particle numbers, the energy
per particle in 1D can be written as

E

N
= EB + ES

1

N
+ · · ·, (5)

where EB is the bulk energy and the first correction due to a
finite atom number scales as 1/N with a proportionality coeffi-
cient given by the surface energy ES . Higher-order corrections
are neglected. The bulk energy is just the energy per particle
of a homogeneous system in the thermodynamic limit. It is
worth mentioning that the liquid-droplet model has proved
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successful in describing the properties of clusters of liquid
4He [30,31]. According to the model, the surface tension of
the droplet is obtained by dividing the surface energy ES by
the area of the surface. As in 1D, the surface is made of only
two points one can just divide the surface energy by two to
obtain the surface tension: τ = ES/2.

D. Sum rules

Apart from ground-state properties, it is also worth inves-
tigating the collective modes of a quantum droplet. However,
the accurate study of the dynamics of the system is hard in
the beyond mean-field regime. In particular, QMC methods
are not well suited to this aim because of the well-known sign
problem. Fortunately, one can use linear-response theory and
sum rules obeyed by the response function to obtain reliable
estimates of excitation energies from the expectation values of
appropriate operators in the many-body ground state, which
can be sampled using QMC techniques.

For a small perturbation proportional to a given operator F ,
the information about the linear response of the system is pro-
vided by the dynamical structure factor. At zero temperature,
the dynamical structure factor is defined as [32]

SF (ω) =
∑

n

|〈n|F |0〉|2δ(ωn0 − ω), (6)

where |n〉 represents the nth excited state, |0〉 represents the
ground state of the system, and ωn0 = (En − E0)/h̄ is the
excitation frequency between the two states. Many features
of the dynamic structure factor are captured by its moments
defined as

mp = h̄p
∫

SF (ω)ωpdω, (7)

where p is the order of the moment. Let us suppose that
the operator F can only excite a single mode, i.e., one has
〈n|F |0〉 = 0 for every state but one whose excitation energy
is En − E0 = h̄ωF . We also assume that the expectation value
in the ground state of the operator F is zero, i.e., 〈0|F |0〉 = 0.
Under these assumptions, by performing the integration over
frequencies for successive moments of the response function,
one can derive the relationship h̄ωF = mp+1

mp
. In general, the

operator F excites more than just one energy mode, and the
relationship does not hold. However, one can prove that mp+1

mp

always provides an upper bound for the energy of the excited
state, and one has

h̄ωF � mp+1

mp
. (8)

Although the moments depend on the dynamical structure
factor at all frequencies, they can actually be calculated
without any detailed knowledge of SF (ω). In particular, for
a Hermitian operator F one can derive the following lowest
moments [32]:

m0 = 1
2 〈0|F 2|0〉, (9)

and

m1 = 1
2 〈0|[F, [H, F ]]|0〉. (10)

The above expectation values can be computed using QMC
techniques to sample the ground state of the system.

The breathing mode. The breathing mode corresponds to
an oscillation of the size of the cloud and is excited by
the operator F = ∑

i x2
i + ∑

α x2
α where one sums over the

total number of particles in the two components. Experimen-
tally, this mode can be excited by rapidly switching on and
off a harmonic trapping potential. The breathing mode has
been extensively investigated in harmonically trapped single-
component 1D Bose gases [33,34], and it is known to depend
on many-body properties of the system, such as the equation
of state. For this choice of the operator F , the moments in
Eqs. (9) and (10) can be written as

m0 = 1
2 (〈F 2〉 − 〈F 〉2), (11)

and

m1 = h̄2

m
〈F 〉, (12)

where 〈· · ·〉 stands for average on the ground state. Therefore,
the frequency of the breathing mode can be estimated using
the ratio m1/m0 as

ωF = 2h̄

m

〈F 〉
〈F 2〉 − 〈F 〉2

. (13)

The above equation links the frequency of the breathing
mode to the size of the droplet and its mean-square fluctua-
tions on the ground state.

III. METHOD

To compute the ground state of the Hamiltonian in Eq. (1),
we use the diffusion Monte Carlo (DMC) method [26]. This
is a stochastic technique which samples the many-body evo-
lution in imaginary time and is able to yield exact results for
the ground state of strongly correlated bosons. To improve the
efficiency of the algorithm a guiding wave-function 
(X ) is
used, where X = {x1, x2, . . . , xN } indicates the positions in the
space of the N particles. We choose a guiding wave function
of the form


(X ) =
∏
i< j

f (xi − x j )
∏
α<β

f (xα − xβ )
∏
i,α

g(xi − xα ), (14)

where the function f (x) describes two-body correlations be-
tween particles of the same species, whereas g(x) describes
two-body correlations between particles of different species.
We simulate contact interactions by enforcing the Bethe-
Peierls boundary conditions. This allows us to map the orig-
inal problem with two-body contact interactions to a free-
particle problem with a constraint on the wave function at
vanishing interparticle distance. In particular, the many-body
wave function must have a discontinuity in the first derivative
at zero interparticle separation. The discontinuity is fixed by
the scattering length between the two particles according to
the equation,

∂

∂ (xi − x j )
�(X ) = − 1

ai, j
�(X )xi=x j , (15)

where ai, j is the scattering length between particles i
and j. The above boundary condition on the ground-state
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FIG. 1. Energy per particle in units of h̄2/(ma2) as a function
of the inverse particle number 1/N for increasing ratio r between
attraction and repulsion from the topmost to the lowermost. Solid
dots are the results of our DMC simulations, and solid lines are
linear fits to the DMC data in the limit of large N . Solid squares
at 1/N = 0 correspond to the bulk energy calculated in Ref. [14].
Dashed lines show, instead, the GGP predictions. The slope of the
linear fit, corresponding to the surface energy ES , is shown in the
inset together with the GGP result.

wave-function �(X ) can be enforced by choosing a guiding
wave function which satisfies the same condition. For the
guiding wave function in Eq. (14), the Bethe-Peierls boundary
conditions imply that the correlators f and g satisfy the
relations d

dx f (x)x=0 = − f (0)/a and d
dx g(x)x=0 = −g(0)/a12,

where a12 is the scattering length associated with the inter-
species coupling constant g12, i.e., a12 = − 2h̄2

mg12
. The long-

distance behavior of the functions f (x) and g(x) needs to
be chosen with care. In fact, although it does not affect the
final converged results of our calculations, we find that an
accurate optimization of the functions f (x) and g(x) is crucial
for the efficiency of the algorithm. Thus, we choose to model
the functions f (x) and g(x) with 1D B splines. The control
coefficients of the B splines are optimized by minimizing the
variational energy of the wave function. The minimization
is accomplished using the stochastic reconfiguration method
[26,35,36].

IV. RESULTS

A. Surface tension

The first quantities we discuss are the finite-size effects
exhibited by the energy per particle. In Fig. 1, we show the
energy per particle as a function of the inverse particle number
1/N for different ratios r = |g12|/g of the coupling constants.
In the limit of infinite particle number, the energy contribution
from the surface is negligible compared to the bulk. Moreover,
for large N , the bulk of the droplet becomes flat and can
be described as a uniform liquid at the equilibrium density
corresponding to the energy minimum of the uniform mixture.
We already performed a systematic study of the properties of
the uniform liquid state in Ref. [14], and, in particular, we

computed the bulk energy for several values of the ratio r.
These values are shown in Fig. 1.

At the finite particle number, the bulk energy is reduced
because of surface effects. In Fig. 1, we plot the energy per
particle obtained from our DMC simulations. For large N , the
liquid-droplet model predicts that the energy should depend
linearly on 1/N . In fact, at large particle numbers, the QMC
results are well aligned with the linear fits shown in Fig. 1.
At the ratio r = 0.6, the linear dependence is satisfied already
with very few particles. At larger ratios, closer to the weakly
interacting limit, finite-size effects increase. For example, at
a ratio r = 0.95, we carried out simulations with up to 500
particles, and we found that the linear behavior is reached for
N � 80.

In Fig. 1, the QMC results are compared with the GGP
predictions (dashed lines in Fig. 1). The validity of the GGP
equation is justified only in the limit in which |g12| is very
close to g. We find that at r = 0.95 results are in good
agreement, whereas, for lower ratios, the GGP equation un-
derestimates the energy of the system. For example, at r = 0.6
and for N ≈ 40, the droplet is around 40% less bound than
within the GGP theory.

The slope of the linear fit yields the surface energy ES . We
plot ES in the inset of Fig. 1 and compare it with the results
of GGP theory. We find that this latter overestimates the
surface energy compared with our DMC results, even though
good agreement is obtained for large ratios. In conclusion,
our results suggest that the GGP equation provides accurate
predictions for the surface tension in the weakly interacting
limit. Deviations become significant for ratios lower than
r ≈ 0.8.

B. Density profiles

In Fig. 2, we show some typical density profiles for ra-
tio r = 0.95 (top panel) and ratio r = 0.6 (bottom panel),
corresponding to different overall normalizations fixed by
the number of particles in the droplet. As one increases
the particle number, the density profile appears higher and
broader. In the limit of very large N , one expects to reach
a regime where the density near the center of the cloud is
flat and reaches the equilibrium value of the uniform system.
For the ratio r = 0.95, the saturation density is reached only
for very large particle numbers beyond the system size we
can reliably simulate. Furthermore, for this ratio, we compare
our results with the predictions of GGP theory (dashed lines
in the top panel of Fig. 2). We find that the GGP equation
predicts slightly lower densities for all particle numbers. The
difference between the GGP predictions and our QMC results
are just a few percent and could also be due to residual beyond
mean-field effects, present in homogeneous mixtures, which
are not described by the GGP energy functional in Eq. (2).

In the lower panel of Fig. 2, we show the density profiles
corresponding to r = 0.6. For this value of the ratio, the role
of particle correlations is expected to be more important,
and one could expect deviations from the GGP predictions.
Indeed, we observe striking differences between the density
profiles obtained using the two methods. Already, for six
particles, the central peak density is around 20% higher than
the GGP prediction. By increasing the atom number, the
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FIG. 2. Density profiles for different ratios r: r = 0.95 (top
panel) and r = 0.6 (bottom panel) for decreasing particle number
N from the topmost to the lowermost. Dashed lines correspond to
the profiles obtained from the GGP equation in the same conditions.
The dotted line is the equilibrium density computed for a uniform
mixture at r = 0.6 in Ref. [14].

central density also increases, and for N ≈ 15, it saturates to
a finite value. For larger N , the profile becomes flat at the
center of the cloud and, whereas the radius of the cloud keeps
increasing with N , the central density no longer depends on
the particle number. It is worth noting that the equilibrium
density can be determined by minimizing the energy of a
uniform system as was performed in Ref. [14]. This density
is shown as a dotted line in the bottom panel of Fig. 2, in
perfect agreement with the saturation density of the droplets.
The density profiles predicted by the GGP equation follow a
qualitatively similar trend but are quantitatively different. The
GGP density profiles saturate at a different density which is
around 20% higher. This is compatible with the results for
uniform systems [14].

C. Breathing mode

We provide, now, an estimate of the frequency of the
breathing mode for different particle numbers and ratios of

FIG. 3. Frequency of the breathing mode in units of h̄/(ma2) for
decreasing ratio r from the topmost to the lowermost as a function
of particle number N . Solid dots correspond to DMC results, and
dashed lines correspond to GGP predictions.

coupling strengths. We make use of Eq. (13), and we compute
the average size of the cloud and its mean-square fluctuations.
In the case of the GGP equation, we solve the time-dependent
equation starting from a configuration out of equilibrium, and
we determine the frequency of the oscillations in the cloud
size. To obtain the initial condition, we first propagate the
GGP equation in imaginary time to find the ground-state wave
function of the system. We, then, multiply the ground-state
wave function by a factor of e−iδx2/a2

, where x/a is the spacial
coordinate in units of the intraspecies scattering length, and
δ is a dimensionless parameter which controls the strength
of the perturbation. We make sure to choose δ sufficiently
small in order to excite just the breathing mode. Our results
are shown in Fig. 3. Overall, we find very good agreement
between DMC and GGP results. Surprisingly, the agreement
is very good for all values of the ratio r especially at large
particle numbers.

For a fixed value of the ratio between attraction and
repulsion, the GGP theory predicts that the frequency of
the breathing mode first increases by increasing the atom
number, reaches a maximum at a certain critical N and then
decreases approaching zero for very large particle numbers.
Correspondingly, the nature of the breathing mode changes
from a surface mode, driven by surface tension effects, to a
bulk density mode driven by the bulk compressibility. In the
limit of large N , the excitation energy decreases due to its
linear scaling with the inverse size of the droplet.

At the ratio r = 0.95 and small atom numbers, we find
small deviations compared to the GGP equation, which seems
to underestimate the frequency of the breathing mode. Such
deviations, however, disappear when the particle number in-
creases, and our results agree with GGP predictions within
statistical errors. The same occurs for lower ratios r = 0.8
and r = 0.6. This result is surprising because of the clear
differences with GGP theory which emerged at these values
of r in the surface tension ES (see Fig. 1) and in the density
profiles (see bottom panel of Fig. 2). A possible explanation
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is that the two deviations compensate and the frequency of the
breathing mode is well reproduced by GGP theory.

V. CONCLUSIONS

In conclusion, we have carried out a systematic QMC study
of the properties of quantum droplets in 1D mixtures and a
quantitative comparison with GGP theory for a number of
relevant physical quantities, such as the surface tension, the
density profiles, and the frequency of the breathing collective
mode. Overall, we find good agreement between our exact

results and the predictions of GGP theory. Deviations are
small, even when the ratio between coupling constants is
significantly below the value of r = 1 where the approximate
theory is expected to hold. Our results will also be useful
to guide future experiments on low-dimensional quantum
droplets.

ACKNOWLEDGMENT

We thank G. E. Astrakharchik for useful discussions. This
work was supported by the QUIC Grant of the Horizon 2020
FET Program and by Provincia Autonoma di Trento.

[1] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, Igor
Ferrier-Barbut, and T. Pfau, Observing the rosensweig instabil-
ity of a quantum ferrofluid, Nature (London) 530, 194 (2016).

[2] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of Quantum Droplets in a Strongly Dipolar
Bose Gas, Phys. Rev. Lett. 116, 215301 (2016).

[3] I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T.
Pfau, Liquid quantum droplets of ultracold magnetic atoms,
J. Phys. B: At. Mol. Opt. Phys. 49, 214004 (2016).

[4] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Self-bound droplets of a dilute magnetic quantum liquid,
Nature (London) 539, 259 (2016).

[5] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler,
L. Santos, and F. Ferlaino, Quantum-Fluctuation-Driven
Crossover From a Dilute Bose-Einstein Condensate to a Macro-
droplet in a Dipolar Quantum Fluid, Phys. Rev. X 6, 041039
(2016).

[6] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Obser-
vation of a Dipolar Quantum Gas With Metastable Supersolid
Properties, Phys. Rev. Lett. 122, 130405 (2019).

[7] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture
of bose-einstein condensates, Science 359, 301 (2018).

[8] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and
L. Tarruell, Bright Soliton to Quantum Droplet Transition in a
Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 120,
135301 (2018).

[9] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk,
F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M.
Fattori, Self-Bound Quantum Droplets of Atomic Mixtures in
Free Space, Phys. Rev. Lett. 120, 235301 (2018).

[10] G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M.
Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions of
Self-bound Quantum Droplets, Phys. Rev. Lett. 122, 090401
(2019).

[11] C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F.
Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observa-
tion of quantum droplets in a heteronuclear bosonic mixture,
Phys. Rev. Research 1, 033155 (2019).

[12] D. S. Petrov, Quantum Mechanical Stabilization of a Collapsing
Bose-Bose Mixture, Phys. Rev. Lett. 115, 155302 (2015).

[13] D. S. Petrov and G. E. Astrakharchik, Ultradilute Low-
Dimensional Liquids, Phys. Rev. Lett. 117, 100401 (2016).

[14] L. Parisi, G. E. Astrakharchik, and S. Giorgini, Liquid State
of One-Dimensional Bose Mixtures: A Quantum Monte Carlo
Study, Phys. Rev. Lett. 122, 105302 (2019).

[15] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, New York, 2003).

[16] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux, and
H.-C. Nägerl, Probing the Excitations of a Lieb-Liniger Gas
From Weak to Strong Coupling, Phys. Rev. Lett. 115, 085301
(2015).

[17] B. Rauer, P. Grišins, I. E. Mazets, T. Schweigler, W. Rohringer,
R. Geiger, T. Langen, and J. Schmiedmayer, Cooling of a One-
Dimensional Bose Gas, Phys. Rev. Lett. 116, 030402 (2016).

[18] G. E. Astrakharchik and S. Giorgini, Correlation functions of a
Lieb–Liniger Bose gas, J. Phys. B: At. Mol. Opt. Phys. 39, S1
(2006).

[19] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling,
I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch,
Tonks–Girardeau gas of ultracold atoms in an optical lattice,
Nature (London) 429, 277 (2004).

[20] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-
dimensional Tonks-Girardeau gas, Science 305, 1125 (2004).

[21] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
Pupillo, and H.-C. Nägerl, Realization of an excited, strongly
correlated quantum gas phase, Science 325, 1224 (2009).

[22] G. E. Astrakharchik and B. A. Malomed, Dynamics of one-
dimensional quantum droplets, Phys. Rev. A 98, 013631 (2018).

[23] A. Cappellaro, T. Macrì, and L. Salasnich, Collective modes
across the soliton-droplet crossover in binary Bose mixtures,
Phys. Rev. A 97, 053623 (2018).

[24] P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quan-
tum Bose-Bose droplets at a dimensional crossover, Phys. Rev.
A 98, 051603 (2018).

[25] Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner,
Three-dimensional droplets of swirling superfluids, Phys. Rev.
A 98, 013612 (2018).

[26] F. Becca and S. Sorella, Quantum Monte Carlo Approaches for
Correlated Systems (Cambridge University Press, Cambridge,
UK, 2017).
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