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Two-body quench dynamics of harmonically trapped interacting particles
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We consider the quantum evolution of a pair of interacting atoms in a three-dimensional isotropic trap where
the interaction strength is quenched from one value to another. Using exact solutions of the static problem we
are able to evaluate time-dependent observables such as the overlap between initial and final states and the
expectation value of the separation between the two atoms. In the case where the interaction is quenched from
the noninteracting regime to the strongly interacting regime, or vice versa, we are able to obtain analytic results.
Examining the overlap between the initial and final states we show that when the interaction is quenched from the
noninteracting to strongly interacting regimes the early time dependence dynamics are consistent with theoretical
work in the single impurity many-body limit. When the system is quenched from the strongly to noninteracting
regime we predict large oscillations in the separation between the two atoms, which arises from a logarithmic
divergence due to the zero-range nature of the interaction potential.
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I. INTRODUCTION

Understanding the evolution of nonequilibrium quantum
states is pertinent to a wide range of systems, such as, su-
perfluid turbulence, mesoscopic electrical circuits, and even
neutron stars. Such systems typically involve many interacting
components and as such it is essential to make appropriate ap-
proximations when trying to determine their nonequilibrium
properties. Alternatively it is possible to construct few-body
systems experimentally and probe their nonequilibrium quan-
tum phenomena. For example, harmonically trapped quantum
gases can be constructed atom by atom [1–4]. In such systems
it is possible to precisely control the number of atoms and
their interactions. In this context we focus on the quench
dynamics of two atoms in a harmonic trap interacting via
contact interactions.

The study of harmonically trapped few-body systems with
contact interactions [5–12] has previously been used to gain
insight into the thermodynamic properties of quantum gases
[13–23], particularly in the strongly interacting regime, and
have been experimentally studied in their own right [15]. In
this paper we focus on using the solutions for two interacting
atoms in a harmonic trap [5], a regime which is experimentally
achievable [2,4], to determine the quench dynamics of such a
system. Specifically, we consider scenarios where the zero-
range s-wave scattering length (as) is quenched via Feshbach
resonance [24–27] from one value to another. For such a
system we determine the quantum dynamics of the state
and evaluate the overlap between the initial and final states
(Ramsey signal) and the expectation value of the separation
between the atoms. There have been experimental measures
of the Ramsey signal [28] in the regime of impurity atoms
residing in a Fermi sea of other atoms and there have been
experimental measures of the separation between 6Li atoms
in a quenched anisotropic trap [29]. This experimental work

has been complimented by theoretical work [30–42]. Our
work is the trapped two-body limit of such systems. In this
context we find that the evolution of the Ramsey signal aligns
with equivalent many-body results in the short-time limit
[28,32], thus demonstrating that the early time many-body
dynamics are governed by the two-body interactions as found
in Refs. [32,40,41] and are independent of trapping geometry.
For the evaluation of the dynamics of the expectation value
of the separation between the atoms, we find that when the
initial state is strongly interacting and it is quenched to a
noninteracting regime large oscillations are predicted.

II. OVERVIEW OF THE TWO-BODY PROBLEM

In this work we explore the quench dynamics of a two-
body system residing in a harmonic potential. Specifically, we
consider two distinguishable particles with masses m1 and m2

at positions �r1 and �r2. These particles interact via a contact
interaction described by the Fermi pseudopotential [43]. The
static properties of such a system can be described with the
following two-body Hamiltonian:

Ĥ2b = − h̄2

2M
∇2

R − h̄2

2μ
∇2

r + Mω2R2

2
+ μω2r2

2

+ 2π h̄2as

μ
δ3(r)

∂

∂r
(r•), (1)

where we have used the following coordinate transformations:

�R = m1�r1 + m2�r2

M
, �r = �r1 − �r2.

In the above M = m1 + m2 and μ = m1m2/M, ω is the har-
monic trapping frequency and as is the s-wave scattering
length which characterizes the strength of the contact inter-
actions.
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FIG. 1. Eigenenergies of ĤRel as a function of the s-wave scat-
tering length (blue dots). The red lines correspond to Erel = (2n +
1/2)h̄ω with n ∈ Z�0, the eigenenergy of the relative Hamiltonian in
the unitary limit (as/aho → ±∞).

From Eq. (1) it is clear the the two-body Hamiltonian can
be split into two parts,

ĤCoM = − h̄2

2M
∇2

R + Mω2R2

2
, (2)

ĤRel = − h̄2

2μ
∇2

r + μω2r2

2
+ 2π h̄2as

μ
δ3(r)

∂

∂ (r)
(r•), (3)

such that Ĥ2b = ĤCoM + ĤRel.
The solution to ĤCoM is a simple harmonic oscillator

wave function φ(R). Additionally, the relative two-body wave
function is well understood [5]:

ψ (ν, r) = Nν	(−ν)e−r̃2/2U (−ν, 3/2, r̃2) (4)

= Nνe−r̃2/2
∞∑

k=0

L1/2
k (r̃2)

k − ν
, (5)

where L1/2
k (r̃2) are the associated Laguerre polynomials,

U (−ν, 3/2, r̃2) is Kummer’s function of the second kind,
r̃ = r/aho with aho = √

h̄/μω, and ν is the energy pseu-
doquantum number of the relative wave function such that
ERel = (2ν + 3/2)h̄ω. The normalization Nν is given by Nν =
[2πa3

hoZ (ν)]−1/2 where

Z (ν) = π	(1 − ν)[ψ (0)(−ν − 1/2) − ψ (0)(−ν)]

ν	(−ν − 1/2)
, (6)

with ψ (0) being the digamma function of degree 0 [44].
The values of the energy pseudoquantum number ν for

a given interaction strength as can be determined by the
following transcendental equation [5]:

aho

as
= 2	(−ν)

	(−ν − 1/2)
. (7)

The solutions to Eq. (7) are plotted in Fig. 1. As one ex-
pects in the noninteracting limit as/aho → 0, we recover the
simple harmonic oscillator energy spectrum: ERel = (2n +
3/2)h̄ω with n ∈ Z�0. In the strongly interacting (unitary)
limit as/aho → ±∞, it is found that ERel = (2n + 1/2)h̄ω

with n ∈ Z�0 (solid horizontal red lines), i.e., ν → n − 1/2.

III. QUENCH DYNAMICS

In general, if a system is initially in a state |
〉 and it is
quenched, then the state evolves as

|�(t )〉 = e−iĤ ′t/h̄|
〉 =
∞∑
j=0

〈
′
j ||
〉e−iE ′

j t/h̄|
′
j〉, (8)

where 
′
j are the eigenstates of the post-quench Hamiltonian

Ĥ ′, with corresponding eigenenergies E ′
j and the initial pre-

quench eigenstate, associated with the Hamiltonian Ĥ , is 
.
In the context of the two-body system we are considering

this implies

|�(t )〉 =
∞∑

j,k=0

〈φ′
k (R)ψ ′

j (r)||φ(R)ψ (r)〉

× e−i(E ′
j+E ′

k )t/h̄|φ′
k (R)ψ ′

j (r)〉. (9)

Since the quenches considered in this work are in the s-
wave scattering length the center of mass eigenstates remain
unaffected and Eq. (9) reduces to

|�(t )〉 =
∞∑
j=0

〈ψ ′
j (r)||ψ (r)〉

× e−i(E ′
j+ECoM )t/h̄|φ(R)ψ ′

j (r)〉. (10)

Following this formalism we will calculate two observ-
ables. In each case we start from an initial state |
〉 =
|φ(R)ψ (r)〉 characterized by the s-wave scattering length as.
The system is then quenched to a new s-wave scattering length
a′

s. The two observables we consider are the Ramsey signal,

S(t ) = 〈
||�(t )〉, (11)

the magnitude of which is the contrast, and the separation
between the particles,

〈r(t )〉 = 〈�(t )|r|�(t )〉. (12)

A. Contrast

After a quench the dynamics of the system can be probed
through a Ramsey interferometric measurement [28,30–32],
which allows the contrast to be measured. Previous work
regarding the contrast (and other quantities) in one- and
two-dimensional systems of two bosons has been undertaken
[36–39].

For our three-dimension system, utilizing Eq. (10), the
Ramsey signal reduces to

S(t ) =
∞∑
j=0

∣∣〈ψ (r)||ψ ′
j (r)〉∣∣2

e−i(E ′
j−ERel )t/h̄, (13)

where |ψ (r)〉 is the initial eigenstate, with eigenenergy ERel,
of ĤRel, with an s-wave scattering length as and the states
|ψ ′

j (r)〉 are the eigenstates of Ĥ ′
Rel, with an s-wave-scattering

length a′
s, with corresponding eigenenergies E ′

j . The general
properties of Eq. (13) can be understood via the realiza-
tion that |ψ ′

j (r)〉 rotates at an angular frequency E ′
j and

|〈ψ (r)||ψ ′
j (r)〉|2 determines the magnitude of the squared
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overlap of the prequench state and the jth post-quench eigen-
state.

In general, the coefficients |〈ψ (r)||ψ ′
j (r)〉|2 of the sum in

Eq. (13) can be evaluated. Specifically, defining ν to be the
pseudoquantum number for the initial state |ψ (r)〉, and ν ′

j
to be the energy pseudoquantum numbers for the final states
|ψ ′

j (r)〉, then

〈ψ (r)||ψ ′
j (r)〉 = 2πNνNν ′

j
a3

ho

∞∑
k=0

	(k + 3/2)

(k − ν)(k − ν ′
j )	(k + 1)

=
√

π

2νν ′
j

3F2

(
3
2 ,−ν ′

j,−ν; 1 − ν ′
j, 1 − ν; 1

)
√

Z (ν)Z (ν ′
j )

,

(14)

where 3F2(a, b, c; d, e; f ) is a generalized hypergeometric
function. From Eqs. (7), (13), and (14) it is possible to
numerically evaluate S(t ) for any quench from as to a′

s.
Below we consider two scenarios where the s-wave scatter-

ing length is quenched from as/aho = 0 to a′
s/aho = ±∞ and

from as/aho = ±∞ to a′
s/aho = 0. In these cases exact closed

form expressions for S(t ) can be found. From Eq. (7), and as
can be seen in Fig. 1, in the unitary limit ν j → j − 1/2. In
the noninteracting to unitary case the initial state |ψ (r)〉 is the
simple harmonic wave function with l = m = 0:

ψn00(r) = Nn0e−r̃2/2L1/2
n (r̃2)Y00(θ, φ),

Nn0 =
√√√√√

1

4πa6
ho

2n+3n!

(2n + 1)!!
, (15)

where Y00(θ, φ) is the lowest order spherical harmonic.
For the case where as/aho = 0 and a′

s/aho = ±∞ and the
initial state has quantum number n,

S(t ) = 4ei(2n+1)ωt	(n + 3/2)

(1 + 2n)2π3/2	(1 + n)

× 3F2

(
1

2
,−1

2
− n,−1

2
− n;

1

2
− n,

1

2
− n; e−2iωt

)
.

(16)

In the case where the initial state is the ground state (n = 0)
this reduces to

S(t ) = 2

π

[
eiωt

√
(1 − e−i2ωt ) + arcsin(e−iωt )

]
. (17)

The contrast is plotted in Fig. 2 [solid blue curve for Eq. (17)
and dashed-dotted red curve for Eq. (16) with n = 1], with
the upper figure showing the magnitude |S(t )|, and lower
figure showing the phase φ(t ), where we have parametrized
the Ramsey signal as S(t ) = |S(t )|e−iφ(t ). In general, the
contrast oscillates, with period π/ω, while the phase exhibits
a period of 2π/ω with a stepping behavior (ωt ≈ π/2) that
is particularly pronounced in the n � 1 case. A similar phase
feature has been experimentally and theoretically observed for
the case of a single impurity in a uniform Fermi sea [28].

It is also informative to examine the short-time dynamics
of the contrast in the limit ωt � 1. Expanding Eq. (17)

FIG. 2. Ramsey signal for as/aho = 0 to a′
s/aho = ∞ case as a

function of t . The upper (lower) panel plots |S(t )| [φ(t )], where
the Ramsey signal has been parametrized as S(t ) = |S(t )|e−iφ(t ). The
blue solid curve corresponds to the exact ground state result, Eq. (17),
the dashed-dotted red curve corresponds to the exact n = 1 result of
Eq. (16), and the dashed green curve corresponds to the early time
expansion for the ground state result, Eq. (18).

we find

S(t ) ≈ 1 − 11

3
√

2π
e−iπ/4(ωt )3/2, (18)

which is also plotted in Fig. 2 (dashed green curve).
Previous calculations which perturbatively evaluate the

Ramsey signal for a single Fermi impurity in a uniform sea of
fermions provide a useful comparison for the exact two-body
results presented above. For such a case, where the interaction
is quenched from as/aho = 0 to a′

s/aho = ±∞, it has been
shown that the short-time dynamics follow [32]

S(t ) ≈ 1 − 8

9

(
3m1

2πμ

)3/2

e−iπ/4(ωt )3/2, (19)

where we have assumed that the Fermi energy is 3h̄ω/2.
Equations (18) and (19) show that the short-time dynam-

ics are dominated by 1 − αt3/2 in each case. Perhaps what
is more remarkable is that for m1 = m2 we find that for
perturbative calculation, Eq. (19), α = 0.829 . . . e−iπ/4ω3/2

as compared to α = 0.825 . . . e−iπ/4ω3/2 for the two-body
calculation, Eq. (18). This supports the idea that the early
time dynamics are dominated by two-body effects [40] and
are independent of the trapping potential [41].

We also consider the reverse case where the system is
initially in the unitary limit and quenched to the noninteracting
limit. In the unitary case (as/aho = ±∞) with pseudoquantum
number ν j = j − 1/2:

ψ (ν j, r) = Nj−1/2e−r̃2/2
∞∑

n=0

L1/2
n (r̃2)

n − j + 1/2
, (20)

where

Nj−1/2 =
√

	(1/2 + j)

2π3a3
ho	(1 + j)

.

The final states are in the noninteracting limit (a′
s/aho = 0),

and so are simple harmonic wave functions as defined in
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FIG. 3. Ramsey signal for as/aho = ∞ and a′
s/aho = 0 as a func-

tion of t . The upper (lower) panel plots |S(t )| [φ(t )], where the
Ramsey signal has been parametrized as S(t ) = |S(t )|e−iφ(t ). The
blue solid curve corresponds to the exact result, Eq. (22), the dashed-
dotted red curve corresponds to the exact j = 1 result of Eq. (21),
and the dashed green curve corresponds to the early time expansion
of the ground state result, Eq. (23).

Eq. (15). As a result, the Ramsey signal is evaluated as

S(t ) = 2e−i(1−2 j)	( j + 1/2)

(2 j − 1)2π3/2	( j + 1)

× 3F2

(
3

2
,

1

2
− j.

1

2
− j;

3

2
− j,

3

2
− j; e−2iωt

)
, (21)

where j denotes the excitation of the initial state. In the case
where the initial state is the ground state ( j = 0) the Ramsey
signal reduces to

S(t ) = 2

π
arcsin(e−iωt ). (22)

For early times (ωt � 1) this becomes

S(t ) ≈ 1 − 2
√

2

π
e−iπ/4

(
1 + eiπ/2

12
ωt

)
(ωt )1/2. (23)

The exact ground state result, Eq. (22) (solid blue curve), the
early time dynamics, Eq. (23) (dashed green curve), and the
exact first excited state result, Eq. (21) with j = 1 (dashed-
dotted red curve), are plotted in Fig. 3. In general, the contrast
oscillates, with period π/ω, while the phase exhibits a period
of 2π/ω with a stepping behavior (ωt ≈ π/2) that is again
particularly pronounced in the n � 1 case. In contrast to the
previous case, shown in Fig. 2, we find that when the system
is quenched from unitarity to noninteracting S(t ) exhibits
nonanalytic cusps at ωt = 0, π, 2π . . . .

The Ramsey signal has been experimentally measured
using Ramsey interferometry techniques [28]. As outlined by
[31,32] the Ramsey signal can be related to the difference in
probabilities of different states.

Consider the two particles 1 and 2. Suppose that particle 1
has only one allowable state, |1〉, and particle 2 has two: |2 ↑〉
and |2 ↓〉. We assume that |2 ↓〉 does not interact with |1〉 but
|2 ↑〉 can, the interactions are parametrized by as.

For a general initial state of the system

|
〉 = (a|2 ↑〉 + b|2 ↓〉) ⊗ |1〉. (24)

For such a state a Ramsey pulse sequence has the following
form:

|�(t )〉 = U φ

π/2T (t )U φ=0
π/2 |
〉, (25)

where

U ϕ
π/2 = 1√

2

[
1 −ieiϕ

−ie−iϕ 1

]
,

T (t ) =
[

e−iĤ ′t/h̄ 0
0 e−iĤt/h̄

]
,

and φ is the phase of the second π/2 pulse relative to the first.
Evaluating the probability of particle 2 being in the |2 ↑〉 (P↑)
and |2 ↓〉 (P↓) states, given that the quench is applied after the
first π/2 pulse, results in

P↑ = 1

2
〈�(0)|{(a2 + b2) + (b2 − a2)Re[e−iφe−i(Ĥ ′−Ĥ )t/h̄]

− 2ab Im[e−iφe−i(Ĥ ′−Ĥ )t/h̄]}|�(0)〉, (26)

P↓ = 1

2
〈�(0)|{(a2 + b2) + (a2 − b2)Re[e−iφe−i(Ĥ ′−Ĥ )t/h̄]

+2ab Im[e−iφe−i(Ĥ ′−Ĥ )t/h̄]}|�(0)〉, (27)

and

P↑ − P↓ = (b2 − a2)Re[e−iφS(t )] − 2ab Im[e−iφS(t )].

(28)

Hence we can connect an experimentally measurable quantity
P↑ − P↓ to the Ramsey signal. In all the observables calculated
in this paper we have assumed a = 1 and b = 0.

B. Particle separation expectation value

Experiment has shown that it is possible to measure the
separation of two trapped 6Li atoms following a quench in
trap geometry [29], we believe it is possible to extend this to
a quench in interaction strength.

Following the same methodology as presented in the pre-
vious section, it is possible to evaluate the expectation value
of the interparticle separation via

〈r(t )〉 = 〈�(t )|r|�(t )〉

=
∞∑

j,k=0

〈ψn(r)||ψ ′
j (r)〉〈ψ ′

k (r)||ψn(r)〉

× 〈ψ ′
j (r)|r|ψ ′

k (r)〉e−i(E ′
k−E ′

j )t/h̄. (29)

We first consider the noninteracting (as/aho = 0) to inter-
acting (a′

s/aho �= 0) case, where ψn(r) is the noninteracting
simple harmonic oscillator wave function, Eq. (15), and ψ ′

j (r)
is the interacting wave function, Eq. (5), with pseudoquantum
number ν j . In this case

〈ψn(r)||ψ ′
j (r)〉 =

√
n + 1/2

(n − ν j )2Z (ν j )

√
	(n + 1/2)

	(n + 1)
(30)
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FIG. 4. The expectation of the particle separation as a function of
time, where as/aho = 0 and a′

s/aho = ∞, for the n = 0 case, Eq. (32).
Each curve corresponds to a different cutoff (Nmax) in the sum over
m and l in Eq. (32). Specifically, the blue dotted curve corresponds
to Nmax = 160, the green solid curve corresponds to Nmax = 80, the
red dashed curve corresponds to Nmax = 40, and the dot-dashed blue
curve corresponds to Nmax = 20. Because this sum is convergent all
curves are overlaid on top of one another.

and

〈ψ ′
k (r)|r|ψ ′

j (r)〉

= Nν j Nνk

∫
re−r̃2

	(−ν j )U (−ν j, 3/2, r̃2)

×	(−νk )U (−νk, 3/2, r̃2)d3r

= a

π2

√
	( j + 1

2 )	(k + 1
2 )

	( j + 1)	(k + 1)

∞∑
m=0

∞∑
n=0

×
[

(−1)m+n

(m − ν j )(n − νk )

(
m + 1/2

n

)(
n + 1/2

m

)]
. (31)

Note that by combining Eqs. (14), (29), and (31) one can
calculate the expectation value of the particle separation for
the general quench case. In the case where the initial state
is the ground state (n = 0) and the system is quenched to
unitarity (a′

s/aho → ∞ and ν j → j − 1/2) we find

〈r̃(t )〉 = − 4

π5/2

∞∑
m,l=0

(−1)m+l

1 + 2m
e−i(1+2l )ωt

×
( 1

2 + m

l

)( 1
2 + l

m

)
β

(
e−2iωt ,−1

2
− l,

3

2

)

× 2F1

(
−1

2
,−1

2
− m,

1

2
− m, e2iωt

)
, (32)

where β(z, a, b) is the incomplete beta function:

β(z, a, b) =
∫ z

0
t a−1(1 − t )b−1dt . (33)

Evaluating 〈r̃(t )〉 in this case results in an oscillating form,
with period π/ω, as shown in Fig. 4.

We now turn our attention to the case where the initial state
is in the unitary limit (as/aho = ∞) and the quench is to the

FIG. 5. The expectation of the particle separation as a function of
time, where as/aho = ∞ and a′

s/aho = 0, for the j = 0 case, Eq. (34).
Each curve corresponds to a different cutoff (Nmax) in the sum over
m and l in Eq. (34). Specifically, the dotted blue curve corresponds
to Nmax = 80, the solid green curve corresponds to Nmax = 40, the
dashed red curve corresponds to Nmax = 20, and the blue dot-dashed
curve corresponds to Nmax = 10.

noninteracting limit (a′
s/aho = 0) where we find

〈r̃(t )〉 = −
∞∑

m,l=0

16e−2i(m−l )ωt

	(1 + j)	(1 + l )	(1 + m)

× 	(1/2 + j)	(3/2 + m)	(3/2 + l )

[−1 + 4(m − l )2](1 − 2 j + 2m)(1 − 2 j + 2l )
,

(34)

where j denotes the initial state in the unitary limit. Equation
(34) is logarithmically divergent in the summation. This diver-
gence is most clearly demonstrated in Figs. 5 and 6. Figure 5
shows for j = 0 that although 〈r̃(t )〉 is periodic, with period
π/ω and the sum converges for tω = kπ , where k is an inte-
ger, it appears to diverge away from these points. Examining
〈r̃(t = π/2ω)〉 elucidates this more clearly as demonstrated
in Fig. 6, which plots 〈r̃(t = π/2ω)〉 as a function of the
maximum number of terms (Nmax) in the sum in Eq. (34). As
can be seen 〈r̃(t = π/2ω)〉 diverges logarithmically.

FIG. 6. 〈r̃(t = π/2ω)〉 for the j = 0 case as a function of the
cutoff (Nmax) in the sum over m and l in Eq. (34).
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FIG. 7. I0(r̃, t = π/2ω, Nmax) as a function of r̃ = r/aho for
Nmax = 10 (solid green curve), Nmax = 20 (dotted cyan curve),
Nmax = 40 (dashed red curve), and Nmax = 80 (black dot-dashed
curve). The thin solid blue curve is 1/r̃.

The origins of this divergence can be understood by
examining

In(r, t, Nmax) =
Nmax∑

l,m=0

〈ψn(r)||ψ ′
l (r)〉〈ψ ′

m(r)||ψn(r)〉

×ψ ′
l (r)r3ψ ′

m(r)e−2i(m−l )ωt , (35)

where for given initial state (n)

〈r̃(t )〉 = 4π

∫ ∞

0
lim

Nmax→∞
In(r, t, Nmax)dr. (36)

In the ground state (n = 0) this reduces to

I0(r̃, t, Nmax) = 8r̃3e−r̃2

π5/2

Nmax∑
l,m=0

e−2i(m−l )ωt

	(1 + l )	(1 + m)

×	(1/2 + l )1F1(−l, 3/2, r̃2)

×	(1/2 + m)1F1(−m, 3/2, r̃2). (37)

In Fig. 7 I0(r̃, t = π/2ω, Nmax) is plotted for increasing
values of the cutoff (Nmax) in the sum over m and l . From
this it is clear that as Nmax increases there is 1/r̃ tail in
I0(r̃, t = π/2ω, N ). A similar analysis for t = kπ/ω, where
k is an integer, reveals that at these specific times I0(r̃, t =
kπ/ω, Nmax) does not exhibit a 1/r̃ tail and hence the sum
is convergent. However, away from t = kπ/ω it is this 1/r̃
dependence which leads to the divergence in 〈r̃(t )〉.

This divergence naturally leads to three questions: where
does it come from, what does it mean in the context of
experiment, and why does this not happen in the reverse
case? Answering the second question first: in the context of
an experiment this result shows that if the system started in
the ground state, with as/aho → ±∞, and is quenched to
the noninteracting regime, an ensemble measurement of the
separation between the two particles would exhibit a periodic
structure but would also, away from t = kπ/ω, diverge. This
is concerning on many levels and as such it is worth consider-
ing the first question which can be addressed by evaluating
the wave function of the initial state [Eq. (5)], which in
the limit r̃ → 0 approaches 1/r̃. A careful analysis of this
reveals that completing the sum to ∞ in Eq. (5) is crucial
in describing the properties of the interacting wave function

as r̃ → 0. This means that after the quench has occurred (to
the noninteracting regime) this cusp leads to a divergence
in momenta which can only be transferred into high-energy
noninteracting states. Since this work considers a zero-range
interaction, this means a divergence in momenta and hence
a 1/r̃ dependence in I0(r̃, t, N → ∞). This then helps us
to understand what this means in the context of an actual
experiment. In reality there is a cutoff, the interaction is not
zero range. However, this cutoff is short range and can be
estimated to be of order <10−9 m and hence one expects that
the oscillations in 〈r̃(t = π/2ω)〉 should have an amplitude
of order >7aho. This is still a very large oscillation, an order
of magnitude larger than the case where the interactions are
quenched from as/aho → 0 to a′

s/aho → ±∞, see Fig. 4. For
the third question; in the noninteracting to unitary case we
believe there is no divergence because the wave functions
being projected onto (the noninteracting states) do not have
a cusp at r̃ = 0 and so there is no corresponding divergence in
momenta.

IV. CONCLUSION

In this work we have considered the dynamical properties
of a harmonically trapped interacting two-body system, where
the contact interactions are quenched between two values.
Our work has focused on determining the Ramsey signal and
the expectation value of the interparticle separation particle.
Although the methodology in determining the dynamical
properties of these quantities is general in this work we have
chosen to focus on two quenches: (i) from a noninteracting
(as/aho → 0) state to a unitary (a′

s/aho → ±∞) regime and
(ii) from a unitary (as/aho → ±∞) state to a noninteracting
(a′

s/aho → 0) regime. In these scenarios results for the Ram-
sey signal are exact closed form expressions, and when the
system is initially in the ground state the Ramsey signal is
given by elementary functions.

For the Ramsey signal calculations we found periodic be-
havior, as one would expect, however, it is notable that for the
case where the quench is from the noninteracting state to the
unitary regime the results on short-time scales match closely
previous theoretical work in the limit of a single impurity in
a uniform Fermi sea [32]. This originates from the feature
that the short-term behavior of these systems is governed by
the two-body dynamics, as found in Refs. [32,40,41] and is
therefore independent of the trapping potential.

For the calculations of the expectation value of the separa-
tion between the two particles, the results for a quenches be-
tween noninteracting and unitary regimes exhibited expected
periodic behavior with an amplitude of ∼0.3aho, for quenches
from the noninteracting to the unitary regimes. For quenches
from the unitary regime to the noninteracting regime we find
a logarithmic divergence in the separation, which arises due to
the contact interaction breaking down at small length scales.
By imposing a cutoff based on the length scale of the van der
Waals force, we expect that the size of these oscillations can
be considerably larger ∼7aho. Additionally given that the 7aho

result is dependent on the interaction cut-off length scale this
could open an avenue of investigation into the length scale of
the interatomic interaction.

Finally, we note that given experimental advances in the
building of trapped few-atom systems [1–4] it should possible
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to experimentally investigate the dynamics discussed in this
work. Specifically, Ref. [29] performed an experiment in
which two trapped 6Li in distinct hyperfine states underwent
a quench in trap geometry and the interatomic distance was
measured. This is tantalizingly close to an experimental test
of the results presented here, rather than a quench in trap
geometry, what is needed is a quench in interaction strength,
which can and has been performed in other experiments [28].
Additionally, we note that from the theoretical perspective this

work can be extended to show how the contact parameter
[45–47] which evolves as the two-body system is quenched
and to the three-body problem [6–9,23,42].
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