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In recent experiments with ultracold atoms, both two-dimensional (2D) Chern insulators and one-dimensional
topological charge pumps have been realized. Without interactions, both systems can be described by the same
Hamiltonian, when some variables are being reinterpreted. In this paper, we study the relation of both models
when Hubbard interactions are added, using the density-matrix renormalization-group algorithm. To this end,
we express the fermionic Hofstadter model in a hybrid-space representation, and define a family of interactions,
which connects 1D Hubbard charge pumps to 2D Hubbard Chern insulators. We study a three-band model at
particle density p = 2/3, where the topological quantization of the 1D charge pump changes from Chern number
C =2to C = —1 as the interaction strength increases. We find that the C = —1 phase is robust when varying
the interaction terms on narrow-width cylinders. However, this phase does not extend to the limit of the 2D
Hofstadter-Hubbard model, which remains in the C = 2 phase. We discuss the existence of both topological
phases for the largest cylinder circumferences that we can access numerically. We note the appearance of a
ferromagnetic ground state between the strongly interacting 1D and 2D models. For this ferromagnetic state,
one can understand the C = —1 phase from a band structure argument. Our method for measuring the Hall
conductivity could similarly be realized in experiments: We compute the current response to a weak, linear
potential, which is applied adiabatically. The Hall conductivity converges to integer-quantized values for large

system sizes, corresponding to the system’s Chern number.
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I. INTRODUCTION

In recent years, various systems with topological properties
have been realized in experiments with ultracold atomic gases
in optical lattices [1-3]. In lattices with two spatial dimen-
sions, both the Hofstadter model [4,5] and the Haldane model
[6,7] have been realized. The Hofstadter model has also been
implemented in synthetic dimensions [8—11], where the spin
degree of freedom is interpreted as sites on the rungs of a
ladder model.

As pointed out by Thouless [12], quantum Hall physics
can also be observed in a family of one-dimensional models.
Diagonalizing a two-dimensional (2D) quantum Hall model
along one spatial dimension, the resulting quasimomentum
can be interpreted as the pump parameter. The number of
charges transported in each adiabatic pump cycle is then
quantized by the Chern number. Such charge pumps have also
been realized in ultracold-atom experiments [13—15].

Studying the effects of particle interactions in all of these
experiments remains challenging: While on-site interactions
are typically present with ultracold atoms [16], the experi-
ments have been performed in the limit of either vanishing or
hard-core interactions. Accessing strong but finite interactions
and reaching the low-filling regime remains elusive due to
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heating [6,17], except for the few-body limit [18] or certain
1D systems [13,19].

In a previous work [20], we showed that Hubbard inter-
actions in a fermionic, one-dimensional charge pump can
change its topological properties: Without interactions, the
Chern number is C = 2, but strong repulsion changes itto C =
—1. Note that we change the sign convention for C relative to
Ref. [20]. This topological transition is related to a series of
two 1D quantum phase transitions, which occur for certain
values of the pump parameter. For these configurations, the
1D charge pump corresponds to the three-site ionic Hubbard
model [21-32]. The interaction-driven change of topological
properties in charge pumps with either fermions or bosons has
also been studied in related, earlier papers [33—-35].

The analytic one-to-one correspondence of charge pumps
and 2D quantum Hall models breaks down when interac-
tions are introduced. In this paper, we study numerically
whether 1D charge pumps and 2D quantum Hall models with
Hubbard interactions are adiabatically connected. In partic-
ular, we try to find a phase with Chern number C =—1 in
the Hubbard-Hofstadter model, which is adiabatically con-
nected to the C =—1 interacting charge pump described
in Ref. [20].

Our starting point is the Harper-Hofstadter model [36,37],
which is a paradigmatic model for studying the quantized Hall
conductivity in a lattice [38]. We study the three-band Hofs-
tadter model with two spinful fermions per every three lattice
sites, corresponding to parameters chosen previously [20].
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In order to connect 1D and 2D physics, we express the
model in a mixed real- and momentum-space representation,
called hybrid space [39,40]. In hybrid space, we can tune the
interactions in such a way that the 1D Hubbard charge pump
and the 2D Hubbard-Hofstadter model become the limiting
cases.

Numerically, we are restricted in the lattice sizes we can
study. Increasing the system’s width is much more expensive
than its length. In hybrid space, we can use a cylindrical
geometry without increasing the numerical cost [39,40]. We
use twisted boundary conditions along the width and average
over multiple twist angles to reduce finite-size effects.

We compute the Hall conductivity by measuring persis-
tent currents as a response to an adiabatically applied linear
potential. We observe a finite Hall conductivity in insulating
phases, which converges to integer values as we increase
system size. We identify topological phases with two nonzero
Chern numbers.

Several experiments with ultracold atoms and artificial
gauge fields have already measured the response to an exter-
nal, linear potential [8,9,41,42]. There are different theoretical
proposals to measure Chern numbers in such setups using
bosonic wave packets [43—45] or fermionic systems [46]
under the action of a constant force. A method for measuring
nonquantized Hall responses in interacting lattice models that
is similar to ours has recently been proposed [47].

We find that the C = —1 phase exists in large regions in
our space of interaction parameters. However, our results sug-
gest that the Hofstadter-Hubbard model remains adiabatically
connected to the band-insulating phase with a Chern number
C = 2, even for large interactions. Thus, the 1D and 2D limits
would be separated by a topological transition. Most results
are obtained in the narrow-cylinder limit of width W = 2. We
discuss the existence of the strongly interacting C = —1 phase
for wider systems, upto W = 6.

Finally, we discuss the appearance of a ferromagnetic
(FM) ground state for some interaction parameters inside the
C = —1 phase. The FM phase exists for all system sizes we
consider, but does not extend to the 2D or 1D limit. A FM
state has the Chern number C = —1 since the system is then
equivalent to free spinless fermions.

The paper is structured in the following way. In Sec. II, we
describe our model and explain how it relates to both the 2D
Hubbard-Hofstadter model and to interacting 1D superlattice
charge pumps. The following Sec. III briefly describes our
numerical methods and discusses the observables used in this
paper. Section IV discusses the Hall conductivity depending
on interaction parameters of the model. We reproduce the
topological transition of the 1D charge pump in Sec. IV A
and study the extended parameter space in the numerically
accessible regime of a small system width in Sec. IV B.
In Sec. IV C, we show that both topological phases persist
for wider systems. In Sec. V, we discuss the ferromagnetic
ground state, which exists for some interaction parameters.
We conclude with a summary in Sec. VI. Appendix A contains
data for the Hall response at additional interaction strengths.
In Appendix B, we discuss the numerical accuracy of our
data. We show the time-dependent Hall response induced by
a quenched external potential in Appendix C. Appendix D
contributes to the discussion of Sec. V and contains additional
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FIG. 1. Sketch of the Hofstadter-Hubbard model. (a) Real-space
representation on a cylindrical geometry, with a twist angle § im-
plemented via homogeneous, complex hopping rates along the y
direction. The magnetic field is implemented via position-dependent
complex phases, sketched here for flux o = 1/3. The interaction
is proportional to U and is purely on site. (b) Hybrid-space repre-
sentation, obtained via a Fourier transformation along the axis with
periodic boundary conditions (see also Ref. [48]). The flux o = 1/3
corresponds to a three-site periodic superlattice potential and its
amplitude is shown in light blue. The interaction is now delocalized
over each ring: We split the terms ﬂim = I'Znt,o +}?int,d according
to Eq. (3) into terms, which are diagonal (on site) in the hybrid-
space basis, I-?im,d, and the rest, which is off diagonal (ringwise) in
hybrid space, Hiy,. The interaction terms have strengths U, and
U,, respectively. The model sketched in (b) maps to (a) only when
U = U; = U,. Note that the number of sites along each dimension is
of course preserved when going from (a) — (b). A different number
of sites was chosen in (a) and (b) for visualization purposes.

data for the dependence of ground-state properties on the total
spin.

II. FERMI-HOFSTADTER-HUBBARD MODEL

The Hofstadter-Hubbard Hamiltonian for spinful fermions,
o € {{, 1}, onacylinder of length L and circumference W can
be written as,

L W

A_E:E:E: 2riax—is/W At A
H = [ (_tye / Cx,y,acx,y+l,a
g

x=1 y=1

—18] | sCritye + H.C) + Ulyy piiyy, J. (1)

The boundary conditions are implemented via ¢;41,0 =0
and &y wy1.0 = Cr.1.0- The on-site Hubbard repulsion is of
strength U. The model is sketched in Fig. 1(a). The hopping
term along the ring includes a complex phase: A particle
hopping around one plaquette gains a phase «, corresponding
to a magnetic flux piercing each plaquette. In this paper, we
only consider the case of « = 1/3, i.e., one flux quantum per
three lattice sites. We choose this value of the flux because 3

023315-2



TOPOLOGICAL PHASES IN THE ...

PHYSICAL REVIEW A 102, 023315 (2020)

is the smallest integer denominator for which the Hofstadter
model exhibits topologically nontrivial bands [38]. There is
also a flux § piercing the cylinder along its height, which we
interpret as an angle twisting the boundaries. Twist angles can
be used to define many-body topological invariants [49]. We
will average over § to reduce the effects of a finite width W.

For the rest of this paper, we study the phases at fixed
particle density p =2/3, i.e., two spin-1/2 fermions per
every three sites. For « = 1/3 and in the free case U = 0, this
corresponds to a band insulator with Chern number C = 2, as
the lowest band has C = 1 and is filled by both spin species.
We choose anisotropic tunneling rates f, = 1.5¢ such that
the parameters correspond to the charge pump considered
before [20].

A. Hybrid-space representation

By Fourier transforming Eq. (1) along the periodic y axis,
we find a mixed real- and momentum-space representation,
which we call hybrid space,

A =) "[-2t,cosm(ax + k/W) — /W )it i.q

x,k,o

- téi,k,aéx-&-l,k,a] + Hint. (2)

The hybrid-space model is sketched in Fig. 1(b). Not taking
Hi, into account, Eq. (2) can be understood as a set of
uncoupled 1D chains, which are labeled by quasimomentum
k. There is an additional cosinusoidal potential depending on
k, a superlattice.

In the case of a strictly 1D charge pump, W = 1, the
topology of the Hofstadter band structure manifests itself by
an integer-quantized amount of charges transported in each
adiabatic pump cycle § — § + 2 [12].

In hybrid space, the on-site Hubbard repulsion becomes
delocalized over each ring,

A

U
At A AT A
Hine = 3 E Cry 'cx,y(ci,y “Cry— 1D
x,y

U At A LA U R
= ow § : E :cx,k “Cxp X Crg Cxktg—p T § :”x,k
X k.pgq x.k

=: UgHin.qa + UpHing o, 3)

where we use spinor operators, & = (¢4, ¢;)” to simplify the
notation. In the last line, we split the interaction into two
parts: I-Zm,d contains contributions that are diagonal in the
hybrid-space indices x, k. All remaining, off-diagonal terms
are grouped in I-?im, 0» Which is delocalized over each ring. Note
that terms proportional to the total particle number Y 7,
only shift the chemical potential and can be neglected when
the particle number is fixed by the numerical method. Explic-
itly, the interaction terms take the following form,

N 1 A

Hina = W E AP — 1), 4)
x.k

o 1

int,o += ﬁ

<Z(1 — 8pOkg)el  Eup

x,k p.q

x e;q Crkrgp — (W — 1)ﬁx,k>. (3)

1D Hubbard
superlattice

FIG. 2. Sketch of the parameter space created by splitting the
interaction term according to Eq. (3). At U, = 0, the interaction is on
site in the hybrid-space representation, such that the system consists
of uncoupled Hubbard chains with a periodic potential. For the 1D
model, there is a critical interaction strength U, ;p, where the Chern
number changes from C = 2 to C = —1 [20]. Due to the prefactor in
Eq. (4), we obtain a factor of W for the critical value of U,;. When we
fix U = U, = U,, we recover the original 2D Hubbard interaction.
Note that both ﬁim,d and I-Zm,d —|—I§im,o are positive semidefinite,
however, I-?inw is not. Therefore, the interaction can be attractive for
U, > U,, which we do not consider in this paper.

The term ﬁim,d looks like the normal Hubbard interaction,
scaled by W 1. This term thus corresponds to the 1D inter-
action in a charge pump as U; = W Ujp.

The parametrization of Eq. (4) allows us to relate 1D
charge pumps with interactions (U, = 0, U; > 0) to the in-
teracting 2D Hofstadter model (U; = U, > 0), as sketched
in Fig. 2. In this figure, these limiting cases are represented
by the blue and orange lines. Note that while both Hpy =
Hine.q + Hin o and Hy, 4 are positive semidefinite, Hiy, is not.
Thus, for U, > Uy, the interactions can become attractive and
we do not consider this case in this paper.

As shown in Fig. 2, there is a topological phase transition
from Chern number C =2 to C = —1 for U, =0 and a
critical interaction strength U; = W U, 1p, corresponding to
uncoupled 1D superlattice chains. We studied this 1D phase
transition in the context of charge pumps in a previous paper
[20]. We expect weakly interacting systems with parameters
Ug, Uy KW - U 1p to be adiabatically connected to the free
model, and thus to have Chern number C = 2.

For the strongly interacting 1D charge pump with Chern
number C = —1, both bulk and spin gaps vanish for certain
values of the pump parameter [20]. This corresponds directly
to the gap closing in the ionic Hubbard model [22,25]. While
the system remains insulating, i.e., the charge gap remains
open, the topological quantization could, in principle, break
down as perturbations are added. Here, we want to find
out whether the C = —1 phase obtained in the 1D limit,
U; > W U, 1p, also exists with 2D interactions, 0 < U, < Uj.

III. METHODS AND OBSERVABLES
A. Methods

All numerical results presented in this paper are obtained
using the density-matrix renormalization-group (DMRG)

023315-3



L. STENZEL et al.

PHYSICAL REVIEW A 102, 023315 (2020)

algorithm [50,51]. We employ a single-site variant [52] of
this algorithm, as implemented in the SYTEN toolkit [53,54].
DMRG is a method for 1D systems, however, one can map
Eq. (2) onto a W - L sites-long 1D chain. Any lattice site,
labeled by x and k, is mapped onto a position i via i =W -
x + k in a matrix-product state (MPS). This mapping intro-
duces long-range correlations in the 1D description, generally
increasing the computational cost exponentially in W [55].

In DMRG, we enforce the conservation of particle number
U (1) and spin SU (2) symmetry. Furthermore, we use the k
labels introduced in Sec. IT A to fix the Z,, symmetry sector of
total quasimomentum along the y axis. For all parameters con-
sidered, the lowest-energy state is in the K := )", k(i x) =
0 (mod W) sector. We fix particle density to p := N/(WL) =
2/3 and total spin to be S = 0.

Large bond dimensions m of the MPS are required for con-
vergence, especially with off-diagonal interactions, U, > t:
We use msyp) =8, ..., 12x 103, which would correspond
to myay =2, ..., 10x 10*, when only enforcing the Abelian
spin S° symmetry. The ratio my)/msy) at a given MPS
bond depends on the occupation of higher spin multiplets,
due to their (25 4 1)-fold degeneracy. It varies with model
parameters and my 1)/msy2) 2, 10 is particularly large in the
region discussed in Sec. V.

Computing the error of a DMRG result can be more expen-
sive than the ground-state search itself. We use the two-site
variance of the Hamiltonian var,(H ) as a measure of DMRG
convergence [56]. Especially for 2D models, this approxi-
mation is much cheaper than computing the full variance.
However, var,(H ) is still too expensive for the largest systems
and bond dimensions used here and in those cases, we rely on
studying the observables as a function of bond dimension.

Studying short L = 12 systems of width W = 3 with bond
dimensions up to mgy 2y = 4000, we find a strong dependence
of var,(H) on system parameters. In many cases, ngy ) =
500 is sufficient to reach var,(H) < 107%2, but there are also
parameters for which mgy (o) = 4000 only yields vary(H) <
1032, Extrapolating the energy in var, (H ) [56], it seems that
for these models and parameters, the error in the energy is
on the same order as the two-site variance, Epyrg — Eexact =
O(var,(H)/1).

Since we use much higher bond dimensions for longer
systems, we are confident in the accuracy of our results for
narrow cylinders W = 2, 3. For the largest cylinders of width
W =5, 6, errors are certainly larger and in these systems,
we might not capture the position of the topological phase
transition accurately. However, we can still find phases with
different signs of xpan, consistent with data for narrow sys-
tems.

To access the quality of the numerical data, we compare
DMRG results for different initial states and different param-
eters. In particular, we apply a weak linear potential V, as
described below in Sec. III B, and verify the linear behavior
of Eg(V), see Appendix B.

In Sec. V, we also compute the energy of the ferromagnetic
state, S = N/2. Due to the Pauli principle, double occupation
is prohibited both in real and hybrid space. Therefore, both
(Hina) and (Hiyq + Hino) vanish and it is sufficient to
solve the noninteracting Hamiltonian, which does not require
DMRG.

B. Hall current

In the first part of this section, we describe our setup
for computing the Hall response and define the observables.
Then, we show how these measurements can be related to
topological quantization for simulations performed in finite-
size systems.

We use a method to compute the Hall conductivity, which
could very similarly be realized in experiments with cold
atoms. In order to probe the Hall current, we add a weak
(V <« t) linear potential to the Hamiltonian. The potential is
constant along the y (equivalently: k) direction and increases
linearly along the x direction,

)=V ) Xk (6)

x,k,o

This corresponds to a constant electric field along the x
direction. We can apply V exactly adiabatically by perform-
ing consecutive ground-state DMRG runs for different field
strengths V.

Eventually, we are only interested in the limit V — 0 in
order to stay in the regime of a linear Hall response [57]. In our
simulations, we consider five to ten different values of V in the
range 0 <V <0.1,...,1x 10~2¢ and fit a linear function to
the computed currents. A larger number of different potential
strengths improves our estimate of the fit’s accuracy. The
range of V for which a linear behavior is observed depends
on the size of the system and the many-body gaps.

The cylindrical geometry sketched in Fig. 1(a) allows for
persistent ground-state currents along the rings. Taking the
twist angle § and anisotropic tunneling rates into account, we
can express the intraring current as

A it
jy(x) = s Zehwzx i8/W A T Cx Yo +Hec.

_ Wt 3 sin(@r(ox + k/W) = 8/ W o  (7)
k,o

Note that in the hybrid-space representation, j’y is a sum of
operators acting on a single site. This is related to the fact
that the legs in the free hybrid-space Hamiltonian given in
Eq. (2) are not coupled. The Hall-current response to V 5 0 is
thus due to a polarization along the direction of the potential
gradient, which depends on k and x. This is sketched in Fig. 3:
In response to a weak potential V, which is switched on
instantaneously, particles hop along the x direction in such a
way that a Hall current (jy) as defined in Eq. (7) is created.
We choose a quench for Fig. 3 because there are no currents
along the x direction in the ground state of an open system.

We define the linear Hall response to a weak potential
gradient as

Xttt = 277 Ay (jy (X)) xebuk [V 0 » ®)

where we restrict the average to rings in the bulk of the
cylinder. In most cases, we find it sufficient to ignore three
or six rings on either end of the cylinder, in order to observe
bulk behavior.
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FIG. 3. Response to a potential gradient V in hybrid space. We
show the system at a short time t¢ = 0.2 after switching on a
potential gradient of strength V = 0.01¢#: We use a time-dependent
simulation for this illustration as there are no currents along the x
direction in the ground state on a cylinder. Data are shown for the
bulk of a noninteracting system of size W =9, L = 60, with twist
angle 6 = 0.2x. The size of an arrow indicates the amplitude of the
particle current in the x direction, the size of the circles encodes
the occupation number (i, ;) on a lattice site. Colors indicate the
particle number difference compared to before the quench, An =
(n(t)) — (71(0)). Note that in the free model, the hybrid-space legs
are uncoupled and the current (jy (x, k)) appears as a quasimomentum
k-dependent polarization along the x direction.

Quantized Hall response

The Hall response defined in Eq. (8) can be computed
in any interacting, finite-size system, but does not take in-
teger values, which one would like to see for topologically
quantized systems. To define the Chern number for a finite,
interacting model, one usually employs twisted boundaries
for both spatial dimensions to define the Berry curvature on
the parameter space of twist angles [49]. This approach is
commonly used with numerical methods to compute exactly
integer-quantized Chern numbers from a finite number of
finite-size ground states [58]. Previously, we have also used
this method in the limit of 1D systems [20].

To recover the integer quantization of the Hall response
Xuall, We need to average over the twist angle §

(xHan)s =C € Z. 9

We show the dependence of the Hall response xpan on the
twist angle & for different interaction strengths in Fig. 4.
The amplitude of xy,; depends strongly on § for the narrow
width W = 3 considered here. Computing the average over
8, we recover integer values for (xman)s, up to a precision
of 5x1073. We found a discrepancy of the same order when
studying finite, open chains of similar length L [20].

Compared to the method by Fukui ez al. [58] to numerically
integrate the Berry curvature, our § average does not give
integer values by design. Instead, we may converge to a in-
teger as the number of samples and the system size increases.
We expect this to happen if and only if the system is in a
topologically nontrivial, insulating phase.

8_ T T ]
U;=U,=0
—_— U, =10t, U, =10t
4l U;=40t, U,=0t
B 2_—— <XHall>6 ________
=
I e
g ] T —— . ,....r'_"_"_- _______________ —
-3k i
-5 4
- 1 1 1
0 /4 /2 3m/4 ™
1)

FIG. 4. Dependence of the Hall susceptibility on the twist angle
8. Data are shown for a narrow cylinder of W = 3 and L = 24. xp,y is
extracted from a linear fit as the potential V is applied adiabatically.
The Hall response yp,; depends strongly on the twist angle § and
interaction parameters. Only the § average is integer quantized: The
dashed lines indicate the corresponding averages and assume integer
values up to finite-size effects, which are on the order of 1073.
We observe that for each parameter combination of U, and U,, the
response xu, has the same sign for all values of §.

IV. HALL CONDUCTIVITY INTHE S = 0
GROUND STATE AT p = 2/3

In this section, we study the adiabatic Hall response xpay to
a weak gradient Eq. (6) for different parameters of the model
Eq. (2). We restrict the DMRG ground-state search to the spin-
singlet sector, S = 0.

This section is structured as follows. In Sec. IV A, we re-
produce the 1D topological phase transition [20]. Specifically,
we run simulations for width W > 1, but fix the off-diagonal
interaction strength to U, = 0. In Sec. IV B, we extend the
parameter space to U, < Uy, but restrict ourselves to width
W = 2. Finally, in Sec. IVC, we present data for wider
cylinders and U, # 0, and discuss how critical interaction
strengths scale with the width.

A. Quasi-1D limit U, = 0

For U, = 0, Eq. (2) can be interpreted as a series of W
uncoupled 1D superlattices with different superlattice phases
8. In this section, we verify that computing . reproduces
the topological transition that we discussed in a previous paper
[20]. Unlike for chains, we do not keep particle numbers on
each leg fixed individually, which could in principle yield a
different behavior.

In Fig. 5, the Hall conductivity for a cylinder of width
W = 2 is shown for various interaction strengths U, and twist
angles §. We find that the Hall conductivity depends both on
the twist angle § and the interaction strength U,. The average
(xman)s shown in gray assumes the quantized values C = 2
(C = —1) for weak (strong) interactions. We cannot resolve
the topological transition accurately due to the short length of
the simulated systems.

For most values of §, the Hall response crosses
xua(Ug) = 0 continuously at the topological transition. Even
though the susceptibility is not quantized in a single,
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- <XHall>6 7

XHall

FIG. 5. Hall response for an adiabatically applied potential
V for W =2. Data are shown without off-diagonal interac-
tion terms, i.e., U, =0. Therefore, we expect to observe the
topological transition known from 1D systems at U; =~ W x 8.
The thin colored lines represent data for different twist angles
8 €{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1} x w. The dashed,
black line is the average over these § values. Close to the 1D
quantum phase transition for § = 0 at U, ~ 16¢, the conductivity
diverges, such that an extrapolation in L is necessary, see Fig. 6.
The xyay axis is logarithmic for |xy.i| > 1 in order to emphasize
the values between xy.; = C € {—1, 0, 2} and the behavior close to
the transition.

finite-size system, we can observe the change of sign and
amplitude of yy,; associated with the topological transition
from a single twist angle §. The exception are values close to
6 = 0, for which xy,; diverges. We discuss this in the next
section.

1. Divergence at the phase transition

Without twist angle, § =0, and for U, =0, the k =0
leg corresponds to the AB; ionic Hubbard model [21,23,32].
This 1D model exhibits two phase transitions as a function
of the interaction strength: from a band insulator (BI), to a
spontaneously dimerized insulator (SDI), to a correlated Mott
insulator (MI) [22]. For the parameters chosen in this paper,
we cannot resolve both transitions because the critical values
of the interaction strength U, are very close to each other and
much longer systems would be required [20].

In the intermediate SDI phase, different dimer orientations
create a twofold ground-state degeneracy [22]. For the ionic
Hubbard model, this causes a diverging electric susceptibility
[25,59], due to the different center-of-mass (COM) positions
of both dimer configurations. In the hybrid-space represen-
tation, the different COM positions along the x direction for
fixed quasimomentum k = 0 correspond to different currents
(Jy), see Eq. (7).

In Fig. 6, Hall currents close to the topological transition
are shown for different system lengths. To reduce the numeri-
cal cost, results are computed for W = 2. However, since the
divergence of (fy) is only due to the k = 0 leg, increasing W
should not make a qualitative difference when the legs are
uncoupled at U, = 0.

We find that for longer cylinders, the interaction strength
U, at which xy,; = 0 approaches the critical value W -

54
N 42
~
5 e
IS -30
-18
12 14 16 18 20
U/t

FIG. 6. Finite-length dependence of the Hall current close to the
topological phase transition. Data are shown for W =2 at U, =0
and § = 0 for L € {18, 24, 30, 36, 42, 48, 54, 60}. Unlike for other
plots, we do not perform a linear fit of xy,; because the response
can be nonlinear close to the transition. Here, we compute the Hall
current as Aj, := j,(V) — j,(0), where j, = (j'y) is computed for
ground states and V = 2.8 x 1073. For L — oo, the Hall current
diverges and changes its sign at the phase transition U; ~ 16¢, where
the 1D superlattice model exhibits a spontaneously dimerized phase.
For other twist angles §, the response xu,; does not diverge, but
crosses through zero continuously, as shown in Fig. 5.

U:1p ~ 16t from below. The diverging Hall response indi-
cates a discontinuity in (j,) for L — oo.

B. Thin cylinder limit

In order to study a broad range of interaction strengths
Uy, U,, we choose a width of W = 2, which is the easiest to
study numerically. In the real-space representation, the case
of W =2 seems to be special: If there are only two legs, a
particle cannot move around the cylinder, thus all complex
tunneling rates vanish and there is no flux, cf. [60],

Ay—y = [(—tycos2max — 8/2)EL , - &xy41

X,y
—1&] &1y +He) +Hpl.  (10)

However, we argue that this is rather due to the chosen basis:
in the hybrid-space representation in Eq. (2), there are no
complex phases or tunneling along the y direction anyway. We
discuss the effect of a larger width in the following Sec. IV C.

Figure 7 shows the Hall conductivity for various interaction
strengths U, and U,,. We find that the C = —1 phase extends to
the region U, > O for strong interactions U, > 16¢, depicted
by the blue region. As we further increase Uy, the C = —1
region becomes larger, such that it approaches the Hubbard-
Hofstadter limit on the diagonal, at U; = U,,.

The data in Fig. 7 are averaged over ten values of the twist
angle 6. This is not necessarily sufficient to verify integer
quantization, as one can see by the slight variations in color.
However, as the quantization is topological, it suffices to
verify integer values for single combinations of interaction
strengths U, and U,, as shown in Fig. 4.

The gray line in Fig. 7 shows our estimate of the
phase boundary between C = —1 and C = 2 phases. Up to
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FIG. 7. Topological phase diagram as a function of interaction
strengths for W = 2. The horizontal cut at U, = 0, correspond-
ing to the 1D model, is shown in Fig. 5. We find that the C =
—1 phase extends to finite values of the ringwise interactions U,,.
For large U,, the topological transition approaches the diagonal
U, = U,. However, the Hofstadter-Hubbard model (U; = U,) re-
mains in the C =2 phase, which is adiabatically connected to
the band insulator, for all interaction strengths considered. A cut
of this plot at U; = 40r is shown in Fig. 11. The gray line in-
dicates the topological phase transition, it is estimated from the
shown data set. Data are shown for L = 30, W = 2 and averaged
over § € {0,0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8} x w. We have
computed xyay for the parameters indicated by gray dots, in between
those points, we use an interpolation for visualization purposes.

U = U, = U, = 60t, the Hofstadter-Hubbard model seems to
remain in the C = 2 phase, which is adiabatically connected to
the free model. This result indicates that there is a topological
phase transition between interacting 1D charge pumps and the
interacting 2D Hofstadter-Hubbard model.

C. Transition in wider cylinders

As stated in Sec. IV B, the case of W = 2 seems to be
different from wider cylinders. While we expect the C = —1
phase to exist in the quasi-1D limit (U, = 0) for any system
size, the required interaction strength Uy is proportional to the
width W due to the prefactor in Eq. (4). Thus, the C = —1
phase might not exist in the 2D thermodynamic limit.

In Fig. 8, we show the boundary of the C = —1 phase for
U, < U, at widths W =2, 3,4,5,6. The data are obtained
from a single value of § = & such that we can measure the
sign of the response, but xm,y () is not quantized, cf. Fig. 5.

We observe that the shape of the phase boundary changes
with width: For W > 4, there exist regions of C = —1 at
smaller U, than what we would expect from scalingup W = 2
data, i.e., Uy (U, > 0) < W U, 1p.

The data in Fig. 8 might indicate that parts of the
phase boundary do not change with W. Close to U; =
25¢t, U, = 15t¢, there might be a point where the phase bound-
aries for W = 2, 3, 4 coincide. However, we could not obtain
reliable data for W = 5, 6 to confirm this observation. If any
part of the phase boundary is independent of the width, the
C = —1 phase will also exist in the 2D thermodynamic limit
for finite U, and U,,.

30
Ug/t

FIG. 8. Topological transition for different widths. The colored
regions indicate the C = —1 phase, the lines are guides to the eye.
Parameters in the gray region, U, > U, have not been considered
for this plot. For U, = 0 the critical interaction strength U, . scales
proportional to W, for finite U, the dependence on width decreases.
Data were obtained for length L = 30. For W = 2, we use data from
Fig. 7, averaging 10 twist angles §, results for wider cylinders were
computed only for § = 7.

V. FERROMAGNETIC GROUND STATE

In the previous Sec. IV, we have restricted the DMRG
algorithm to the S = 0 spin-singlet symmetry sector. The
singlet is the lowest-energy state, both for the 1D superlattices
[20] and for the 2D Hofstadter-Hubbard model. However, for
some parameters in the C = —1 phase, we find spin sectors
with S > 0 to be the lowest in energy. In particular, the true
ground state can be in the ferromagnetic (FM) sector with
S = N/2. The dependence of energy on total spin S is further
discussed in Appendix D.

A. Width W =2

In Fig. 9, we show the energy difference between the
ground-state energy in the ferromagnetic sector Ery and the
lowest-energy spin-singlet state Eg—y. Depicted by the blue
region, there exists a FM region for strong interactions Uy 2>
40¢ and finite, but smaller interaction strength 0 < U, < Uj.
Deep in the red, spin-singlet (blue, FM) region, the energy
increases (decreases) monotonically as a function of total spin
S. At the boundary, energy sectors with 0 < § < N/2 can be
energetically favorable. The precise position of Epy = Es—g
also depends on the twist angle §.

In Fig. 9, we also show the gray line depicting the topo-
logical phase boundary from Fig. 7. The region with the FM
ground state lies entirely inside the C = —1 phase.

For a FM state, we would indeed expect a Chern number
C = —1: Double occupation is prohibited by Pauli’s prin-
ciple, both in real space and hybrid space. Therefore, both
(Hin.q) and (Hiy) = (Hing.o + Hine.q) vanish, and the spatial
component of the wave function equals that of free, spinless
fermions. A single species of fermions at particle density
p = 2/3 would occupy the lowest two bands of the Hofstadter
model, such that the total Chern number would be the sum of
the lowest two bands, C = 1 — 2 = —1. The numerical results
shown in Appendix D do not exhibit any dependence of the

023315-7



L. STENZEL et al.

PHYSICAL REVIEW A 102, 023315 (2020)

60
10!
45 10°
=
-10t
w0
30 =
S .
-0 \E
5§
15
- .10
0 B 100

Ua/t

FIG. 9. Energy difference between the lowest-energy ferromag-
netic state and the ground state in the spin-singlet sector. The spin
singlet is the true ground state both for the 1D superlattice model and
the 2D Hofstadter model. Data correspond to the systems shown in
Fig. 7, the gray line indicates the topological transition that we show
in that plot. The gap is averaged over twist angles § and computed
for L =30 and W = 2 for the interaction parameters indicated by
the gray dots. The shading is interpolated for visualization purposes.

Hall response ypap on total spin S, when the ground state is in
the FM region.

B. Existence of the FM ground state for wider cylinders

In Fig. 10, we show how the extent of the FM ground
state changes for wider cylinders. The boundary does not
seem to change significantly as the system gets wider. Some
fluctuations have to be expected, because the boundary also
depends on the twist angle é and going to larger W effectively
changes §.

60 T T T
—— W=2
- w=3
451 —4— W=4
—— W=5
+ W=6
30l
be30
15+
0 1 1 1
0 15 30 45 60

Uq/t

FIG. 10. Region with a ferromagnetic ground state for different
widths. The shaded region indicates where the ferromagnetic state is
lower in energy than the spin singlet, i.e., the blue area in Fig. 9. The
lines are only guides to the eye, error bars indicate the step size used
for the interaction strength U,. Data are shown for L = 30, § = 7,
except for W = 2, which is averaged over 10 values of § as in Fig. 9.
The boundaries do not seem to change strongly when going to wider
systems. We expect the dependence on W to be smaller, when an
average over the twist angle § is also taken into account.

This result seems to indicate that the FM phase also exists
for large systems at finite U; and U,,. If the appearance of the
FM phase is related to the fact that we observe C = —1 in the
spin-singlet state, this would suggest that the C = —1 phase
also exists for larger systems at finite U; when U, > 0.

We note that DMRG tends to overestimate the extent of the
ferromagnetic ground state in the U,, U, diagram, especially
for wide cylinders: The energies Es—( are an upper bound to
the true value, while we compute Epy numerically exactly.

VI. SUMMARY

We studied the fermionic Hofstadter model numerically on
a cylinder, in a hybrid-space representation. We considered
tuneable interactions such that on-site repulsion in hybrid
space (1D superlattice limit) and on-site repulsion in real
space (2D Hubbard-Hofstadter limit) are the limiting cases.
This parametrization allows us to connect interacting 1D
charge pumps to interacting 2D Chern insulators.

For weak interactions, the 1D and 2D models are adiabat-
ically connected to the same free model, thus, they exhibit
the same topological properties. The 1D model is known
to undergo quantum phase transitions for strong interactions
[21-32], changing its topological properties [20,35].

In the quasi-1D case, where the hybrid-space legs are
uncoupled, we reproduced the interaction-driven topological
transition from a C =2 topological insulator to one with
Chern number C = —1. Depending on system size, averaging
the Hall currents over twisted boundaries may be necessary to
show topological quantization.

The interacting C = —1 insulator is robust under changes
of the interaction strength. In our parametrization, it almost
reaches the 2D Hubbard-Hofstadter limit. We verified the
existence of the interacting C = —1 phase for numerically
accessible cylinder widths W € {2, 3,4, 5, 6}, and found that
it extends to larger parameter regions than we would expect
from scaling up data for W = 2.

We computed the Hall response directly by applying a
weak potential gradient adiabatically. Similar setups have
already been realized in experiments with ultracold atoms
[8,9,41]. We showed that we can measure an integer-quantized
Hall response even for strongly interacting systems. Our
approach relies on periodic boundaries along the width of
the system, which may be realizable in synthetic dimensional
lattices [61]. However, weak quenches in open systems should
yield similar results.

We also observed a region between 1D and 2D Hubbard
interaction, where a ferromagnetic (FM) state is lower in
energy than the spin-singlet sector. This region lies entirely
inside the C = —1 phase. We showed that the FM phase
exists for all widths considered. The phase boundary does
not seem to depend strongly on the width W, indicating that
the FM phase is robust for larger systems. A FM ground
state necessarily has Chern number C = —1, due to the band
structure of the Hofstadter model. This may indicate that the
C = —1 phase in the spin-singlet symmetry sector is related
to the FM ground state. Putting this observation onto firmer
grounds is left for future research.

All numerical results were obtained for a model with
anisotropic tunneling rates, #, = 1.5¢. Additional data (not
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FIG. 11. Hall response for a cut through Fig. 7 at U; = 40¢.
Thin, colored lines show the fitted value of Xy, the correspond-
ing shaded regions indicate the uncertainty as measured by the
cost of the fit: Higher cost corresponds to less linear behavior of
(fy)(V), due to numerical errors and finite-size effects. Errors are
larger than in Fig. 5, because the terms of ﬁim,o greatly increase
the numerical complexity. The average over all § values is shown
as dashed, black line. It takes the value xp,; = —1 up to U, =
30¢ and xyuy = 2 for U, 2 37¢. Data are shown for W =2, L =
30, 6 €{0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6, 1.8} x w. Greater nu-
merical precision and more samples would be required to show
integer quantization. The g, axis is logarithmic for | xg.| > 1, in
order to suppress the outliers for § = 0, see Sec. IV A 1, and to focus
on the topological transition.

shown here) for the isotropic case of t, = ¢ show qualitatively
similar results: Both the C = —1 phase and ferromagnetism
exist in the W = 2 limit. The role of anisotropic tunneling
rates remains an interesting question, see also other recent
studies of the Hofstadter model [62-64].

The family of models studied in this paper is clearly
motivated from theoretical considerations. However, tuneable
on-site and legwise interactions can be realized in synthetic-
dimensional lattices [65]. While our results show that two-leg
ladders suffice to observe a topological transitions, further
research on more readily realizable models is necessary.
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APPENDIX A: ADDITIONAL PLOTS OF HALL RESPONSE

In this section, we show plots for the Hall conductivity
Xuall, complementary to Fig. 5 and Fig. 7 in the main text.
In Fig. 11, we show a cut through Fig. 7 for finite U, > 0 and
fixed U; = 40r. We observe the topological phase transition
from C = —1 to C =2 close to U, = 36¢. The sign of the
response xpan does not depend on the twist angle 8, except
close to the transition, where a finite-size extrapolation would

T 3 ™
— Xuan(9) 3 I

- <XHall>6 H

XHall

S1F .

E 1 E
0 10 20 30 40
U/t

FIG. 12. Hall conductivity across the quasi-1D phase transi-
tion, when U, =0, for W = 3, L = 24. The thin colored lines
are data for different twist angles § € {0,0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8, 0.9, 1} x w. The dashed, black line is the average over
these values of §. Close to the 1D quantum phase transition for § = 0
at U; =~ 8t W, the conductivity diverges such that an extrapolation in
L is necessary, see Fig. 6. The yp,y axis is logarithmic for | xga| > 1,
in order to suppress outliers for § = 0, see Sec. IV A 1, and to focus
on the topological transition.

be required, cf. Sec. IV A 1. The errors of the fits are larger
than in Fig. 5 because the increased number of terms in I—?im,o
makes the problem numerically harder.

We show a plot for the Hall response in the quasi-1D case,
when U, = 0, in Fig. 12. This plot corresponds to Fig. 5, but
for width W = 3, which is commensurate with the magnetic
unit cell at « = 1/3. As expected, we observe the transition
from C =2 to C = —1 at U; ~ 8Wt. We cannot resolve the
behavior of yp,y at the phase transition for § ~ 0. For other
values of §, the error of g, is small and the curves are
smooth, even at the point where ypa; changes sign. In the
quasi-1D case, the Hall response for systems of different
widths can be related via

xuan W, 8, 2U4, U, = 0)
= [xgat(W, 8, Uy, U, = 0)

We verified this relation numerically with simulations for
width W = 6.

APPENDIX B: ENERGY-BASED FILTERING

As described in Sec. III A, estimating the error of DMRG
results is generally difficult, especially for observables other
than the energy. We are primarily concerned with errors of
the Hall current (fy): We compute the current for five to ten
values of the linear potential 0 <V < 10~2¢. The difference
of measured currents (fy(V + Ay)) — (fy(V)) is thus on the
order of 1073¢, such that slight convergence issues can dras-
tically affect the quality of the results. This section describes
our method to control the convergence of DMRG simulations.

When studying numerically challenging system sizes, we
use a method to filter DMRG results, which were obtained
for different strengths of the linear potential V. Since V « ¢
is small and V is positive semidefinite, we assume a linear
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v/t %1073

FIG. 13. Filtering DMRG results by comparing variational en-
ergies. The data are shown for L =12, W =6, U; = 18¢, U, = 0.
Markers represent variational DMRG results for different values of
twist angle é. The lines are a linear fit to the lower envelope of
the DMRG data. Markers with gray outline lie above the fit by
some threshold &g, and are thus discarded. In this plot, we choose
8z ~ 107%, such that only extreme outliers can be seen with the bare
eye.

response in energy, Eq(V) = E4(0) + ¢V, for some non-
negative number c. DMRG is a variational method and there-
fore, we can estimate the true ground-state energy Eq(V ) by
fitting a lower, linear envelope to the numerical data.

In Fig. 13, we show such fits for different twist angles §.
We then ignore data from DMRG states, which have energies
above the fit, by some threshold. The plot only illustrates the
method rather than showing its result because the threshold is
too small to see all discarded states.

The data for Fig. 13 are obtained by reusing previous MPS:
To compute a state for V + Ay, we use the truncated MPS for
a potential of strength V' as the initial state. However, multiple
runs with different random states for V = 0 and different step
sizes Ay have been used.

APPENDIX C: QUENCH DYNAMICS

In Sec. IV, we computed the Hall response yp,; adiabat-
ically, meaning that we performed DMRG sweeps for each
value of the potential strength V. Numerically, this is a rather
cheap approach, requiring data for only a few values of V to
obtain quantitative results.

In an experiment, it might be easier to prepare the ground
state for V = 0 and to observe its evolution upon quenching
a weak potential 0 £V « ¢. In Fig. 14, we show that the
change of the Chern number can also be measured in such
quench experiments. While the system size shown in Fig. 14
is too small to observe quantization, both the sign and the am-
plitude of xpan change as the interaction strength crosses the
critical value U, ~ 24¢. We show data for a single twist angle
8, since averaging over twist angles might not be possible in
experiments, either.

In order to probe the regime of linear response, we switch
on a weak potential > V > 0, such that the state remains
close to the ground state. Therefore, the entanglement entropy
does not increase strongly, and rather long times 7 > 10 can
be reached at small bond dimensions.
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FIG. 14. Time-dependent response of the Hall current (jy) after
quenching a linear potential from V = 0 to V = 0.02¢. The data are
shown for L =18, W = 3, § = 0, U, = 0 for different interaction
strengths U,. We average the current over time 7 to suppress oscilla-
tions. The gray, horizontal lines indicate values for C € {—1, 0, 2}.
For a finite system size, we would have to average over several
twist angles § in order to observe quantization and the topological
transition at U, =~ 24t. However, there is a change of the sign
and amplitude of (fy) as we cross this transition. We restrict the
simulation time to 7¢ < 10 for small and large U,, because there
was no ambiguity in the sign of (]A‘y).

The data in Fig. 14 is obtained using a single-site variant of
the TDVP algorithm [66,67]. We use a step size of At = 0.1
and fix the bond dimensions at mgy 2y = 3000. We verify the
results up to v = 10 by comparing with other simulations:
There is good agreement with the two-site TDVP method and

T T T
- —_— U, =20t 2
U, = 40t
= 0 == XHall
= — &,
&) 10 =<
~ 3
I =
- =
\bg -2 -a-ﬁ-—-—--—-“-—-—-—-—#r—-—-—-t—-r-v——-—‘—u -1~
-3
"
-4} 1-3
1 1 1
0 5 10 15 20

S

FIG. 15. Ground-state energy and Hall response in differ-
ent symmetry sectors of the total spin S. Data are displayed
for L=30, W =2 and U, =40t and are averaged over § €
{0,0.2,0.4,0.6,0.8,1,1.2,1.4, 1.6, 1.8} x . We show data for dif-
ferent values for Uy: For U, = 20¢, we are in the C = —1 phase. In
this case, the Hall response agrees with C = —1 for all values of §
and the FM state (S = 20) is slightly lower in energy than the spin
singlet. For U, = 40¢, we find (xua)s = C = 2 in the spin-singlet
ground state. Increasing S leads to an increase of the ground-state
energy but the Hall response remains consistent withC = 2upto S =
10. For larger S, we recover the C = —1 phase since all interaction
terms vanish for a FM state. For the ground-state energy, the shaded
region is the standard deviation with respect to §.
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with the result of simulations performed with A;¢ = 0.05 as
well as mgy o) = 5000.

APPENDIX D: HALL RESPONSE IN DIFFERENT
SPIN S SYMMETRY SECTORS

All DMRG simulations in the main text have been per-
formed in the spin-singlet symmetry sector. The comparison
with the FM ground state in Sec. V does not require DMRG
because both interaction terms I-?im,(, and ﬁim,d vanish for
any FM state. Therefore, the FM ground state always has
Chern number C = (xpan)s = —1, regardless of the interac-
tion strength.

To elucidate the dependence of the ground-state energy
and Hall response on total spin S, we show numerical data
for two interaction strengths in Fig. 15. For the parameters
U; =40t and U, = 20¢, the spin singlet yields C = —1 and
Erv < Es—g such that we are in the FM phase as discussed

in Sec. V. Computing ground states for all other possible spin
multiplets, we find that the state for S = 18 is actually the true
ground state for this interaction strength. However, the states
are nearly degenerate with Epyy — Es—_;g3 being on the order
of 10~%. For stronger interaction Uy, the FM state is the true
ground state, but the sectors remain nearly degenerate. Our
results for the Hall response (xuan)s, Which we average over
ten values for &, do not depend on spin. They agree with the
Chern number C = —1 for all values of S.

For U; = U, = 40t, the energy increases monotonically in
S and the spin singlet is the true ground state. Since the singlet
state is in the C = 2 phase and the FM state has C = —1,
the Chern number can, in general, not be independent of S.
Our data suggest that the Hall response (xyai)s deviates from
C=—-1and C =2 for N/8 < S < 3N/8. The breakdown
of quantization is plausible because in the free model, the
topological invariant is only well defined when either S = 0
orS = N/2.
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