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Two-body repulsive bound pairs in a multibody interacting Bose-Hubbard model
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We study the system of multibody interacting bosons on a two-dimensional optical lattice and analyze the
formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body
interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase
diagram for different choices of higher-order local interactions. Considering the most general Bose-Hubbard
model involving local multibody interactions we investigate the ground state properties utilizing the cluster
mean-field theory approach and further confirm the results by means of sophisticated infinite projected entangled
pair states calculations. By using various order parameters, we show that the choice of higher-order interaction
can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of
temperature and density-dependent tunneling to establish the stability of the PSF phase.
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I. INTRODUCTION

The seminal observation of quantum phase transition be-
tween the superfluid (SF) and the Mott insulator (MI) phases
in optical lattice [1] and its theoretical prediction [2,3] have
revolutionized the field of strongly correlated quantum mat-
ter. The physics which emerges out of the competition be-
tween the local two-body interactions and the off-site hopping
strengths of the paradigmatic Bose-Hubbard (BH) model is
regarded as one of the simplest examples of quantum simula-
tions. The underlying mechanism which drives this interesting
phase transition is the high level of tunability of on-site
interactions with respect to the hopping amplitudes using
the technique of the Feshbach resonance and/or the lattice
strengths. Following this experimental observation, several
interesting phenomena have been unveiled at the interface
of atomic, molecular, optical, and condensed matter physics
in recent years considering many variants of the BH model.
However, the simple BH model with only on-site interactions
itself have revealed a plethora of exotic physics in different
contexts [4–6].

Recently, effective higher-order interactions have been ob-
served in optical lattice experiments [7,8]. These effective
interactions are due to the virtual population of occupation
dependent higher Bloch bands. Although these effects are
small compared to the original two-body interactions, they
provide enough motivation to explore the physics of ultracold
matter in the presence of multibody interactions in optical
lattices. An immediate usefulness of such multibody interac-
tions can be understood in the context of the attractive BH
model which involves local two-body attractive interactions.
It has been shown that for any finite attractive interaction the
bosons occupy a single site of an optical lattice leading to
collapse [9]. This difficulty can be overcome by including
a very strong three-body on-site repulsion which prevents

the occupation of a lattice site by more than two atoms and
hence the collapse. A recent proposal rigorously shows that
an infinitely strong three-body repulsion can arise due to the
three-body loss process resulting from the elastic scattering of
atoms [10]. This infinite three-body repulsion which is termed
as the three-body hardcore constraint, facilitates the formation
of attractively bound bosonic pairs. The superfluid of these
composite pairs is called the pair superfluid (PSF) phase in
optical lattice [10–13] which is an interesting manifestation
of competing two- and three-body interactions. Several other
theoretical proposals have been made recently to control the
three-body interactions in various ways in optical lattices
[14–16]. Moreover, a recent proposal by Petrov [17] reveals
the possibilities to simultaneously manipulate the higher-
order multibody interactions along with the two-body one in
atomic systems [17,18]. This prediction is one step forward in
the directions of exploring physics arising due to the on-site
interactions in optical lattices. With these types of interac-
tions, the standard BH model gets modified accordingly and
one gets a more general BH model with the on-site multibody
interactions given as

H = −t
∑
〈i, j〉

(a†
i a j + H.c.)

+
M∑

p=2

(
Up

∑
i

(ni )!

p!(ni − p)!

)
− μ

∑
i

ni, (1)

where ai
†(ai ) is the bosonic creation (annihilation) opera-

tor, ni is the number operator for the ith site, and 〈i, j〉
denotes the nearest-neighbor sites. While t represents the
nearest-neighbor hopping amplitude, Up is the on-site p-body
interaction strength. Depending on the value of M, one gets
the corresponding multibody interacting BH model. μ is the
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chemical potential associated with the system in the grand
canonical ensemble which decides the number of particles
in the system. As mentioned before, this model with only
two-body interaction U2 exhibits the SF-MI phase transition at
integer densities. As a result one gets the well-known MI lobes
corresponding to different atom densities in the ground state
phase diagram plotted in the μ and U2 plane. Hereafter, we
denote the MI lobes for different particle densities as MI(ρ)
where ρ is the ratio between the total number of particles to
total number of sites in the systems.

Although competing multibody interactions in the BH
model may provide interesting physics, the system with up
to the three-body interactions (U3) has been widely studied
in recent years [10,11,16,19–26] revealing various interesting
physical phenomena in optical lattices. However, in an in-
teresting proposal in Ref. [16], it is shown that the strength
of the three-body interaction U3 can be tuned by coupling
it to the Efimov states which leads to a nontrivial form of
the interaction U3δn,3. The phase diagram of the BH model
in the presence of such three-body interaction is obtained
by using the simple mean-field theory approach analysis and
complemented by the quantum Monte Carlo (QMC) calcula-
tion. This reveals that for attractive U3 and repulsive U2 the
system favors a direct first-order transition from the MI(1) to
the MI(3) phase by completely suppressing the MI(1) lobe
when |U3/U2| > 1 even at finite temperature [16]. However,
this finding was later found to be inconsistent when compared
to the density matrix renormalization group (DMRG) and
the cluster mean-field theory (CMFT) calculations in one-
and two-dimensional systems, respectively, by some of us in
Ref. [27]. A careful analysis in Ref. [27] showed that there
exists no first-order transition between the Mott lobes for the
parameter choice considered in Ref. [16]. Rather, the compet-
ing two- and three-body interactions lead to the formation of
a nontrivial PSF phase in between the MI(1) and MI(3) lobes
where the bosons tend to move in pairs even in the presence
of the two-body repulsive interactions. This reveals a kind
of two-body repulsively bound pairs driven by a mechanism
completely different from the one observed in optical lattices
by Winkler et al. [28] where the pair formation occurs due to
the competition between the two-body interaction U2 and the
bandwidth.

In this paper we show that to achieve this anomalous
pairing of bosons with two-body repulsion, it is not always
necessary to consider the specific form of the three-body
interaction as discussed in Refs. [16,27]. The most general
BH model given in Eq. (1) with a suitable choice of multi-
body interactions may stabilize the PSF phase between the
Mott lobes which will be discussed in more detail below.
The remaining part of the paper is organized as follows.
In Sec. II we explain the model considered for this work
with a brief information about the methods. In Sec. III
we discuss our results in detail and finally we conclude
in Sec. IV.

II. METHOD

We numerically investigate the model shown in Eq. (1)
by restricting up to four-body interactions for simplicity. The
explicit form of the Hamiltonian with all the interactions is

given as

H = −t
∑
〈i, j〉

(a†
i a j + H.c.) + U2

2

∑
i

ni(ni − 1)

+ U3

6

∑
i

ni(ni − 1)(ni − 2)

+ U4

24

∑
i

ni(ni − 1)(ni − 2)(ni − 3)

−μ
∑

i

ni, (2)

where the terms have their usual meaning as discussed before.
In order to analyze the ground state properties of Eq. (2) we
first utilize the self-consistent CMFT approach which is an
approximation method based on the simple single site mean-
field theory approach [29–31]. In this case, the Hamiltonian is
divided into several clusters of finite number of sites and each
cluster interacts with the rest of the system in a mean-field
way, i.e.,

HCMF =
∑
i, j∈C

HC − t
∑
〈i, j〉

i ∈ B, j /∈ C

(a†
i ψ j + H.c.). (3)

Here HC is the cluster Hamiltonian identical to Eq. (2) with
index i, j belonging to the cluster C. The second term which
is the mean-field expression for the hopping term from the
ith site at the cluster boundaries (B) to the nearest neighbor
[32]. ψ is the superfluid order parameter which is deter-
mined self-consistently. In order to obtain the insights about
various quantum phases, we utilize the average density and
the superfluid density of the system ρ = 1/L

∑
i ni and ρs =

1/L
∑

i ψ
2
i , respectively, computed from the CMFT ground

state where L is number of sites in a cluster. It is well known
that the CMFT method is more accurate than the simple mean-
field theory approach and can capture the qualitative picture
of the system with less computing effort than the powerful
QMC method [12,27,29–31,33]. Note that the accuracy of the
method relies on the cluster size. In this case we consider
a four-site cluster which is sufficient to predict the relevant
physics.

In addition to the CMFT approach, we have employed
the infinite projected entangled pair states (iPEPS) algo-
rithm which are two-dimensional tensor network techniques
[34,35]. Such techniques are built upon genuine quantum
correlations and hence goes beyond mean-field calculations.
Besides, we can directly target the thermodynamic limit
by assuming translational invariance over some sites. An-
other advantage is that unlike QMC techniques, it does
not suffer from the infamous sign problem for fermionic
and frustrated systems [36]. For these reasons PEPS tech-
niques have been used in the past to study hard con-
densed matter problems such as frustrated kagome antifer-
romagnets [37–40] and real materials [41,42]. It has been
able to beat state-of-the-art QMC calculations in finding
the ground state energy of the doped Hubbard model [43],
and helped settle controversies that would have otherwise
been difficult such as the magnetization plateaus of the
Shastry-Sutherland model [44], phase diagrams of steady
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states of dissipative spin models [45], etc. The technique
has now been extended to finite temperature calculations
[46–49] and the difficult problem of time evolution in two
dimensions [50–53].

For the purpose of this work, we use an iPEPS with a
two-site unit cell in the thermodynamic limit. We approximate
the ground state of the Hamiltonian given in Eq. (2) using the
so-called simple update [54] with bond dimension D = 2 and
D = 4 which proves sufficient for our purpose. In Sec. III we
provide the plots for D = 4. After analyzing the zero temper-
ature phase diagram of the system we investigate the effect
of thermal fluctuation in the system. The finite temperature
calculations are done with an annealing algorithm [49] with
infinite projected entangled pair operators (iPEPOs) which are
mixed state version of iPEPS [45,55]. The expectation values
are computed using the corner transfer matrix renormalization
(CTMRG) method [56,57].

III. RESULTS AND DISCUSSION

In this section we move on to discuss our results in detail
which are obtained by using the CMFT and iPEPS approach
for M = 4 of Eq. (1). Keeping terms up to M = 4 in the model
(1) we have three different interactions in the system such as
U2, U3, and U4. Note that in our analysis the focus is to analyze
the two-body repulsive bound pairs. Therefore, our obvious
choice is to keep U2 > 0. In this case we consider attractive
(repulsive) three- (four-)body interactions, i.e., U3 < 0 and
U4 > 0. For simplicity we define two ratios such as U4/U3

and U3/U2 and analyze the ground state phase diagram of
the system. In the case of the BH model shown in Eq. (1),
it is well known that the presence of interaction up to U3

largely affects the SF-MI phase transitions with modified Mott
lobes at higher densities. While the MI lobes corresponding to
ρ � 2 get enlarged by the three-body repulsion U3 [19,21], an
attractive U3 results in shrinking up of the higher MI lobes
[21]. However, in this case we show that a large four-body
repulsive interaction U4 leads to interesting phenomena. Note
that the large U4 is necessary to prevent the collapse due
to attractive U3 and also to stabilize the MI(3) state in the
system. In this case, the MI(3) lobe expands by simultane-
ously shrinking the MI(2) lobe which eventually disappears
for some specific ratio of interactions defined above. In Fig. 1
we depict the phase diagram corresponding to the ground state
of Eq. (3) using the CMFT approach in the μ/U2 and 1/U2

plane for U4/U3 = −3 and U3/U2 = −2. The MI lobes are
denoted by the continuous lines and the dashed line separates
the empty state. The SF to MI transitions are characterized
by examining the behavior of change in the total density of
the system ρ and the superfluid density ρs with respect to
increase in chemical potential μ. In the SF phase ρ increases
continuously with an increase in μ. However, in the MI phase
ρ remains constant for a range of μ and at the same time ρs

vanishes. In Fig. 2(a) we show the ρ − μ

U2
plot determined

using the CMFT approach for various values of 1/U2 = 0.02,
0.04, and 0.06 which cut through different regions of the
phase diagram of Fig. 1 indicating the MI plateaus and the
SF regions. The end points of the plateaus correspond to two
different chemical potentials μ+ and μ− of the system defined

0 0.02 0.04 0.06 0.08
1/U

2

0

1

2

3

 μ
/U

2

0 0.02
0.48

0.5

0.52

MI1

MI3
MI1

MI3

PSF

SF

SF

FIG. 1. CMFT phase diagram for t = 1, U3/U2 = −2.0, and
U4/U3 = −3.0. Solid lines show the boundaries of MI phases and
the dashed line separates the empty state. The inset shows the PSF-SF
boundary marked by the green line with circles.

as

μ+ = EL(N + 1) − EL(N ); μ− = EL(N ) − EL(N − 1).

(4)

Here E (N ) denotes the ground state energy of the system
with N particles. The difference G = μ+ − μ− quantifies
the gap in the MI phase which vanishes in the SF phase.
The signatures of the MI and SF phases are also confirmed
from the μ

U2
− ρs plot in Fig. 2(b) which shows finite (zero)

superfluid density in the SF (MI) phase.
Interesting thing happens in the regime of large interac-

tions. It can be seen from Fig. 3 that for large U2 = 50
(1/U2 = 0.02), there are discrete jumps �ρ = 0.5 in ρ (blue
down triangles) with respect to increase in μ

U2
in the region

0 2 4
 μ/U

2

0

1

2

 ρ
s

0

1

2

3

4

 ρ

1/U
2
 = 0.02

1/U
2
 = 0.04

1/U
2
 = 0.06

(a)

(b)

FIG. 2. (a) ρ vs μ/U2 and (b) ρs vs μ/U2 plots for several
cuts through the phase diagram of Fig. 1 corresponding to 0.02
(green solid line), 0.04 (red dashed line), and 1/U2 = 0.06 (black
dot-dashed line).
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FIG. 3. Correlation functions �n(i, j) for a cut along 1/U2 =
0.02 in the phase diagram Fig. 1. The corresponding values of ρ (blue
down triangles) are shown for comparison.

between two plateaus corresponding to the MI(1) and MI(3)
phases. This indicates a change in the particle number �N =
2, since we have L = 4 in our CMFT calculation, in the region
which is a signature of pair formation. We can identify this
phase as the PSF phase which can be confirmed from the
pair correlation functions [12,27,58]. To this end we compute
the n-particle nearest-neighbor correlation functions using the
CMFT approach defined as

�n = 〈(a†
i )n(a j )

n〉, (5)

where i and j are the nearest-neighbor site index of our four-
site cluster.

In Fig. 3 we also plot the correlation functions �n for
n = 1, 2, and 3 corresponding to the single- (black circles),
two- (red squares), and three-particles (green up triangles),
respectively, for different values of μ/U2 at a fixed 1/U2 =
0.02 of the phase diagram given in Fig. 1. It can be seen that
at the plateau regions corresponding to the MI(1) and MI(3)
phases, all the correlation functions are vanishingly small.
However, for the values of ρ away from the plateau regions,
i.e., 1 < ρ < 3, �2 clearly dominates over �1 and �3. This is
a clear indication of the existence of the PSF phase which is
sandwiched between the MI(1) and MI(3) lobes in the large
U2 regime as shown in Fig. 1. There exists a SF-PSF phase
transition at these densities indicated by the green circles.

As mentioned before, the CMFT approach can predict
the quantum phases qualitatively and efficiently. However,
to concretely establish the existence of the PSF phase of
these two-body repulsively bound pairs we use the iPEPS
method discussed before. In our simulation we use various
physical quantities to identify different quantum phases. The
gapped MI phases are identified by looking at the behavior of
the chemical potential μ with respect to the average density
ρ. The SF and the PSF phases are characterized by their
respective order parameters defined as

OSF = |〈ai〉|2 (6)

and

OPSF = |〈a2
i 〉|2. (7)

0.48 0.49 0.5 0.51
0

1

2

3

 ρ
O

SF

O
PSF

0.4 0.45 0.5 0.55
 μ/U

2

0

1

2

3

(a)

(b)

FIG. 4. (a) iPEPS data for ρ, OSF, and OPSF for 1/U2 = 0.015
showing the MI(1), MI(3), and the PSF phases. (b) Similar calcula-
tions for a cut passing through the normal superfluid (SF) region at
1/U2 = 0.04. This phase is characterized by a nonvanishing value of
both OSF as well as OPSF while the PSF phase is characterized by a
vanishing OSF and nonzero OPSF.

We compute these parameters for several values of U2 and find
signatures of different phases and phase transitions similar to
that obtained using the CMFT method. In Fig. 4(a) we plot ρ

(black circles), OSF (red squares), and OPSF (green triangles)
against μ/U2 for fixed 1/U2 = 0.015, U3/U2 = −2, and U4 =
∞. Note that the choice of U4 restricts the local Hilbert space
to a maximum of three particles per site and simplifies our
iPEPS calculation while retaining the underlying physics of
the system. It can be clearly seen from Fig. 4(a) that there
exists two Mott plateaus at ρ = 1 and 3 corresponding to the
gapped MI(1) and MI(3) phases. Inside these plateau regions
both superfluid order parameters vanish. However, in the
region between the two MI phases, the value of OSF remains
vanishingly small, whereas OPSF becomes finite indicating the
existence of the PSF phase. We have also performed the same
calculation for a different cut that passes through the region of
normal superfluid (SF) as shown in Fig. 4(b) for 1/U2 = 0.04.
We find that both the OSF as well as the OPSF are nonzero in
this region which defines our SF phase.

It can be noted that the physics obtained using the CMFT
approach and the iPEPS method are similar to the one reported
in Ref. [27]. The important difference is the choice of the
interactions. We explicitly show that in the presence of two-
body repulsion the bosons prefer to move in pairs due to
the large three-body attraction and four-body repulsion. The
physics of the pair formation and the PSF phase on top of the
MI(1) phase can be understood from the energy consideration
as discussed in Ref. [27]. Due to the large three-body attrac-
tion the system will tend to acquire two particles at a time
to reach the energy minimum by forming a trimer. However,
because of the presence of uniform two-body repulsion from
the MI(1) background the added particles tend to move in
pairs without affecting the system energy. This leads to the
PSF phase in the system. This is indeed an interesting man-
ifestation of the multibody interactions in the Bose-Hubbard
model. We would like to mention that this pair formation is
not limited to the region between the MI(1) and MI(3) lobes.
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FIG. 5. iPEPS data for ρ, OSF, and OPSF for 1/U2 = 0.015 at
finite temperature. Here continuous and dashed lines are correspond-
ing to temperature T = 0.1 and 0.2, respectively, where T is the
inverse of the thermodynamic β.

One can in principle create the PSF phase between higher
Mott lobes such as between the MI(2) and MI(4) lobes. To
achieve this one needs to consider a five-body interaction term
by keeping terms up to M = 5 in the model given in Eq. (1).
Using the CMFT calculation we verify that the PSF in this
case can be obtained for suitable choice of repulsive U2, U3,
U5, and attractive U4 terms in Eq. (1). Because of the attractive
nature of U4 in this case, the value of U5 has to be very strong
and repulsive to prevent the collapse.

A. Finite temperature analysis

After discussing the zero temperature phase diagram of
the model shown in Eq. (2) we embark on to analyze the
effect of temperature on the system. As it is well known that
the temperature is an unavoidable parameter in the real cold
gas experiment [11,59,60] and the quantum phases are fragile
in presence of thermal fluctuation, it is pertinent to examine
the stability of the PSF phase. At this stage we perform
finite temperature calculations using iPEPOs to check the
survival of the PSF phase by gradually increasing the system
temperature T (T is the inverse of the thermodynamic β).
We compute the different order parameters for these thermal
states, i.e., OSF and OPSF along with ρ for the same choice
of parameters considered in Fig. 4(a) for the zero temperature
calculation and plot them in Fig. 5. We show two different
values of temperature such as T = 0.1 and T = 0.2 at which
the PSF phase clearly survives which can be seen from the
finite values of OPSF. Above this temperature the PSF phase
slowly disappears. This confirms that the PSF phase is stable
against the thermal fluctuation.

B. Effect of density induced tunneling

In this subsection we analyze the effect of density-induced
tunneling on the PSF phase [61]. It has been theoretically
shown that in optical lattice experiments, the density induced
tunneling plays an important role and has been experimentally
observed recently [62]. Although the amplitudes of such
tunneling are small compared to the conventional tunneling
amplitude t of the model shown in Eq. (2), the natural question

0.49 0.495 0.5 0.505
 μ/U

2

0

2

 Γ
2

1

2

3

 ρ

P = 0.10
P = 0.20

(a)

(b)

1/U
2
 = 0.015

FIG. 6. The figure shows the existence of the PSF phase in the
presence of density-induced tunneling (P). Here we plot particle
density (ρ) in (a) and pair correlation function (�2) in (b) for P = 0.1
(black lines with circles) and 0.2 (blue lines with triangles). The other
parameters are the same as considered in Fig 1 at U2 = 1/0.015.

to ask is whether the narrow region of the PSF phase will
survive in the presence of such density induced tunneling or
not. In this context we introduce the density-induced tunneling
term in Eq. (2) which is given by

HP = −P
∑
〈i, j〉

(a†
i (ni + n j )a j + H.c.), (8)

where P is the density-induced tunneling amplitude. Using
the CMFT approach, we show that, indeed, the PSF phase
survives up to a finite value of P. In the CMFT method, the
density-dependent tunneling term can be decoupled as

a†
i (ni + n j )a j ≈ ψ (a†

i ni + n ja j ), (9)

where the terms O(ψ3) are neglected [63] and ψ is the
superfluid order parameter.

In Fig. 6 we plot the behavior of various physical quantities
with respect to P for a cut through the phase diagram of Fig. 1
at 1/U = 0.015 which passes through the PSF phase. It can
be seen from Fig. 6(a), where we plot particle density (ρ)
for P = 0.1 and 0.2, that the ρ exhibits discrete jumps in
steps of δρ = 0.5, indicating a PSF phase. The corresponding
pair correlation function (�2) are plotted in Fig. 6(b) which
confirm the existence of the PSF phase for finite values of P.
However, when we further increase the P, the system exhibits
a normal SF phase for P = 0.3. We also analyze this situation
using the iPEPS method which is shown in Fig. 7. The figure
depicts that the OPSF (OSF) is finite (zero) for finite values of
P, indicating the existence of the PSF phase.

IV. CONCLUSIONS

In this paper we analyze a multibody interacting Bose-
Hubbard model and show the possibility of creating two-body
repulsive bound bosonic pairs in a two-dimensional optical
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FIG. 7. The existence of PSF phase for different values of density
dependent hopping amplitude P. Here we plot ρ (solid lines), OSF

(dashed lines), and OPSF (dot-dashed lines) for P = 0.1 and 0.2,
which indicate that the PSF survives for finite values of P.

lattice due to the combined effects of the multibody interac-
tions. We establish that for a very strong four-body repulsion a
suitable ratio between the three-body attraction and two-body

repulsion leads to the pair formation and hence the PSF phase
between the MI(1) and MI(3) lobes. This fact is concretely
demonstrated by analyzing the ground state properties of the
BH model using the CMFT approach as well as the iPEPS
method. Moreover, we show that this pair formation is stable
against the thermal fluctuation and density induced tunneling
effects which are inevitable in cold gas experiments. Due
to the recent development in the field of ultracold quantum
gas experiments, if it can be made possible to engineer the
multibody interactions among the bosons, then it will be
possible to create the repulsively bound pairs in an alternate
way as opposed to the already observed one [28]. Moreover,
this finding may provide scope to create and manipulate the
number of pairs in a controlled manner.
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