
PHYSICAL REVIEW A 102, 023310 (2020)
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high-temperature limits
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The bulk viscosity of two-component fermions with a zero-range interaction is revisited both in two and three
dimensions. We first point out that the “standard” Kubo formula employed in recent studies has flaws to give
rise to an unphysical divergent bulk viscosity even in a limit where it is supposed to vanish. The corrected Kubo
formula as well as the sum rule is, then, carefully rederived so as to confirm that the bulk viscosity, indeed,
vanishes in the free, unitarity, and dimer limits. We also discuss that the recently found discrepancy between
the Kubo formalism and the kinetic theory for the bulk viscosity is attributed to the fact that the quasiparticle
approximation assumed by the latter breaks down even in the high-temperature limit.
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I. INTRODUCTION

Two-component fermions with a zero-range interaction
constitute a system of simple elegance that is parametrized
solely by a scattering length a [1]. As the inverse scattering
length increases, the system evolves from a free Fermi gas
(free limit) to a free Bose gas of tightly bound dimers (dimer
limit).1 In particular, when the scattering length diverges
(unitarity limit), the scale and conformal invariance emerge
[2–4] so that its equation of state obeys the ideal gas law,
although the system is strongly interacting. The conformal
invariance manifests itself also in dynamic properties, such
as the vanishing bulk viscosity [5–7].

Recently, the frequency-dependent bulk viscosity (bulk
viscosity spectral function) for an arbitrary scattering length
was studied both in two and three dimensions based on the
quantum virial expansion [8–10]. The starting point was the
“standard” Kubo formula for the bulk viscosity,

Re[ζ (ω)] = Im[R��(ω)]

ω
, (1)

where

RXY (ω) = i

Ld

∫ ∞

0
dt ei(ω+i0+ )t 〈[X̂ (t ), Ŷ (0)]〉 (2)

for X̂ = Ŷ = �̂ is the stress-stress response function at zero
wave vector. Because the trace of the integrated stress tensor
operator is provided by d�̂ = 2Ĥ + Ĉ/(�d−1mad−2) and the
commutator of the Hamiltonian with any operator in the grand
canonical average vanishes, the above Kubo formula turns
into the favorite form of

Re[ζ (ω)] = 1

(d�d−1mad−2)2

Im[RCC (ω)]

ω
, (3)

1The free and dimer limits are often referred to as the Bardeen-
Cooper-Schrieffer and Bose-Einstein condensation limits, respec-
tively, which are, however, avoided in this paper because we do not
necessarily work below the superfluid critical temperature.

where Ĉ is the contact operator [11,12]. It is its zero-frequency
limit that corresponds to the bulk viscosity in hydrodynamics.
The latter formula was, then, evaluated systematically in the
high-temperature limit where the fugacity serves as a small
expansion parameter [8–10].

Actually, these formulas have both technical and physi-
cal flaws (see also Ref. [13]). In order to derive Eq. (3),
three terms, such as Im[RHH (ω)]/ω are dropped in Eq. (1)
on the ground that the numerator vanishes. However, cau-
tion is required in the zero-frequency limit because the de-
nominator also vanishes. Indeed, by employing the spectral
representation,

RXY (ω) = − 1

Ld Z

∑
m,n

e−βEm − e−βEn

ω + Em − En + i0+

× 〈m|X̂ |n〉〈n|Ŷ |m〉, (4)

and taking its imaginary part, one finds

Im[RHH (ω)]

ω
= π

Ld Z
δ(ω)

∑
n

βe−βEn E2
n (5)

for X̂ = Ŷ = Ĥ . This term, thus, diverges at zero frequency
for an arbitrary scattering length including the free and uni-
tarity limits where the bulk viscosity is supposed to vanish.
Whether this and the other two terms should be dropped or
not is ambiguous if one starts with Eq. (1).

Even if one takes Eq. (3) for granted, which now van-
ishes in the free and unitarity limits, it gives rise to a term
proportional to δ(ω)/a4 in the dimer limit (see Footnote 7 at
the end of Sec. III C). Because the system in the dimer limit
is a free Bose gas of tightly bound dimers, it should exhibit
scale invariance if probed at a lower frequency than their
binding energy. Therefore, our physical intuition supposes
that the bulk viscosity vanishes again, which conflicts with
the divergent bulk viscosity of Eq. (3) in the dimer limit.

The purpose of this paper is to demonstrate that the above
flaws are resolved by correcting the Kubo formula in Eq. (1).
Although the corrected Kubo formula has been known since
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long ago [14,15], it is not well appreciated by the literature
in the context of ultracold atom physics. Therefore, we first
review its derivation as well as the sum rule in Sec. II and
then carefully evaluate the corrected Kubo formula in Sec. III,
confirming that the bulk viscosity, indeed, vanishes in the free,
unitarity, and dimer limits. We also revisit the bulk viscosity
in the high-temperature limit in Sec. IV and discuss a possible
origin of the discrepancy between the Kubo formalism and
the kinetic theory found recently in Refs. [8–10]. Finally,
Sec. V is devoted to a summary of this paper and some useful
formulas regarding Kubo’s canonical correlation function are
presented in the Appendix.

In what follows, we will set h̄ = kB = 1, and implicit sum-
mations over repeated indices are assumed throughout this
paper. Also, an integration over d-dimensional wave vector
or momentum is denoted by

∫
k ≡ ∫

dk/(2π )d for the sake
of brevity.

II. KUBO FORMULA

The Kubo formula for the bulk viscosity can be derived
by matching current responses against an external force be-
tween microscopic and low-energy effective descriptions, the
latter of which is, of course, hydrodynamics. Our derivation
reviewed in this section partly follows that in Ref. [15] (see
Appendix B therein).

A. Microscopics

We first consider that the system is weakly perturbed by an
external vector potential so that the microscopic Hamiltonian
reads

Ĥ → ĤA(t ) =
∫

dr
[Diψ̂σ (r)]†[Diψ̂σ (r)]

2m
+ V̂ , (6)

where m is a mass of particles and Di ≡ ∂i − iAi(t, r) is the
covariant derivative. Accordingly, the current density operator
is modified into

Ĵ A
i (t, r) ≡ − δĤA(t )

δAi(t, r)
= Ĵi(r) − N̂ (r)

Ai(t, r)

m
, (7)

with N̂ (r) = ψ̂†
σ (r)ψ̂σ (r) and Ĵi(r) = [ψ̂†

σ (r)∂iψ̂σ (r) −
∂iψ̂

†
σ (r)ψ̂σ (r)]/(2im) being the unperturbed number and

current density operators, respectively. The linear-response
theory predicts that the expectation value of Eq. (7) is
provided by

Ji(t, r) = 〈
Ĵ A

i (r)
〉 + i

∫ t

−∞
dt ′

∫
dr′〈[Ĵi(t, r), Ĵ j (t

′, r′)]〉

× Aj (t
′, r′) + O(A2), (8)

where Ô(t, r) ≡ eiĤtÔ(r)e−iĤt is an operator in the
Heisenberg representation and 〈· · · 〉 ≡ Tr[e−β(Ĥ−μN̂ ) · · · ]/
Tr[e−β(Ĥ−μN̂ )] is an expectation value without the perturbation
[16]. Then, by setting 〈N̂ (r)〉 = N and 〈Ĵi(r)〉 = 0
in thermodynamic equilibrium, the spacetime Fourier

transformation leads to

Ji(w, k) = −N Ai(w, k)

m
+ RJiJ j (w, k)Aj (w, k) + O(A2),

(9)

where

RXY (w, k) ≡ i
∫ ∞

0
dt

∫
dr eiwt−ik·r〈[X̂ (t, r), Ŷ (0, 0)]〉

(10)

is a response function and w denotes an arbitrary complex
frequency with Im[w] > 0. Although w is eventually replaced
by ω + i0+ for a real frequency ω, it is of technical help to
work on the upper-half plane of complex w until the very end
of all calculations.

It will turn out to be favorable to express the current-current
response function in terms of Kubo’s canonical correlation
function,

KXY (w, k) ≡
∫ ∞

0
dt

∫
dr eiwt−ik·r

∫ β

0

dτ

β

×〈δX̂ (t − iτ, r)δŶ (0, 0)〉, (11)

where δÔ(t, r) ≡ Ô(t, r) − 〈Ô(t, r)〉 is an operator with its
expectation value subtracted [17]. After some calculations as
detailed in Appendix 1, we obtain

iwRJiJ j (w, k) = −βKπikπ jl (w, k)
kkkl

m2
, (12)

where π̂i j (r) is the unperturbed stress tensor operator obeying
the momentum continuity equation,

m ∂t Ĵi(t, r) + ∂ jπ̂i j (t, r) = 0. (13)

Therefore, the current response is found to be

Ji(w, k) = −
[

mN δi j + βKπikπ jl (w, k)
kkkl

iw

]
Aj (w, k)

m2

+ O(A2), (14)

in the microscopic description.

B. Hydrodynamics

We, then, consider that the system perturbed at low fre-
quency and wave vector is described by hydrodynamics,
which is founded on the number continuity equation,

∂tN (t, r) + ∂iJi(t, r) = 0, (15)

the momentum continuity equation,

m ∂tJi(t, r) + ∂ jπi j (t, r) = N (t, r)Ei(t, r) + J j (t, r)Fi j (t, r),
(16)

and the energy continuity equation,

∂tH(t, r) + ∂iQi(t, r) = Ji(t, r)Ei(t, r). (17)

Here, Ei(t, r) = −∂t Ai(t, r) and Fi j = ∂iA j (t, r) − ∂ jAi(t, r)
are the external electric and magnetic fields, respectively,
and the conserved charge densities and their fluxes are to be
expressed in terms of the local thermodynamic variables and
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the fluid flow velocity vi(t, r). The constitutive relations for
normal fluids read

Ji(t, r) = N (t, r)vi(t, r) (18)

for the number current density,

H(t, r) = E (t, r) + m

2
N (t, r)[v(t, r)]2 (19)

for the energy density,

πi j (t, r) = p(t, r)δi j + mN (t, r)vi(t, r)v j (t, r) − σi j (t, r)
(20)

for the stress tensor,

Qi(t, r) = [H(t, r) + p(t, r)]vi(t, r) − σi j (t, r)v j (t, r)

− κ ∂iT (t, r) (21)

for the energy current density with

σi j =
(

ζ − 2

d
η

)
δi j∂kvk (t, r) + η[∂iv j (t, r) + ∂ jvi(t, r)],

(22)

where ζ is the bulk viscosity, η is the shear viscosity, and κ is
the thermal conductivity [18]. We choose the number density
N (t, r) and the internal energy density E (t, r) as the indepen-
dent variables so that the pressure p(t, r) = p[N (t, r), E (t, r)]
and the temperature T (t, r) = T [N (t, r), E (t, r)] are locally
determined by the equations of state.

When the perturbation by the external vector poten-
tial is weak, the thermodynamic variables slightly deviate
from their equilibrium values so that δN (t, r) = N (t, r) −
N , δE (t, r) = E (t, r) − E , and vi(t, r) are as small as O(A).
After linearizing the hydrodynamic equations in Eqs. (15)–
(17), the spacetime Fourier transformation leads to

− iw δN (w, k) + N ikivi(w, k) = 0, (23)

− mN iwvi(w, k) +
(

∂ p

∂N

)
E

ikiδN (w, k)

+
(

∂ p

∂E

)
N

ikiδE (w, k) +
(

ζ + d − 2

d
η

)
kik jv j (w, k)

+ η k2vi(w, k) = N iwAi(w, k), (24)

− iw δE (w, k) + (E + p)ikivi(w, k)

+ κ

(
∂T

∂N

)
E

k2δN (w, k) + κ

(
∂T

∂E

)
N

k2δE (w, k) = 0.

(25)

Finally, by eliminating δN (w, k) and δE (w, k), the current
response up to O(k2) is found to be

Ji(w, k) = −
[

mN δi j −
(

∂ p

∂N

)
E
N kik j

(iw)2

−
(

∂ p

∂E

)
N

(E + p)
kik j

(iw)2
+

(
ζ + d − 2

d
η

)
kik j

iw

+ η
k2

iw
δi j + O(k3)

]
Aj (w, k)

m2
+ O(A2), (26)

in the hydrodynamic description.

Here, it is worthwhile to emphasize that the second and
third terms in the square brackets of Eq. (26) originate from
the pressure fluctuations associated with the fluctuations of the
number and energy densities, respectively, which are essential
to the correct Kubo formula for the bulk viscosity [14].
However, such pressure fluctuations were neglected in Ref. [6]
by stating “In the long-wavelength limit, the contributions
to the stress tensor coming from viscous terms dominate
over contributions from pressure fluctuations,” which we find
ungrounded because both the contributions are O(k2). We also
note that the second and third terms are combined into the
sound velocity,

mc2
s ≡

(
∂ p

∂N

)
S/N

=
(

∂ p

∂N

)
E

+
(

∂ p

∂E

)
N

E + p

N , (27)

so as to relate the pressure fluctuations to the gapless sound
mode with S being the entropy density.

C. Bulk viscosity

Now, by matching the current responses between the mi-
croscopic and hydrodynamic descriptions in Eqs. (14) and
(26) at low frequency and wave vector, we obtain

lim
w→i0+

[
βKπikπ jl (w, 0)

kkkl

k2 + mc2
sN

iw

kik j

k2

]

=
(

ζ + d − 2

d
η

)
kik j

k2 + ηδi j . (28)

Here, Kπikπ jl (w, 0) is symmetric under the exchanges of i ↔ k
and j ↔ l by definition of the stress tensor operator as well
as under (ik) ↔ ( jl ) according to the Onsager reciprocal
relations. Because the rotational invariance dictates that such
a fourth-order tensor is decomposed into a sum of δikδ jl and
δi jδkl + δilδ jk , we find

lim
w→i0+

[
βKπikπ jl (w, 0) + mc2

sN
iw

δikδ jl

]

=
(

ζ − 2

d
η

)
δikδ jl + η(δi jδkl + δilδ jk ), (29)

so that the bulk and shear viscosities are provided by

ζ = lim
w→i0+

[
βKππ (w, 0) + mc2

sN
iw

]
, (30)

η = lim
w→i0+

βKπxyπxy (w, 0), (31)

where dπ̂ (r) ≡ π̂ii(r) is the trace of the stress tensor operator.
It is customary to refer to the right-hand side of Eq. (30),

ζ (w) ≡ βKππ (w, 0) + mc2
sN

iw
, (32)

as a frequency-dependent complex bulk viscosity for w →
ω + i0+. Because the bulk viscosity is provided by ζ =
limw→i0+ ζ (w), the singularity of the second term at w = 0
originating from the gapless sound mode should be canceled
by the same singularity inherent in the first term. Actually,
the two terms can elegantly be combined so as to modify the
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stress tensor operator as

ˆ̃π (r) ≡ π̂ (r) −
[(

∂ p

∂N

)
E
N̂ (r) +

(
∂ p

∂E

)
N
Ĥ(r)

]
, (33)

where the subtracted terms represent the pressure fluctuations
with N̂ (r) and Ĥ(r) being the number and energy density
operators, respectively. After some calculations as detailed in
Appendix 2, we obtain the succinct form of

ζ (w) = βKπ̃ π̃ (w, 0), (34)

which is nothing other than the Kubo formula for the bulk
viscosity [14,15]. We note that the canonical correlation func-
tion is favorable to clean up the rather involved expression in
terms of the stress-stress response function [13] as detailed in
Appendix 3.

D. Sum rule

The sum rule for the frequency-dependent complex bulk
viscosity from Eq. (32) reads∫ ∞

−∞

dω

π
ζ (ω + i0+)

=
∫

dr
∫ β

0
dτ 〈δπ̂ (−iτ, r)δπ̂ (0, 0)〉 − mc2

sN , (35)

where the frequency integration sets the two operators at equal
time. In order to further evaluate it, we from now on specialize
to two-component fermions with a zero-range interaction in
d spatial dimensions for which the trace of the stress tensor
operator is provided by

π̂ (r) = 2Ĥ(r)

d
+ Ĉ(r)

d�d−1mad−2
, (36)

up to irrelevant total derivatives [12]. Here, �d−1 ≡
(4π )d/2/2�(2 − d/2) = 2, 2π, 4π coincides with the surface
area of the unit (d − 1)-sphere for d = 1, 2, 3, and Ĉ(r) is the
contact density operator [19], which is related to the derivative
of the Hamiltonian density with respect to the scattering
length as

Ĉ(r) = �d−1mad−1 ∂Ĥ(r)

∂a
. (37)

Accordingly, the derivative of the stress tensor operator with
respect to the scattering length turns into

∂π̂ (r)

∂a
= (4 − d ) Ĉ(r)

d�d−1mad−1
, (38)

because of ∂ Ĉ(r)/∂a = 0 for 2 � d < 4.2 The spatial inte-
grals of N̂ (r), Ĥ(r), Ĉ(r), and π̂ (r) are to be denoted by
N̂, Ĥ , Ĉ, and �̂, respectively, and their expectation values
by O = 〈Ô(r)〉 except for the pressure p = 〈π̂ (r)〉.

2This follows from Ĉ(r) ≡ (mg)2ψ̂†
σ (r)ψ̂†

τ (r)ψ̂τ (r)ψ̂σ (r)/2, mg =
�d−1(d − 2)/[a2−d − �d−2/�(d/2)�(2 − d/2)], ∂Ĉ(r)/∂a =
2mgĈ(r)/(�d−1ad−1), and g → 0 in the limit of � → ∞ [see also
Eq. (56) below].

Then, by employing the following properties of the canon-
ical correlation function at equal time,3∫ β

0
dτ 〈δĤ (−iτ )δÔ(0)〉 = −β

(
∂〈Ô(0)〉

∂β

)
βμ,a

, (39)

∫ β

0
dτ 〈δĈ(−iτ )δÔ(0)〉

= −�d−1mad−1

⎡
⎣(

∂〈Ô(0)〉
∂a

)
β,μ

−
〈

∂Ô(0)

∂a

〉⎤
⎦, (40)

as well as the thermodynamic identities,4(
∂ p

∂β

)
βμ,a

= −E + p

β
, (41)(

∂ p

∂a

)
β,μ

= − C
�d−1mad−1

, (42)

the sum rule for the frequency-dependent complex bulk vis-
cosity is found to be∫ ∞

−∞

dω

π
ζ (ω + i0+) = d + 2

d
p + (4 − d )C

d2�d−1mad−2
− mc2

sN .

(43)

Our sum rule determined solely by thermodynamics turns
out to coincide with that derived in Ref. [6], which we find
unexpected because the last term originates from the pressure
fluctuations neglected therein. Finally, the thermodynamic
identities together with the dimensional analysis, as detailed
in Appendix E of Ref. [6],5 simplifies the sum rule into∫ ∞

−∞

dω

π
ζ (ω + i0+) = − a3−d

d2�d−1m

(
∂C
∂a

)
N ,S

. (44)

Here, both N and S (as opposed to S/N [6,23]) should be
fixed in differentiating C with respect to a.

III. FREE, UNITARITY, AND DIMER LIMITS

We evaluate the Kubo formula for the frequently-
dependent complex bulk viscosity derived in the previous
section, whose real part is supposed to vanish at an arbitrary
frequency in the free and unitarity limits and at a lower
frequency than the binding energy of dimers in the dimer
limit.

3Here, it is helpful to recall ∂e−βĤ/∂a =
− ∫ β

0 dτ e−(β−τ )Ĥ (∂Ĥ/∂a)e−τ Ĥ , which follows from h(β ) ≡
eβĤ∂e−βĤ/∂a = ∫ β

0 dτ h′(τ ) and h′(τ ) = −eτ Ĥ (∂Ĥ/∂a)e−τ Ĥ .
4They follow from the generalized Gibbs-Duhem relation d p =

S dT + N dμ − C da/(�d−1mad−1), including the differential of
the scattering length [20–22] and the Euler relation p = TS +
μN − E .

5The dimensional analysis dictates p = N (d+2)/d p̃(N 1/d a,S/N ),
and, thus, mc2

sN = (d + 2)p/d + (a/d )(∂ p/∂a)N ,S where the
last term is further evaluated with Tan’s pressure relation p =
2E/d + C/(d�d−1mad−2 ) and adiabatic relation (∂E/∂a)N ,S =
C/(�d−1mad−1) [20–22].
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A. Free and unitarity limits

In the free and unitarity limits where the system is scale
invariant, the last term of the stress tensor operator in Eq. (36)
is negligible because Ĉ(r) vanishes in the free limit and a
diverges in the unitarity limit. Accordingly, the equation of
state obeys the ideal gas law p = 2E/d so that the modified
stress tensor operator in Eq. (33) reads ˆ̃π (r) = 0. Therefore,
the frequency-dependent complex bulk viscosity is found to
vanish at an arbitrary frequency,

ζ (ω + i0+) = 0, (45)

without any ambiguity discussed in Sec. I because the
operator evaluated by the Kubo formula in Eq. (34) is
identically zero.

B. Contact correlation

Although the canonical correlation function provides the
succinct form of the frequently-dependent complex bulk vis-
cosity, the response function is of practical help because the
standard diagrammatic method can be applied. As detailed
in Appendix 3, Eq. (32) can be expressed in terms of the
stress-stress response function and the sum rule as

ζ (w) = Rππ (w, 0)

iw
− 1

iw

∫ ∞

−∞

dω

π
ζ (ω + i0+). (46)

In particular, for two-component fermions with a zero-range
interaction, the substitution of Eqs. (36) and (44) leads to

ζ (w) = 1

iw

RCC (w, 0)

(d�d−1mad−2)2
+ 1

iw

a3−d

d2�d−1m

(
∂C
∂a

)
N ,S

,

(47)

where the commutator of the Hamiltonian with any operator in
the grand canonical average can safely be dropped by working
on the upper-half plane of complex w.

In order to evaluate the contact-contact response function,
we first introduce the pair propagator in the medium above the
superfluid critical temperature [24],

[D(ip0, p)]−1 = 1

g
−

∫
q

1 − fF
( (p/2+q)2

2m

) − fF
( (p/2−q)2

2m

)
ip0 − p2

4m − q2

m + 2μ
,

(48)

whose diagrammatic representation is depicted in Fig. 1.
Here, g < 0 is a bare coupling constant, p0 = 2πn/β is the
bosonic Matsubara frequency, and fF (ε) = 1/[eβ(ε−μ) + 1]
is the Fermi-Dirac distribution function. Figure 1 also de-
picts the diagrammatic representation of the contact-contact
response function,

RCC (ik0, k) = m4

β

∑
p0

∫
p

D(ik0 + ip0, k + p)D(ip0, p),

(49)

which fully incorporates two-body physics and, thus, becomes
exact both in the dimer limit and in the high-temperature limit.
The summation over the bosonic Matsubara frequency can
be performed by employing the complex contour integration

FIG. 1. Diagrammatic representation of (top) the pair propagator
and (bottom) the contact-contact response function, which become
exact both in the dimer limit and in the high-temperature limit. The
single and double lines represent the fermion and pair propagators,
respectively, whereas the dot is a bare coupling constant, and the
square is to insert the contact density operator.

together with the spectral representation of the pair propaga-
tor,

D(ip0, p) =
∫ ∞

−∞

dE

π

Im[D(E − i0+, p)]

ip0 − E
, (50)

so that we obtain

RCC (ik0, k)

= −
∫∫ ∞

−∞

dE

π

dE ′

π

∫
p

(
1

eβE − 1
− 1

eβE ′ − 1

)

× Im[m2D(E − i0+, k + p)] Im[m2D(E ′ − i0+, p)]

ik0 + E − E ′ .

(51)

Finally, by setting ik0 → w and k = 0 and changing the inte-
gration variables to ε(′) = E (′) − p2

4m + 2μ, the contact-contact
response function turns into

RCC (w, 0)

= −
∫∫ ∞

−∞

dε

π

dε′

π

∫
p

[
fB

(
ε + p2

4m

)
− fB

(
ε′ + p2

4m

)]

× Im[m2Dp(ε − i0+)] Im[m2Dp(ε′ − i0+)]

w + ε − ε′ , (52)

where fB(ε) = 1/[eβ(ε−2μ) − 1] is the Bose-Einstein distri-
bution function and Dp(ε) ≡ D(ε + p2/4m − 2μ, p) is the
pair propagator in the center-of-mass frame with the residual
dependence on its momentum due to the medium.

Similarly, the contact density itself is provided by

C = −m2

β

∑
p0

∫
p

eip00+
D(ip0, p), (53)

where the summation over the bosonic Matsubara frequency
leads to

C =
∫ ∞

−∞

dε

π

∫
p

fB

(
ε + p2

4m

)
Im[m2Dp(ε − i0+)], (54)
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with the same pair propagator introduced above.

C. Dimer limit

The pair propagator is further simplified in the dimer
limit a → +0, where fF (ε > 0) and fB(ε > 0) are negligible
because of 2μ = −1/ma2 → −∞ so that the pair propagator
is reduced to that in the vacuum. The integration over q can,
thus, be performed to lead to

D(ε − i0+) = �d−1

m

d − 2

a2−d − (−mε + i0+)d/2−1
, (55)

where the subscript of p is dropped on the left-hand side and
the bare coupling constant is replaced by

g = �d−1

m

d − 2

a2−d − �d−2

�(d/2)�(2−d/2)

, (56)

in the cutoff regularization with |q| < �. By substituting its
imaginary part,

Im[D(ε − i0+)] = θ (a)
2π�d−1

m2a4−d
δ

(
ε + 1

ma2

)

+ θ (ε) Im[D(ε − i0+)], (57)

into the contact-contact response function in Eq. (52), we
obtain

RCC (w, 0) = �d−1m2N
a4−d

∫ ∞

0

dε

π
Im[D(ε − i0+)]

×
(

1

ε + 1
ma2 − w

+ 1

ε + 1
ma2 + w

)
, (58)

where N = 2
∫

p fB(p2/4m − 1/ma2) is the number density

with 1/ma2 being the binding energy of dimers.
Now, turning to thermodynamics in the dimer limit, the

pressure of a free Bose gas of tightly bound dimers is
provided by

p = − 1

β

∫
p

ln

{
1 − exp

[
−β

(
p2

4m
− 1

ma2
− 2μ

)]}
, (59)

from which all thermodynamic variables are readily obtained
including (

∂C
∂a

)
N ,S

= −�d−1(4 − d )N
a5−d

. (60)

Then, by employing the following identity,6

�d−1(4 − d )

2ma2−d
=

∫ ∞

0

dε

π

Im[D(ε − i0+)]

ε + 1
ma2

, (61)

and comparing it with Eq. (58), the sum rule is found to be
related to the contact-contact response function at w = 0 as

− a3−d

d2�d−1m

(
∂C
∂a

)
N ,S

= RCC (0, 0)

(d�d−1mad−2)2
. (62)

6This follows by taking the limit of w → −1/ma2 on both sides of
the spectral representation D(w) = ∫ ∞

−∞ dε Im[D(ε − i0+)]/[π (w −
ε)] together with Eq. (57).

FIG. 2. Frequency-dependent complex bulk viscosity ζ (ω +
i0+) in the dimer limit for (top) d = 2 and (bottom) d = 3 in
units of the number density. Its real and imaginary parts are plotted
by the solid and dashed curves, respectively, and the frequency is
normalized by the binding energy of dimers.

Accordingly, the substitution of Eqs. (58) and (62) into
Eq. (47) leads to

ζ (w) = N
d2�d−1ad

∫ ∞

0

dε

iπ

Im[D(ε − i0+)]

ε + 1
ma2

×
(

1

ε + 1
ma2 − w

− 1

ε + 1
ma2 + w

)
. (63)

The resulting frequency-dependent complex bulk viscosity is
plotted in Fig. 2 for w → ω + i0+, which is exact in the
limit of a → +0 at fixed temperature and number density.
In particular, we find that its real part, indeed, vanishes at a
lower frequency than the binding energy of dimers without
the unphysical divergence at zero frequency,7 whereas the
bound-continuum transition turns possible above the dimer-
breakup threshold. We also note that our Re[ζ (ω + i0+)] in
the dimer limit for d = 2 coincides with the zero-temperature
and zero-density limit of the bulk viscosity spectral function
in Ref. [23].

7We note that, if the contact-contact response function in Eq. (52)
was substituted into the bulk viscosity formula of Eq. (3),
it would give rise to a divergent term of Re[ζ (ω + i0+)] =
(∂N /∂μ)βπδ(ω)/(dma2)2 + · · · in the dimer limit.
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IV. HIGH-TEMPERATURE LIMIT

The diagrammatic method employed in the previous sec-
tion is also applicable to the high-temperature limit where our
Kubo formalism can be contrasted with the kinetic theory.

A. Quantum virial expansion

The quantum virial expansion is a systematic expansion
in terms of fugacity z = eβμ, which becomes small in the
high-temperature limit at fixed number density and scattering
length [25]. Because of fF (ε) → ze−βε and fB(ε) → z2e−βε

to the lowest order in fugacity, Eq. (52) after the integration
over p is reduced to

RCC (w, 0)

= −2d/2z2

λd
T

∫∫ ∞

−∞

dε

π

dε′

π

e−βε − e−βε′

w + ε − ε′

× Im[m2D(ε − i0+)] Im[m2D(ε′ − i0+)] + O(z3), (64)

where λT = √
2πβ/m is the thermal de Broglie wavelength

and D(ε − i0+) provided by Eq. (55) is the pair propagator in
the vacuum. The resulting contact-contact response function,
indeed, reproduces Eq. (39) of Ref. [8] derived systematically
with a different method.

Similarly, the contact density in Eq. (54) is reduced to

C = 2d/2z2

λd
T

∫ ∞

−∞

dε

π
e−βε Im[m2D(ε − i0+)] + O(z3). (65)

Because its partial derivative with respect to a at fixed N and
S is equivalent to that at fixed β and z to the lowest order in
fugacity, we obtain(

∂C
∂a

)
N ,S

= 2d/2z2

λd
T

a1−d

�d−1m

∫∫ ∞

−∞

dε

π

dε′

π

e−βε − e−βε′

ε − ε′

× Im[m2D(ε − i0+)] Im[m2D(ε′ − i0+)] + O(z3), (66)

where Eqs. (42)–(44) of Ref. [8] are followed in reverse. Then,
by comparing it with Eq. (64), the sum rule is found to be
related to the contact-contact response function at w = 0 in
the same way as Eq. (62). Accordingly, the substitution of
Eqs. (64) and (62) into Eq. (47) leads to

ζ (w) = 2d/2z2

(d�d−1ad−2)2λd
T

∫∫ ∞

−∞

dε

π

dε′

π

e−βε − e−βε′

ε − ε′

× Im[mD(ε − i0+)] Im[mD(ε′ − i0+)]

i(w + ε − ε′)
+ O(z3). (67)

Therefore, we find that the real part of the frequency-
dependent complex bulk viscosity for w → ω + i0+ repro-
duces the bulk viscosity spectral function in Refs. [8–10],
cf. Eq. (40) of Ref. [8]. In particular, it gives rise to a term
proportional to δ(ω)/a4 for a > 0 originating from the bound-
bound transition. As opposed to the dimer limit, such a zero-
frequency peak at O(z2) is physical in the high-temperature
limit and to be broadened by resumming higher-order correc-
tions in fugacity, for example, due to atom-dimer and dimer-
dimer collisions [see the Appendix of Ref. [8] for the O(z3)

FIG. 3. Diagrammatic representation of the fermion self-energy.
See the caption of Fig. 1 for the other details.

correction]. How to systematically resum such higher-order
corrections is currently unknown and needs to be elucidated
in a future study.

For later purpose, we also evaluate the fermion self-energy,

�(ip′
0, p) = 1

β

∑
q′

0

∫
q

D(ip′
0 + iq′

0, p + q)G(iq′
0, q), (68)

whose diagrammatic representation is depicted in Fig. 3.
Here, G(iq′

0, q) = 1/(iq′
0 − q2/2m + μ) with q′

0 = 2π (n +
1/2)/β is the fermion propagator, and the summation over the
fermionic Matsubara frequency leads to

�(ip′
0, p) =

∫ ∞

−∞

dε

π

∫
q

[
fB

(
ε + (p + q)2

4m

)
+ fF

(
q2

2m

)]

× Im[Dp+q(ε − i0+)]

ip′
0 + μ − ε − (p+q)2

4m + q2

2m

. (69)

Because of fF (ε) → ze−βε and fB(ε) → z2e−βε to the lowest
order in fugacity, the first term in the square brackets is
negligible and the integration over ε can, thus, be performed
so that we obtain

�(ip′
0, p) =

∫
q

fF

(
q2

2m

)
D

(
ip′

0 − p2

2m
+ μ + (p − q)2

4m

)

+ O(z2), (70)

which has both real and imaginary parts at O(z) [26,27].
The momentum distribution function of fermions for each

spin component then follows from

fp = 1

β

∑
p′

0

eip′
00+

[G(ip′
0, p)

+ G(ip′
0, p)�(ip′

0, p)G(ip′
0, p) + · · · ], (71)

where the summation over the fermionic Matsubara frequency
leads to

fp = fF

(
p2

2m

)
+

∫ ∞

−∞

dε

π
fF

(
ε + p2

2m

)

× Im

[
�

(
ε + p2

2m − μ − i0+, p
)

(ε − i0+)2

]
+ O(z3). (72)

Equivalently, it can also be expressed as

fp = Zp fF

(
p2

2m

)
+ f ′

F

(
p2

2m

)
Re

[
�

(
p2

2m
− μ − i0+, p

)]

+ P
∫ ∞

−∞

dε

π

1

ε

∂

∂ε

{
fF

(
ε + p2

2m

)

× Im

[
�

(
ε + p2

2m
− μ − i0+, p

)]}
+ O(z3), (73)
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where Zp = 1 + Re[�′(p2/2m − μ − i0+, p)] is the quasi-
particle residue and ′ denotes the partial derivative with re-
spect to ε at ε = 0. In particular, the last term involving
the imaginary part of the self-energy is responsible for the
characteristic large-momentum tail of lim|p|→∞ fp = C/|p|4
determined by the contact density [20–22].

B. Kinetic theory

The bulk viscosity is provided by ζ = limw→i0+ ζ (w),
which, at a → ∞, following from Eq. (67) in the high-
temperature limit was found to disagree with that derived
from the kinetic theory both for d = 2, 3 [8–10]. Here, we
discuss that such discrepancies between the Kubo formalism
and the kinetic theory for the bulk viscosity are attributed to
the fact that the quasiparticle approximation assumed by the
latter breaks down even in the high-temperature limit where
the fermion self-energy becomes small.

The bulk viscosity in the high-temperature limit was com-
puted in Refs. [26,27] by employing the Landau kinetic equa-
tion for quasiparticles,

∂ fp

∂t
+ ∂Ep

∂ p
· ∂ fp

∂r
− ∂Ep

∂r
· ∂ fp

∂ p
=

(
∂ fp

∂t

)
coll

, (74)

where

Ep[ f (t, r)]

= p2

2m
+ Re

[
�

(
p2

2m
− μ − i0+, p

)]∣∣∣
fF (q2/2m)→ fq(t,r)

(75)

is the quasiparticle energy functional of the nonequilibrium
distribution function, and its on-shell self-energy correction is
obtained from the real part of Eq. (70) with the Fermi-Dirac
distribution function replaced by the nonequilibrium distribu-
tion function. In particular, the scale invariance breaking in
the quasiparticle energy due to its self-energy correction was
found to be essential to a nonvanishing bulk viscosity [26,27].
However, we consider that such a kinetic equation is not fully
grounded because the self-energy in Eq. (70) has both real
and imaginary parts at O(z). Namely, if the real part of the
self-energy is essential to the bulk viscosity, its imaginary part
being at the same order in fugacity is non-negligible so as to
invalidate the quasiparticle approximation, i.e., replacing the
fermion spectral function by a δ function on which the kinetic
equation is founded [28].8

In order to further support our consideration, let us study
the equilibrium distribution function resulting from the kinetic
equation. Because the collision term in Eq. (74) must be
canceled under the conservation of quasiparticle energies [33],
the equilibrium distribution function in the rest frame obeys

8It should be emphasized that our argument herein does not apply
to the Boltzmann equation to compute the shear viscosity in the
high-temperature limit because both real and imaginary parts of
the self-energy are consistently neglected [29–32]. Although such a
Boltzmann equation merely leads to the vanishing bulk viscosity, it is
indeed the correct “leading” behavior in the high-temperature limit.

the self-consistent equation of

fp = 1

eβ(Ep[ f ]−μ) + 1
. (76)

By substituting the quasiparticle energy in Eq. (75) and ex-
panding the right-hand side in terms of fugacity, iteratively,
we obtain

fp = fF

(
p2

2m

)
+ f ′

F

(
p2

2m

)
Re

[
�

(
p2

2m
− μ − i0+, p

)]

+ O(z3), (77)

where two contributions are found to be missing from the mi-
croscopic distribution function in Eq. (73). One is the factor of
the quasiparticle residue, whereas the other is the whole term
involving the imaginary part of the self-energy.9 Furthermore,
because all thermodynamic variables in the kinetic theory
are expressed in terms of the distribution function [33], they
also differ from the microscopic ones in the quantum virial
expansion. Therefore, the Landau kinetic equation employed
in Refs. [26,27] is incapable of describing physics at the
order where the self-energy contributes because its imaginary
part neglected therein is actually non-negligible. We consider
that this constitutes the origin of the discrepancy between the
Kubo formalism and the kinetic theory for the bulk viscosity.

V. SUMMARY

The standard Kubo formula for the bulk viscosity presented
in Eq. (1) has flaws to give rise to unphysical divergences
at zero frequency. They are, however, resolved with the cor-
rected Kubo formula [13–15], which has been known since
long ago but is not well appreciated by the literature in the
context of ultracold atom physics. After carefully rederiving
the Kubo formula for the frequency-dependent complex bulk
viscosity as well as its sum rule, we found that the sum rule for
two-component fermions with a zero-range interaction in two
and three dimensions [Eq. (44)] coincides with that derived in
Ref. [6], although we do not fully agree with the derivation
therein because of the neglected pressure fluctuations.

The Kubo formula can be evaluated unambiguously, in
particular, by working with the complex bulk viscosity on the
upper-half plane of complex frequency. We then confirmed
that the bulk viscosity spectral function, indeed, vanishes at
an arbitrary frequency in the free and unitarity limits and at
a lower frequency than the binding energy of dimers in the
dimer limit [Eq. (63)] without the unphysical divergences at
zero frequency.

In the high-temperature limit, the bulk viscosity spectral
function in the quantum virial expansion [Eq. (67)] was
reproduced with our diagrammatic method. We also discussed
that the Landau kinetic equation employed in Refs. [26,27]
to compute the bulk viscosity is not fully grounded even
in the high-temperature limit where the fermion self-energy

9These two are actually related because the quasiparticle residue
originating from the frequency dependence in the real part of the
self-energy necessarily leads to the presence of the imaginary part
according to the Kramers-Kronig relations.
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becomes small. This is because the self-energy has both real
and imaginary parts at the same order in fugacity so as to
invalidate the quasiparticle approximation, i.e., replacing the
fermion spectral function by a δ function on which the kinetic
equation is founded. We consider that this constitutes the
origin of the recently found discrepancy between the Kubo
formalism and the kinetic theory for the bulk viscosity [8–10].
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APPENDIX: KUBO’S CANONICAL
CORRELATION FUNCTION

In this Appendix, we present some useful formulas and
their detailed derivations regarding Kubo’s canonical corre-
lation function [17].

1. Derivation of Eq. (12)

First, by multiplying the response function defined in
Eq. (10) by iw and using iweiwt = ∂t eiwt , the temporal inte-
gration by parts leads to

iwRJiJ j (w, k)

= −i
∫

dr e−ik·r〈[Ĵi(0, r), Ĵ j (0, 0)]〉

− i
∫ ∞

0
dt

∫
dr eiwt−ik·r〈[∂t Ĵi(t, r), Ĵ j (0, 0)]〉. (A1)

Here, the first term turns out to vanish because of
[Ĵi(r), Ĵ j (r′)]=[Ĵ j (r)∂i+Ĵi(r′)∂ j]δ(r − r′)/(im) [4]. Then,
by using the momentum continuity equation (13), the spatial

integration by parts leads to

iwRJiJ j (w, k)

= −kk

m

∫ ∞

0
dt

∫
dr eiwt−ik·r〈[π̂ik (t, r), Ĵ j (0, 0)]〉. (A2)

After using the spacetime translational invariance, the inte-
grand can be rewritten as

〈[π̂ik (0, 0), Ĵ j (−t,−r)]〉
= 〈[π̂ik (0, 0)Ĵ j (−t,−r) − π̂ik (0, 0)e−βĤ Ĵ j (−t,−r)eβĤ ]〉

= −
∫ β

0
dτ ∂τ 〈π̂ik (0, 0)e−τ Ĥ Ĵ j (−t,−r)eτ Ĥ 〉

= i
∫ β

0
dτ 〈π̂ik (0, 0)∂t Ĵ j (−t + iτ,−r)〉, (A3)

because the number operator N̂ commutes with the other oper-
ators. Then, by using the momentum continuity equation (13)
again, the spatial integration by parts leads to

iwRJiJ j (w, k) = −kkkl

m2

∫ ∞

0
dt

∫
dr eiwt−ik·r

∫ β

0
dτ

×〈δπ̂ik (0, 0)δπ̂ jl (−t + iτ,−r)〉, (A4)

where the expectation value needs to be subtracted from
the operator to ensure that boundary contributions at spatial
infinity vanish under the clustering property:

lim
|r|→∞

〈δπ̂ik (0, 0)δπ̂ jl (−t + iτ,−r)〉

= lim
|r|→∞

〈δπ̂ik (0, 0)〉〈δπ̂ jl (−t + iτ,−r)〉 = 0. (A5)

Finally, by using the spacetime translational invariance again
and comparing the outcome with the canonical correlation
function defined in Eq. (11), we arrive at Eq. (12).

2. Derivation of Eq. (34)

First, by substituting the modified stress tensor operator
defined in Eq. (33) into the right-hand side of Eq. (34), we
obtain

Kπ̃ π̃ (w, 0) = Kππ (w, 0) − 2

(
∂ p

∂N

)
E

KNπ (w, 0) − 2

(
∂ p

∂E

)
N

KHπ (w, 0)

+
(

∂ p

∂N

)
E

[(
∂ p

∂N

)
E

KNN (w, 0) +
(

∂ p

∂E

)
N

KNH(w, 0)

]

+
(

∂ p

∂E

)
N

[(
∂ p

∂N

)
E

KHN (w, 0) +
(

∂ p

∂E

)
N

KHH(w, 0)

]
, (A6)

because N̂ and Ĥ are conserved. Then, by using the following properties of the canonical correlation function,

KNO(w, 0) = − 1

iw

(
∂〈Ô(0)〉

β∂μ

)
β

, (A7)

KHO(w, 0) = 1

iw

(
∂〈Ô(0)〉

∂β

)
βμ

(A8)
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for 〈N̂ (r)〉 = N , 〈Ĥ(r)〉 = E , and 〈π̂ (r)〉 = p, the thermodynamic identities lead to

Kπ̃ π̃ (w, 0) = Kππ (w, 0) + 2

iw

(
∂ p

∂N

)
E

(
∂ p

β∂μ

)
β

− 2

iw

(
∂ p

∂E

)
N

(
∂ p

∂β

)
βμ

− 1

iw

(
∂ p

∂N

)
E

[(
∂ p

∂N

)
E

(
∂N
β∂μ

)
β

+
(

∂ p

∂E

)
N

(
∂E

β∂μ

)
β

]

+ 1

iw

(
∂ p

∂E

)
N

[(
∂ p

∂N

)
E

(
∂N
∂β

)
βμ

+
(

∂ p

∂E

)
N

(
∂E
∂β

)
βμ

]

= Kππ (w, 0) + 1

iw

(
∂ p

∂N

)
E

N
β

+ 1

iw

(
∂ p

∂E

)
N

E + p

β
. (A9)

Finally, by using the sound velocity in Eq. (27) and comparing the outcome with the frequency-dependent complex bulk viscosity
defined in Eq. (32), we arrive at Eq. (34).

3. Comparison of Eq. (32) with Ref. [13]

First, by using eiwt = ∂t eiwt/iw in the canonical correlation function in Eq. (32), the temporal integration by parts leads to

ζ (w) = mc2
sN

iw
− 1

iw

∫
dr

∫ β

0
dτ 〈δπ̂ (−iτ, r)δπ̂ (0, 0)〉

− 1

iw

∫ ∞

0
dt

∫
dr eiwt

∫ β

0
dτ 〈∂tδπ̂ (t − iτ, r)δπ̂ (0, 0)〉. (A10)

Then, the integral over τ in the last term can be rewritten as∫ β

0
dτ 〈∂tδπ̂ (t − iτ, r)δπ̂ (0, 0)〉 = i

∫ β

0
dτ ∂τ 〈eτ Ĥδπ̂ (t, r)e−τ Ĥδπ̂ (0, 0)〉

= i〈[eβĤδπ̂ (t, r)e−βĤδπ̂ (0, 0) − δπ̂ (t, r)δπ̂ (0, 0)]〉
= −i〈[δπ̂ (t, r), δπ̂ (0, 0)]〉
= −i〈[π̂ (t, r), π̂ (0, 0)]〉, (A11)

so that we obtain

ζ (w) = mc2
sN

iw
− 1

iw

∫
dr

∫ β

0
dτ 〈δπ̂ (−iτ, r)δπ̂ (0, 0)〉 + Rππ (w, 0)

iw
. (A12)

Here, the last term is the stress-stress response function, whereas the first and second terms evidently correspond to the inverse
compressibility and equal-time commutator (“contact”) terms of Ref. [13], respectively.

Actually, the first and second terms are combined into the sum rule in Eq. (35) so that the frequency-dependent complex bulk
viscosity can also be expressed as

ζ (w) = Rππ (w, 0)

iw
− 1

iw

∫ ∞

−∞

dω

π
ζ (ω + i0+). (A13)

This is the formula employed in Sec. III B. Its real part for w → ω + i0+, then, reads

Re[ζ (ω + i0+)] = Im[Rππ (ω + i0+, 0)]

ω

−πδ(ω)

[
Re[Rππ (i0+, 0)] −

∫ ∞

−∞

dω′

π
ζ (ω′ + i0+)

]
, (A14)

whose last term, unless canceled, is missing from the standard Kubo formula for the bulk viscosity in Eq. (1).
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