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Thermodynamics and static response of anomalous one-dimensional fermions
via a quantum Monte Carlo approach in the worldline representation
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A system of three-species fermions in one spatial dimension (1D) with a contact three-body interaction is
known to display a scale anomaly. This anomaly is identical to that of a two-dimensional (2D) system of two-
species fermions. The exact relation between those two systems, however, is limited to the two-particle sector
of the 2D case and the three-particle sector of the 1D case. Here, we implement a nonperturbative Monte Carlo
approach, based on the worldline representation, to calculate the thermodynamics and static response of three-
species fermions in 1D, thus tackling the many-body sector of the problem. We determine the energy, density, and
pressure equations of state and the compressibility and magnetic susceptibility for a wide range of temperatures
and coupling strengths. We compare our results with the third-order virial expansion and interpret the classical-
quantum crossover as the onset of trimer degrees of freedom.
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I. INTRODUCTION

Recently, a series of papers [1–11] showed that fine-tuned
one-dimensional (1D) systems (bosonic or fermionic) with
only three-body interactions display anomalous scale invari-
ance, and the researchers began studying many of the ensuing
properties. These systems are classically invariant under scale
transformations as they possess no intrinsic scale, but their
quantum-mechanical version requires the introduction of a
new scale, namely a regulator. The appearance of such a scale,
often called dimensional transmutation, is well understood
and has been described by many authors and in a variety of
situations (see, e.g., Refs. [12–17]). In particular, the anomaly
manifests itself as a correction to thermodynamic relations
[18] and breathing modes [14,19,20] and also appears in the
right-hand side of sum rules [19], where it is naturally related
to the Tan contact [21–23].

In nonrelativistic physics, the paradigmatic example of
a system with anomalous scale invariance is the two-
dimensional (2D) Fermi gas with attractive two-body inter-
actions. In recent years, that system has been vigorously
studied both experimentally with ultracold atoms [24–34] and
theoretically [14,19,20,35–38] (see Ref. [39] for a review).
In contrast, studies of the 1D counterpart that we focus
on here are still in their infancy. Furthermore, as shown
in Ref. [5], these are the only two homogeneous systems
with pure contact interactions (i.e., not involving derivatives)
featuring anomalous scale invariance. Therefore, the question
of whether the 1D system can be experimentally realized and
studied is therefore of great interest, as is the issue of to what
extent its behavior is in any way related to its 2D cousin. The
two systems, despite their different spatial dimensionality, are
actually related in a well-defined way: Ref. [5] found that
the 1D three-body dynamics with a three-body interaction
is identical to that of two particles in 2D with a two-body

interaction (once the center-of-mass motion is factored out
in both cases). From that property, the same work derived a
cross-dimensional connection between virial coefficients. To
that extent, the high-temperature behavior of these 1D and 2D
systems is therefore equivalent.

The above cross-dimensional correspondence, however,
appears to be limited to the three-body sector in 1D and the
two-body sector in 2D. Beyond that point, the 1D system
is not obviously related to the 2D system and should there-
fore be studied independently. Here, we contribute to those
investigations by tackling a system of many fermions with
a contact three-body interaction in a fully nonperturbative
calculation of its thermodynamics and static response. To
that end, we use a lattice formulation (i.e., we discretize
space-time) and the worm algorithm form of quantum Monte
Carlo (see below as well as Secs. II and III and Appendix B),
and we explore a wide range of couplings and temperatures,
furnishing predictions for future experiments. Where possible,
we compare with the third-order virial expansion, using the
equivalence between virial coefficients mentioned above.

The quantum Monte Carlo technique we use is essential to-
ward obtaining the many-body properties. While powerful nu-
merical (e.g., density-matrix renormalization group [40]) and
analytic (such as bosonization, see, e.g., Ref. [41]) approaches
have had immense success in 1D, the three-body interactions
dramatically limit the available techniques. In particular, exact
approaches such as the Bethe ansatz [42] are simply not
applicable here. The formulation and algorithm we use follow
closely those of Ref. [43] (see also Ref. [44]) and can be easily
generalized to include two-body as well as four-body forces
and beyond (such as those originally proposed in Ref. [45]
and studied in detail in Refs. [46,47]), without suffering from
a sign problem (in 1D). This indicates that a vast number
of systems are open for research with the methods used and
explained here. Furthermore, the experimental realization of
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multiflavor systems with many-body forces is currently under
intense investigation [4,10,48,49].

The remaining sections are organized as follows. In Sec. I
we present the Hamiltonian, lattice theory, and the worldline
representation, and we explain how the theory is renormal-
ized. In Sec. II we describe in detail how the worldline
representation is used to carry out Monte Carlo calculations of
thermodynamic observables. Section III discusses our results
for the various equations of state (density, energy, pressure,
and Tan contact) as well as the compressibility and magnetic
susceptibility. Finally, in Sec. IV we summarize and present
our conclusions. Further technical details and cross-checks are
given in Appendixes A–C.

II. HAMILTONIAN, LATTICE THEORY, AND
MANY-BODY FORMALISM

We study a system of three-species fermions in 1D gov-
erned by the following Hamiltonian:

Ĥ = T̂ + V̂ , (1)

where the kinetic energy operator is T̂ = T̂1 + T̂2 + T̂3, where

T̂s =
∫

d p
p2

2m
â†

s (p)âs(p), (2)

and the interaction energy operator is

V̂ = g
∫

dx n̂1(x)n̂2(x)n̂3(x). (3)

Here, â†
s (p) and âs(p) are the fermionic creation and annihi-

lation operators for particles of species s and momentum p,
and n̂s(x) is the corresponding density at position x. From this
point on, we take m = h̄ = kB = 1.

To calculate the thermodynamics of this system, in par-
ticular the static response in the spin and density channels,
we discretize space-time and use a nonperturbative Monte
Carlo method, as explained next. Our starting point is the
grand-canonical partition function

Z = Tr
[
e−β(Ĥ−μN̂ )

]
, (4)

where the trace is over the Fock space, Ĥ is as in Eq. (1),
N̂ = N̂1 + N̂2 + N̂3 is the total particle number operator, and
N̂i is the particle number operator for the ith species. We focus
on unpolarized systems in this work, such that the chemical
potential μ is the same for all species.

To address the Boltzmann operator when both T̂ and V̂
are present, taking into account that those operators do not
commute, we implement the following steps. First, we place
the system in a spatial lattice and choose a nearest-neighbor
discretization of the kinetic energy, namely

T̂s = −1

2

∑
i, j

ψ̂
†
s,i(δi, j+1 + δi, j−1 − 2δi, j )ψ̂s, j, (5)

where ψ̂
†
s,i and ψ̂s,i respectively create and annihilate a

fermion of species s at location i on the lattice.
Second, we write the on-site interaction as

V̂ = g
∑

i

n̂1,in̂2,in̂3,i, (6)

where n̂s,i = ψ̂
†
s,iψ̂s,i, and the total particle number is therefore

N̂ = N̂1 + N̂2 + N̂3, where

N̂s =
∑

i

n̂s,i. (7)

Using the above discretized forms (note that we have taken
the spatial lattice spacing to be � = 1, but we retain τ as the
imaginary-time lattice spacing), we may separate Ĥ − μN̂
into diagonal (or “on-site”) and off-diagonal (or “hopping”)
pieces, respectively, D̂ and K̂ :

Ĥ − μN̂ = D̂ + K̂, (8)

where

D̂ =
∑

i

(1 − μ)(n̂1,i + n̂2,i + n̂3,i ) + gn̂1,in̂2,in̂3,i, (9)

and K̂ = K̂1 + K̂2 + K̂3, where

K̂s = −1

2

∑
i, j

ψ̂
†
s,i(δi, j+1 + δi, j−1)ψ̂s, j . (10)

Armed with D̂ and K̂ as above, we proceed by implement-
ing a Suzuki-Trotter decomposition:

e−β(Ĥ−μN̂ ) � e−τ K̂ e−τ D̂ . . . e−τ K̂ e−τ D̂ + O(β2/Nτ ), (11)

where Nτ factors are present on the right-hand side, such that
β = τNτ . The above decomposition can be expressed as a
hopping-parameter expansion (see Appendix A),

e−β(Ĥ−μN̂ ) � e−βD̂
∞∑

m=1

Nτ∑
km=1

km−1∑
km−1=1

· · ·
k2−1∑
k1=1

eτkmD̂(−τ K̂ )e−τkmD̂

× · · · × eτk1D̂(−τ K̂ )e−τk1D̂. (12)

The grand-canonical partition function corresponds to the
trace of the above operator. Using a coordinate-space basis
for all the operators involved, the trace can be written as a sum
over configurations represented by lines, so-called worldlines,
connecting the lattice points (see the description of the algo-
rithm below). Each worldline represents how a given string
of matrix products in Eq. (12) modifies a given basis wave
function as it propagates in imaginary time. The worldlines
are straight along the time direction unless an off-diagonal
contribution (−τ K̂ ) appears, in which case a worldline will
deform sideways at that particular time slice. Because a trace
is involved, all worldlines begin and end at the same spatial
point when traversing the full extent β = τNτ of the time
direction.

More specifically, the K̂s factors are single-particle opera-
tors acting on each species independently, e.g.,

〈X | (−τ K̂1) |Y 〉 = τ

2

(
δx1,y1+1 + δx1,y1−1

)
δx2,y2δx3,y3 , (13)

where we have used |Y 〉 = |y1〉 |y2〉 |y3〉, and similarly for 〈X |.
The kinetic energy operator will allow a worldline to move
sideways between two neighboring spatial points on a given
time slice.

The diagonal piece, on the other hand, is a combination of
one- and three-body operators and must therefore be treated
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differently. To that end, we write

e−τ D̂ =
∏

i

e−τkn̂1,i e−τkn̂2,i e−τkn̂3,i e−τgn̂1,i n̂2,i n̂3,i , (14)

where k = 1 − μ, and moreover we note that

e−τkn̂s,i = 1 + (e−τk − 1)n̂s,i, (15)

which is diagonal in coordinate space and always equal to
e−τk = eτ (μ−1), and

e−τgn̂1,i n̂2,i n̂3,i = 1 + (e−τg − 1)n̂1,in̂2,in̂3,i. (16)

which is also diagonal and always equal to 1 unless the initial
and final states contain three nonidentical particles that share
the same location, in which case the interaction operates too
and the matrix element equals e−τg. When the worldlines of
all three flavors coincide at a given point in space and time,
the interaction will operate and yield a nontrivial contribution
to that particular term.

Renormalization

As the Hamiltonian (1) features an ultraviolet divergence
in 1D, the coupling g must be renormalized [5]. In this work,
however, as we employ open boundary conditions to avoid
the infamous sign problem; the renormalization condition of
Ref. [5] is inapplicable. Instead, we numerically solve the
three-body problem at each coupling strength along the lines
of the iterative method presented in Ref. [6]. In particular,
after expanding in a sine-wave basis, the value of the wave
function for wave numbers n, m, l is

φnml = − 8g/L3

εnml + εB

∑
i, j,k

φi jkSi jk
nml , (17)

where the lattice length L = Nx + 1, the kinetic energy
is εnml = εn + εm + εl − 3ε1, and the effective binding en-
ergy is εB = −(E − 3ε1). (Here, εk = 1 − cos (kπ/L), and
the ground-state kinetic energy 3ε1 is subtracted to ensure
εB � 0.) The factor Si jk

nml is given by the overlap of the
six sine-wave basis functions corresponding to its upper and
lower indices as wave numbers:

Si jk
nml =

Nx∑
x=1

∏
q

sin
(qπ

L
x
)
, (18)

where q ∈ {i, j, k, n, m, l}. For given values of εB and L, the
value of g which solves Eq. (17) for all n, m, l is the renor-
malized coupling. The resulting relationship between g and
βεB is shown in Fig. 1. As expected, the dependence shows
logarithmic behavior −g−1 ∝ ln(βεB), for large enough βεB.

As a final consideration of the lattice method, we now
address dimensionless parameters and finite-size effects. To
approach both the continuum and the thermodynamic limits,
we must satisfy the separation of scales

� � λT , λF � L, (19)

where the thermal wavelength λT = √
2πβ, λF = n−1 is the

interparticle distance, n = N/L is the total density, and � =
1. For fixed βμ and λT /L, a given value of βεB fixes the
physical coupling strength. Given a value λT /L � 1, we
increase β and L until achieving numerical convergence in

0.0 0.5 1.0 1.5 2.0 2.5 3.0
βεB

1.2

1.4

1.6

1.8

2.0

−g

−2 0
ln(βεB)

0.6

0.8
−1/g

FIG. 1. The dimensionless coupling g as a function of the binding
energy εB in the dimensionless combination βεB for Nx = 80. Inset:
−g as a function of ln(βεB).

the observables, at fixed βμ and βεB. We performed multiple
calculations in which we varied those last two parameters (i.e.,
in all of the plots below, each point corresponds to a different
Monte Carlo calculation). By varying βμ at fixed βεB, we
explore different density regimes at fixed coupling strength.
As we place our system on a lattice, large βμ eventually yields
high densities, such that the condition � � λF is not satisfied
and lattice effects appear (i.e., we depart from the continuum
limit; we return to this issue below).

III. UPDATE ALGORITHM AND MEASUREMENT
OF OBSERVABLES

To carry out the Monte Carlo sampling of the partition
function in the worldline representation [Eqs. (4) and (12)],
we employ the “worm” algorithm as described in Ref. [43],
adapting it to the case of three fermion species with a three-
body interaction.

The worm algorithm evolves the system from one con-
figuration c of a set of worldlines (Fig. 2) to another by a
series of contiguous local updates. The path traversed through
the space-time lattice by this series of updates is known
as the “worm”; each individual local update occurs at the
location of the “head” of the worm. At the beginning of each
update, a space-time lattice site is chosen at random; this site
becomes the “tail” of the worm. The head departs from the
tail, effecting local updates as it meanders through the lattice.
The update is complete when the head reunites with the tail,
thereby closing a completed worldline or else annihilating a
previously existing one.

At each site visited by the head, the local update must obey
detailed balance. As transition probabilities that satisfy this
requirement are tabulated in Ref. [43], we do not reproduce
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FIG. 2. Example configuration of worldlines contributing to
Eq. (12), where the three different colors correspond to the three
fermionic species. Instances of the different weights are labeled
where they occur; note that all worldlines are periodic in the temporal
direction.

them here; we do, however, note that the relevant weights
appear as

Wd = eτ (μ−1), (20)

Wh = τ/2, (21)

WI = e−τg, (22)

where Wd corresponds to the diagonal term D̂, Wh to the hop-
ping term K̂ , and WI to the interacting contribution that occurs
when three worldlines of different flavors share a timelike
bond (wherever WI occurs, the three diagonal contributions
(Wd )3 are present as well). Instances of each of these weights
are illustrated in Fig. 2. For completeness, we provide a map
of all possible1 local updates in Appendix B.

In terms of the weights listed above, the total weight of a
space-time lattice configuration c is [43]

�(c) = (Wd )Nτ N (Wh)nh (WI )nI , (23)

where nh is the total number of hops among all fermion
species, and nI is the number of interacting timelike bonds
(nI = 1 in Fig. 2). Now, the partition sum may be written as

Z =
∑

c

�(c), (24)

so that observables, generally given by

〈Ô〉 = 1

Z
∑

c

O(c) �(c), (25)

may be computed by taking suitable log-derivatives of
Eq. (24). As an example, the energy of a single configuration

1Sites on the spatial boundaries have restricted sets of transitions,
and the associated probabilities are modified; these are excluded
from Appendix B due to their negligible contribution in the large-
volume limit.

−4 −2 0 2 4

βμ

1.0

1.5

2.0

2.5

3.0

n
n0

B = 0.5

B = 1.0

B = 1.5

B = 2.0

B = 2.5

FIG. 3. The density n in units of the noninteracting density n0

as a function of the dimensionless parameter βμ and the coupling
strength βεB (increasing coupling from bottom curve to top curve).
The solid lines interpolate the Monte Carlo results (shown with
circles); the dashed lines show the third-order virial approximations.

c is calculated as

E (c) = N − nh

β
+ g

nI

Nτ

. (26)

With configurations generated by the worm algorithm,
Eq. (25) is simply evaluated as the arithmetic mean of the
observable’s value over the sampled configurations (after
allowing for decorrelation between consecutive samples).

IV. RESULTS

We carried out our Monte Carlo calculations in lattices
of spatial size Nx = 80 and temporal size Nτ = 3600, with
corresponding lattice spacings � = 1 and τ = 0.005, such that
L = (Nx + 1)� = 81 (we used hard-wall boundary conditions
in the spatial directions) and β = Nτ τ = 18. We obtained
data for five unique couplings, corresponding to βεB = 0.5,
1.0, 1.5, 2.0, and 2.5. At the time of sampling, the particle
density and energy were recorded, taking a total of 2 × 105

decorrelated samples. The required decorrelation time was es-
timated by taking samples every 100 to 10 000 worm updates
per fermion species and finding no noticeable differences
in the results. Using these quantities and the appropriate
Maxwell relations, we report other significant thermodynamic
properties. Most values are reported as a ratio with respect to
their noninteracting counterparts, as detailed below.

A. Equations of state: Density, energy, pressure, and contact

The top of Fig. 3 displays the interacting total density n
in units of its noninteracting counterpart n0, as a function of
βμ, for several coupling strengths. The solid line interpolates
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the density for the values of βμ that were not explicitly
calculated. For reference, we note that the total noninteracting
density is derived from the Fermi-Dirac distribution,

n0 = 3

L

Nx∑
k=1

e−β(εk−μ)

1 + e−β(εk−μ)
, (27)

where εk = 1 − cos (kπ/L) is simply the Hubbard disper-
sion relation resulting from nearest-neighbor hopping (i.e., a
double-difference formula for the second derivative). In the
same figure, we compare our results to the third-order virial
expansion

nλT /3 = z + 2b0
2z2 + 3(b0

3 + �b3)z3, (28)

where λT = √
2πβ, z = eβμ is the fugacity, and b0

i is the ith
noninteracting virial coefficient. As shown in Ref. [5], �b3

is related to the second-order virial coefficient �b2D
2 of 2D,

two-species fermions by

�b3 = 1√
3
�b2D

2 , (29)

where

�b2D
2 (βεB) = ν(βεB) =

∫ ∞

0
dt

(βεB)t

�(t + 1)
. (30)

The density equation of state n/n0 displays the same
characteristic behavior observed in both 1D and 2D Fermi
systems with two-body interactions [37,50]: a rapid healing
to the virial expansion at negative βμ; a maximum where
quantum fluctuations dominate, typically around βμ = 0; and
a relatively mild decay at large and positive βμ, where the
increased density tends to partially quench interaction effects.
The role of the interaction in that regime is largely reduced to
trimer formation. The residual, repulsive trimer-trimer inter-
action is due to Pauli exclusion of the fermionic components.

In addition to the density, we calculated the energy equa-
tion of state across multiple chemical potentials and cou-
plings, as shown in the bottom of Fig. 4. There, the energy
E = 〈Ĥ〉 is shown in units of its noninteracting value given
by

E0 = 3
Nx∑

k=1

εk e−β(εk−μ)

1 + e−β(εk−μ)
. (31)

The energy equation of state E/E0 displays features with
obvious counterparts in the density described above. Indeed,
E/E0 heals to the virial expansion at large negative βμ; the
interplay of quantum and interaction fluctuations results in a
broad minimum around βμ = 0 for all couplings; and finally,
at large positive βμ, the interaction effects are progressively
softened.

The analysis of Refs. [5,6] suggested that this system
undergoes a “Fermi-Fermi crossover” in moving from weak
to strong coupling, where, starting from three species of ideal
Fermi gases, increasing attraction causes the formation of
a repulsive Fermi gas of composite trimers. In the limit of
infinite coupling strength, we anticipate that as the trimer
radius shrinks to zero, the repulsion between trimers will give
way to ideal behavior, so that the trimers will behave as a

−4 −3 −2 −1 0 1 2 3 4

βμ

−1.5

−1.0

−0.5

0.0

0.5

1.0

E
E0

B = 0.5

B = 1.0

B = 1.5

B = 2.0

B = 2.5

FIG. 4. The total energy E in units of the noninteracting energy
E0 as a function of the dimensionless parameter βμ, for several
values of the coupling βεB (same values as in Fig. 3, but increasing
in coupling from the top curve to the bottom curve). The solid lines
interpolate the Monte Carlo results (shown with circles); the dashed
lines show the third-order virial approximations.

hard-core Bose gas in 1D [51]. With our many-body results,
we may shed additional light on this question.

To compare our results with an ideal Fermi gas of trimers,
we calculate the energy of the trimer gas Etrimer as follows. For
a given value of β and μ, the trimer chemical potential μtrimer

is tuned so that the total number of particles is equal in both
systems: 3Ntrimer = N . The trimer gas energy is then computed
as Etrimer = 〈E〉trimer − εBN/3, where the expectation value is
that of an ideal Fermi gas with mass 3m. In Fig. 5, the differ-
ence in energy per particle E = E/N between our results and
the ideal trimer gas is displayed, showing that increasing the
coupling strength does indeed cause the system to approach
the trimer gas. The positivity of each of the curves supports
the prediction of Ref. [6] that, for finite coupling, the effective
interaction between trimers is repulsive.

From the density equation of state, the pressure can be
obtained by integration, namely

Pλ3
T = 2π

∫ βμ

−∞
d (βμ)′nλT . (32)

For reference, we note that the noninteracting pressure is
given by

P0 = 3

βL

Nx∑
k=1

ln
(
1 + e−β(εk−μ)

)
. (33)

Our results using the above expressions and numerical in-
tegration are shown in Fig. 6. To carry out the integra-
tion, the virial expansion was used as a boundary condition
at large negative βμ; specifically, the virial approximation
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−4 −3 −2 −1 0 1 2 3 4

βμ

0.0
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FIG. 5. Difference in energy per particle E = E/N (in units of
εB) between the interacting system and the energy per particle Etrimer

of the corresponding ideal gas of composite trimers (with the same
total particle number; see text), as a function of the dimensionless
parameter βμ. The dimensionless coupling strength βεB in each data
set increases from top to bottom.

of Eq. (28) was used for βμ < −4 in the integrand of
Eq. (32). The interpretation of the behavior of the pressure is
essentially the same as that of the density equation of state:
as βμ is increased, the system traverses a crossover from the
virial-expansion region to a quantum-dominated region where
repulsive trimers dominate the picture. The main motivation
for showing the pressure here is, therefore, simply to provide
it for future reference, as it is often available from ultracold
atom experiments.

Tan’s contact density, which governs the behavior of corre-
lation functions at short distances [21–23], can be calculated
in our approach via

C = 2

βL

∂ lnZ
∂ ln(βεB)

= −2
〈V̂ 〉
L

∂ ln g

∂ ln(βεB)
, (34)

where the 〈V̂ 〉 factor encodes the many-body aspects of the
problem, whereas ∂ ln g/∂ ln(βεB) is fully determined by the
renormalization of g, i.e., purely three-body physics.

In Fig. 7 we show our results for C as a function of βμ and
for several values of the coupling strength. Also shown in the
figure is the third-order virial expansion, given by

C = 2Q1

βL
z3 1√

3

∫ ∞

0
dt

t (βεB)t

�(t + 1)
+ O(z4), (35)

where we have used Eq. (34) together with Eqs. (29) and (30)
and the fact that, for our system,

ln(Z/Z0) = Q1�b3z3, (36)
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FIG. 6. The pressure P in units of the noninteracting pressure P0

as a function of βμ, obtained by numerical integration of the density
equation of state. The dashed line is the result from the third-order
virial approximation. The coupling strength βεB in each data set
increases from bottom to top.

where Z0 is the noninteracting grand-canonical partition func-
tion and

Q1 = 3
∑

k

e−βεk (37)

is the single-particle partition function.
The contact can also be obtained from the pressure-energy

relation, which in 1D takes the form P − 2E/L = C. However,
the latter relies on nonrelativistic invariance, which is broken
by lattice artifacts, and therefore yields somewhat different
results at strong coupling or large densities (see Appendix C).

Finally, we note that, using the density equation of state
shown above, one may connect our results as a function of βμ

with the more conventional temperature scale T/εF , where
εF = (n/3)2, as well as with the more conventional coupling
scale εB/εF . To that end, we display in Fig. 8 the quantity
T/εF as a function of εB/εF , for each value of βεB we studied.
From this plot one sees, for instance, that at fixed εB/εF ,
increasing βεB yields lower temperature T/εF .

B. Static response functions: Compressibility
and magnetic susceptibilities

As the three fermion species’ chemical potentials may each
be tuned independently, there are three independent magne-
tization (or polarization) parameters. By using scaled Jacobi
coordinates, these parameters may be expressed in terms of
previously defined quantities as follows. The first is

M̂1 = N̂ = N̂1 + N̂2 + N̂3 (38)

and corresponds to the total particle number and thus reflects
compressibility effects (see below), rather than polarization.
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FIG. 7. Contact density C obtained from the expectation value
of the potential energy, as a function of βμ and for several values
of the coupling strength. The third-order virial expansion, shown
with dashed lines, is seen to completely capture C for βμ < −1. The
coupling strength βεB in each data set increases from bottom to top.

The other two capture differences in particle content among
the three flavors and quantify the degree to which the system
is polarized:

M̂2 = 3
2 (N̂1 − N̂2), (39)

M̂3 = 1
2 (N̂1 + N̂2) − N̂3, (40)

where overall factors are unimportant. The only requirement
is that the applied fields hi, defined in terms of the μi, leave
invariant the inner product

∑
i

hiM̂i =
∑

i

μiN̂i. (41)

Thus, we have isothermal susceptibilities associated with each
M̂i and given by

χi = β
(〈

M̂2
i

〉 − 〈
M̂2

i

〉)
, (42)

where the polarizations M̂i may be expressed in terms of the
particle numbers N̂i as shown above.

For balanced systems where μ1 = μ2 = μ3 = μ, so that
h2 = h3 = 0, h1 = μ, χ2 and χ3 take on the same form when
expressed in terms of their noninteracting counterparts:

χ2

χ0
2

= χ3

χ0
3

=
〈
N̂2

i

〉 − 〈N̂iN̂ j〉〈
N̂2

k

〉
0 − 〈N̂kN̂l〉0

, (43)

where i �= j, k �= l , and 〈·〉0 denotes the noninteracting expec-
tation value.
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FIG. 8. The temperature scale T/εF as a function of the binding
energy εB/εF , where εF = n2, for each of the couplings studied. The
solid lines interpolate our Monte Carlo results shown in circles. The
crosses mark the locations of the maxima in n/n0 at the correspond-
ing coupling strengths (see Fig. 3). The coupling strength βεB in each
data set increases from top to bottom.

Note that, to determine the isothermal compressibility κ ,
we study the fluctuations in particle number:

〈N̂2〉 − 〈N̂〉2 = 1

β

(
∂N

∂μ

)
T,V

, (44)

such that

κ = Lβ
(〈

M̂2
1

〉 − 〈
M̂1

〉2)
〈M̂1〉2

= Lχ1

〈M̂1〉2
. (45)

In Fig. 9 we show κ/κ0, where κ0 is the compressibility of
the noninteracting system, given by

κ0 = 3β

4Ln2
0

Nx∑
k=1

cosh−2

[
β

2
(εk − μ)

]
, (46)

with n0 from Eq. (27). At large negative βμ, the ratio κ/κ0
approaches unity: in that region the response of the system is
essentially that of a noninteracting system, with corrections
given by the virial expansion (as shown previously for the
density and the pressure equations of state). As βμ is in-
creased away from the virial-expansion region, the response
is increasingly that of a system of repulsively interacting
trimers. Notably, that approach is not monotonic: as βμ is
increased, κ/κ0 first increases above unity before decreasing
substantially as the classical-quantum crossover (the region
around βμ � 0) is traversed, and then increasing again after
that, reflecting the interplay between the attractive interaction
and the trimer-trimer repulsion as the density is increased.
The same type of behavior was found in both 1D and 2D
Fermi systems with two-body interactions [37,50]. (The inset
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FIG. 9. Compressibility κ in units of its noninteracting value κ0,
as a function of βμ, for several values of the coupling βεB (increasing
from top to bottom on the right side of the plot). The solid lines
interpolate our Monte Carlo results shown in circles. Inset: χ1/χ

0
1

as a function of βμ, representing the variance of the total particle
number. The inset coupling strength increases from bottom to top
(reverse order as in the main plot).

of Fig. 9 shows more explicitly how interaction effects on
the density fluctuations attain a broad maximum as βμ = 0
is approached from the left and decay to a constant after that.)

In Fig. 10 we show the magnetic susceptibility χ2/χ
0
2 , per

Eq. (43), i.e., showing the ratio of the interacting and nonin-
teracting particle-number variances. At large negative βμ, the
ratio approaches unity, such that the response of the system to
a chemical potential imbalance among species is essentially
that of a noninteracting system, regardless of the coupling
strength. On the other hand, as the density or the coupling
grow, the susceptibility becomes increasingly governed by
trimers and is therefore monotonnically more suppressed as
a function of βμ. Not unexpectedly, this is markedly different
from the compressibility, as both interactions favor trimer
formation.

V. SUMMARY AND CONCLUSIONS

In this work we have implemented a nonperturbative
stochastic method to investigate the properties of nonrela-
tivistic fermions in 1D with attractive three-body interactions.
As previous works have noted, this system displays a scale
anomaly: it is classically scale invariant in the sense that the
coupling constant is dimensionless, but quantum fluctuations
generate a three-body bound state and thus scale invariance
is broken. There is, furthermore, an exact correspondence
between the three-body sector of this system and the two-body
sector of the analog system in 2D with two-body interactions.
However, that correspondence is limited to those specific
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FIG. 10. The interacting susceptibility χ2, in units of its noninter-
acting counterpart χ 0

2 , as a function of βμ. The solid lines interpolate
our Monte Carlo results shown in circles. The coupling strength βεB

in each data set increases from top to bottom.

sectors and does not extend to higher particle numbers or
thermodynamics (certainly not easily). Therefore, here we set
out to provide a first characterization of the thermodynamics.

Using the worldline representation of the partition func-
tion, and using hard-wall boundary conditions, the sign prob-
lem can be completely avoided in this 1D system, even
though the number of species is odd. With that approach,
supplemented by the worm algorithm, we have calculated
several equations of state: density, energy, and pressure, as
well as Tan’s contact. Additionally, we have characterized the
static thermodynamic response by calculating the compress-
ibility and the magnetic susceptibility. Our findings support
the notion of a continuous Fermi-Fermi crossover, originally
pointed out and explored in Refs. [5,6], whereby a trimer gas
with repulsive interactions is approached at low temperatures,
high-densities, or strong couplings.

As with similar systems with short-range interactions in 1D
[50] and 2D [37], the interaction effects on the compressibility
are maximized in the vicinity of βμ = 0. Indeed, at large
negative βμ, the system is very dilute and governed by
few-particle physics (i.e., the virial expansion), where kinetic
energy contributions typically dominate; on the other hand,
at large positive βμ, the compressibility should approach that
of a system of (fermionic) trimers with repulsive interactions.
Notably, that approach is not monotonic: as βμ is increased,
κ/κ0 first increases above unity before decreasing substan-
tially as the classical-quantum crossover (the region around
βμ � 0) is traversed, and then increasing again after that. On
the other hand, the magnetic susceptibility is monotonically
suppressed as βμ or the coupling strength are increased, as
trimer binding dominates that response function.
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As mentioned in the Introduction, using the same technique
it is possible to study this same system at finite chemical
potential imbalance as well as with an increasing number
of fermion species. This could be an interesting avenue for
research in connection with the study of droplet formation and
stability in these systems [1,2]. Notably, the same algorithm,
with minor modifications, can be used to study systems with
not only three-body forces but also two- and four-body forces
(such as those originally proposed in Ref. [45] and studied
in detail in Refs. [46,47]), as well as their generalization to
multispecies cases mentioned above. All of the above can be
carried out without a sign problem, as long as one remains in
1D with hard-wall boundary conditions and with the nearest-
neighbor kinetic-energy discretization used here. We leave
such studies for future work.
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APPENDIX A: HOPPING-PARAMETER EXPANSION

In this Appendix we derive the hopping-parameter ex-
pansion of Eq. (12) by two methods: starting from a lattice
formulation, and starting from a continuum formulation (and
discretizing at the end).

For the first approach, starting from the Suzuki-Trotter
decomposition

e−β(Ĥ−μN̂ ) � e−τ K̂ e−τ D̂ . . . e−τ K̂ e−τ D̂ + O(β2/Nτ ), (A1)

with β = τNτ , we proceed by expanding the e−τ K̂ factors in a
power series:

e−β(Ĥ−μN̂ ) �
∞∑

k j=0

(−τ K̂ )kNτ

kNτ
!

e−τ D̂ · · · (−τ K̂ )k1

k1!
e−τ D̂. (A2)

We then organize the above multiple sum according to the
value of n = ∑

j k j . The n = 0 order simply yields e−βD̂. For
n = 1 we obtain

e−βD̂
Nτ∑

k1=1

eτk1D̂(−τ K̂ )e−τk1D̂. (A3)

For n = 2 we have two kinds of contributions: those which
apply K̂ twice at the same time slice (Nτ terms, each with
an extra factor of 1/2!); and those which apply K̂ once at
two different time slices [Nτ (Nτ − 1)/2 terms]. Both of these
kinds of terms are O(τ 2), but the first kind scale only as Nτ

and will therefore drop out at large Nτ (i.e., in the small τ

limit, holding β fixed). (Another way of saying this is that
the diagonal terms will form a set of measure zero in the
continuum limit.) Thus, the result for n = 2 is

e−βD̂
Nτ∑

k2=1

k2−1∑
k1=1

eτk2D̂(−τ K̂ )e−τ (k2−k1 )D̂(−τ K̂ )e−τk1D̂. (A4)

Proceeding in this fashion order by order in n, and summing
over n from 0 to ∞, we obtain Eq. (12) in the main text.

For the second approach, we seek an expression for the
evolution operator

Û (β ) = e−β(D̂+K̂ ) = e−βD̂Ô(β ), (A5)

where we have defined the imaginary-time-dependent opera-
tor

Ô(τ ) ≡ eτ D̂e−τ (D̂+K̂ ), (A6)

whose time derivative is

−∂Ô(τ )

∂τ
= K̂I (τ )Ô(τ ), (A7)

where

K̂I (τ ) ≡ eτ D̂K̂e−τ D̂. (A8)

Integrating Eq. (A7) with Ô(0) = 1 as the initial condition,
we arrive at the integral equation

Ô(β ) = 1 +
∫ β

0
dτ

∂Ô(τ )

∂τ
= 1 −

∫ β

0
dτ K̂I (τ )Ô(τ ). (A9)

Iteratively substituting Eq. (A9) into itself generates a Dyson
series,

Ô(β ) =
[
1 −

∫ β

0
dτ1 K̂I (τ1)

+
∫ β

0
dτ1

∫ τ1

0
dτ2 K̂I (τ1)K̂I (τ2) − · · ·

]
. (A10)

To evaluate the partition function Z = Tr[e−β(D̂+K̂ )], then,
it suffices to evaluate the trace of Û (β ) using the above
expression for Ô(β ). Doing that and expanding the K̂I terms

FIG. 11. Local configurations of worldlines, with labels corre-
sponding to those used in Table I. Note that each lattice site is
associated with two segments of the worldline, each with their
own weight. To avoid double-counting, we follow Ref. [43] and by
convention associate the weight of a lattice site with the outgoing
segment of the worldline (indicated by the arrowheads).
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TABLE I. Map of all possible local lattice updates in the worm algorithm, where integer labels correspond to those in Fig. 11. The outgoing
directions are each respective to the possible final states.

Initial state Incoming worm direction Possible final states Outgoing worm direction

0 Up 0, 1, 2, 3 Down, up, left, right
Left 0, 5, 7 Right, up, left

Right 0, 4, 6 Left, up, right

1 Down 0, 1, 2, 3 Down, up, left, right
Left 5 Down

Right 4 Down

2 Right 0, 1, 2, 3 Down, up, left, right
Left 7 Down

3 Left 0, 1, 2, 3 Down, up, left, right
Right 6 Down

4 Down 0, 4, 6 Left, up, right
Up 1 Left
Left 5 Left

5 Down 0, 5, 7 Right, up, left
Up 1 Right

Right 4 Right

6 Left 0, 4, 6 Left, up, right
Up 3 Left

7 Right 0, 5, 7 Right, up, left
Up 2 Right

8 Up 1 Update complete
Right 4
Left 5

Down 0

9 Up 2 Update complete
Left 7

Right 0

10 Up 3 Update complete
Right 6
Left 0

using Eq. (A8), we obtain

Z =
∞∑

k=0

∫ β

0
dτk

∫ τk

0
dτk−1 . . .

×
∫ τ2

0
dτ1 Tr[e−(β−τk )D̂K̂e−(τk−τk−1 )D̂K̂ . . . K̂e−τ1D̂],

(A11)

which yields Eq. (12) upon discretization.

APPENDIX B: MAP OF LOCAL UPDATES

Accounting forall possible worldline moves, any lattice site
can be represented as one of a finite set of allowed config-
urations. In Fig. 11, the complete set of such configurations
is depicted. The tiles of the top two rows correspond to
physical configurations; those of the bottom row exist only
as intermediate steps in the updating algorithm and are never
present during a measurement of observables. All possible
transitions between these local configurations, defining the
paths the worm is allowed to follow, are collected in Table I.

In Table I, the incoming and outgoing worm directions
are best illustrated by examples. With an initial state la-
beled by 0, an incoming worm direction of “up” means that
the worm has entered via the site immediately “below” the
present one in imaginary time (see Fig. 2). The possible
final states are then those labeled by either 1, 2, or 3. The
outgoing worm directions would then be up, left, and right,
respectively—precisely the directions indicated by the arrow-
heads. Whichever of these directions is selected then becomes
the “incoming” direction of the next site visited. In this
example, a final state labeled by 0 is also possible but would
constitute a “bounce,” where the worm reverses direction in
imaginary time. The outgoing worm direction would thus be
down (opposite the direction of entry), as would the incoming
worm direction of the lattice site immediately “below” the
initial site (which becomes the new “initial” state).

Excluding the bounce, the previous example showed the
worm traversing the lattice in the forward direction of imagi-
nary time, so that its motions were parallel to the arrowheads
in Fig. 11. As indicated by the bounce, however, the worm
can also move backwards in imaginary time (antiparallel to
the arrowheads). In such cases, the “incoming” direction is
always antiparallel to the arrowhead, reflecting the fact that
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intersections of worldlines only occur while the worm is
moving forwards in imaginary time. The entries of Table I
provide a complete prescription for automatically handling
the possible transitions for a given initial state and incoming
direction, regardless of whether the worm is moving forwards
or backwards in imaginary time.

APPENDIX C: CONTACT FROM THE ANOMALY IN THE
EQUATION OF STATE AND LATTICE EFFECTS

In a d-dimensional nonrelativistic scale-invariant system,
dimensional arguments dictate that the pressure must take the
form

P = βα f (βμ), (C1)

where α = −(d + 2)/2. Using the thermodynamic identities

−PV = E − T S − μN, (C2)

S = V
∂P

∂T
, (C3)

N = V
∂P

∂μ
, (C4)

where V = Ld , it is straightforward to see that

−PV = E + V βαα f (βμ) = E + αPV, (C5)

such that

P + 1

α + 1

E

Ld
= 0, (C6)
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FIG. 12. Contact density for lattice size Nx = 80 as obtained
from the pressure-energy relation compared to the contact obtained
from Eq. (34). For each coupling, the former is shown with triangles
and the latter with circles. The coupling strength βεB in each pair of
data sets increases from bottom to top.
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FIG. 13. Density per species ns in lattice units, as a function
of βμ. The solid lines interpolate our Monte Carlo results shown
with symbols. Circles show the data for Nx = 80, and diamonds
correspond to Nx = 140. As expected the latter are considerably
lower than the former, which should facilitate the approach to the
continuum limit. In both data sets, the coupling increases from the
bottom curves to the top curves.

where 1/(α + 1) = −2/d and we used V = Ld . Thus, in 1D,
a nonrelativistic scale-invariant system obeys

P − 2E/L = 0. (C7)

When scale or nonrelativistic invariance are broken, the
above pressure-energy (P-E ) relation is modified. For ex-
ample, for the noninteracting case in a box, the relationship
becomes P − 1

βE1

E
L = 0, where E1 is the average energy of a

single particle at finite inverse temperature β:

E1 = 1

Q1

∑
k

εke−βεk , (C8)

where Q1 is the single-particle partition function. In the large-
box limit, 1/βE1 → 2, and the expected P-E relation Eq. (C7)
is recovered.

When scale invariance is broken by interactions, as in our
case, a nonvanishing contribution appears on the right-hand
side of the P-E relation Eq. (C6), namely the contact density
C, as mentioned in the main text. We have calculated the
left-hand side and show it in Fig. 12 compared with the right-
hand side, namely the contact as calculated in the main text
Eq. (34). For βμ up to roughly βμ � 0, the results track each
other closely. Differences start to appear beyond that point and
increase as βμ increases, leading to differences of up to 25%,
likely due to lattice spacing effects which break nonrelativistic
invariance (the finite-box effect described above was already
accounted for in this plot). If the latter were restored, both
approaches would yield the same result. In order to restore the
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FIG. 14. The density n in units of the noninteracting density n0

as a function of the dimensionless parameter βμ and the coupling
strength βεB (increasing from bottom data sets to top data sets). The
solid lines interpolate our Monte Carlo results shown with symbols.
Circles show the data for Nx = 80, and diamonds correspond to
Nx = 140.

symmetries at increased densities, improved operators would
need to be used (see, e.g., Ref. [52]). Unfortunately, such
improved operators involve nonlocal kinetic-energy terms
which will result in a sign problem and are therefore beyond
the scope of this work.

To display more precisely the lattice effects, we show in
Fig. 13 the density per species ns in lattice units (i.e., the
lattice filling per species) for Nx = 80 (main text) and Nx =
140 (for comparison). As the latter yield lower lattice densities
when all the physical parameters are kept constant, i.e., the
lattice theory is more dilute, it is expected that the continuum
limit is better approximated [cf. Eq. (19)]. Figure 14 displays
such effects for the density equation of state n/n0, for the same
parameter values as those of Fig. 13. As expected, the effects
are especially large at the highest lattice densities (i.e., largest
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FIG. 15. Contact density for lattice size Nx = 140 as obtained
from the pressure-energy relation compared to the contact obtained
from Eq. (34). For each coupling (increasing from bottom to top),
the latter (circles) yields larger values than the former (triangles).
Comparing with Fig. 12, which shows the same quantity for a smaller
lattice size Nx = 80, the two ways of computing the contact are here
in better agreement at weaker couplings, but remain large (essentially
unchanged from Nx = 80) for the strongest coupling.

values of βμ) and increase as βεB is increased. Similarly,
Fig. 15 shows the contact compared in two different ways, as
in Fig. 12. Here as well, lattice effects are large at high density
(i.e., largest values of βμ) and increase as βεB is increased.
However, better agreement between the two ways to calculate
the contact is found at the weakest coupling explored for this
comparison. Based on the above, we conclude that, while
lattice effects are certainly present in our calculations, espe-
cially at the highest densities and strongest couplings, they do
not represent a qualitative modification of the data shown in
the main text. We leave further exploration of lattice artifacts
and an improved approach to the continuum limit (particularly
for strong couplings) to future work.
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