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Path-integral Monte Carlo simulations of quantum dipole systems in traps:
Superfluidity, quantum statistics, and structural properties

Tobias Dornheim *

Center for Advanced Systems Understanding (CASUS), Görlitz D-028262, Germany

(Received 11 May 2020; accepted 20 July 2020; published 6 August 2020)

We present extensive ab initio path-integral Monte Carlo (PIMC) simulations of two-dimensional quantum
dipole few-body systems (2 � N � 7) in a harmonic confinement, taking into account both Bose- and Fermi-
statistics. This allows us to study the nonclassical rotational inertia, which can lead to a negative superfluid
fraction in the case of fermions [Phys. Rev. Lett. 112, 235301 (2014)]. Moreover, we study in detail the structural
characteristics of such systems and are able to clearly resolve the impact of quantum statistics on density
profiles and the respective shell structure. Further, we present results for a more advanced center-two-particle
correlation function [Phys. Rev. E 91, 043104 (2015)], which allows detection of differences between Fermi
and Bose systems even when they are almost absent in other observables like the density. Overall, we find that
bosonic systems sensitively react to even small values of the dipole-dipole coupling strength, whereas such a
weak interaction is effectively masked for fermions by the Pauli exclusion principle. In addition, the abnormal
superfluid fraction for fermions is not reflected by the structural properties of the system, which are equal to the
bosonic case even though the moments of inertia diverge from each other. Lastly, we have explored the possibility
of fermionic PIMC simulations of quantum dipole systems despite the notorious fermion sign problem, which
can be further extended in future investigations in this field.
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I. INTRODUCTION

Quantum dipole systems are of current interest for
many applications, with indirect excitons in quantum
wells [1–7], Rydberg-dressed atoms [8,9], and ultracold dipo-
lar gases [10–13] being arguably the three most important
examples. These systems are known to exhibit a plethora of
remarkable physical effects, such as superfluidity [3,4,14,15]
and possibly even supersolid behavior [16,17], crystalliza-
tion [18,19], and collective excitations [12,13].

From a theoretical perspective, the accurate description of
quantum dipole systems constitutes a formidable challenge,
as it must simultaneously take into account (i) the long-range
dipole-dipole interaction, (ii) thermal excitations, and (iii)
quantum degeneracy effects. More specifically, point (i) pos-
sibly rules out mean-field approaches [20,21] when the cou-
pling strength is increased, and point (iii) rules out classical
methods like molecular dynamics and is crucial for a correct
description of, e.g., Bose-Einstein condensation [15,22].

In this regard, a reliable theory for quantum-dipole sys-
tems faces similar challenges as for warm dense matter
(WDM) [23,24]—an exotic state that is at the forefront
of plasma physics and material science [25,26]. A suitable
candidate are ab initio path integral Monte Carlo (PIMC)
methods [14,27], which, in principle can deal with the ef-
fects (i)–(iii) without any approximations. Indeed, quasiexact
simulations of up to N ≈ 104 bosons are feasible [28,29],
and the PIMC approach has been vital for our current un-
derstanding of, e.g., superfluidity [14,30,31] and collective
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excitations [12,32–35]. Thus, the PIMC method has been well
established for the simulation of bosonic cold-atom systems,
e.g., Refs. [36–38].

Yet, PIMC simulations of fermions are severely limited
by the notorious fermion sign problem (FSP) [39,40], which
leads to an exponential increase in computation time with
(a) decreasing temperature T and (b) increasing the system
size N : see Ref. [41] for an accessible topical review article.
For this reason, almost no PIMC simulations of fermionic
quantum dipole systems have been reported so far. This is very
unfortunate, as they offer many potentially interesting effects.

However, the high level of activity in WDM research has
triggered a remarkable spark of new developments regarding
the quantum Monte Carlo simulation of electrons (which, too,
are fermions and thus afflicted with the FSP) at finite tem-
perature [42–61]; see Ref. [62] for a recent overview of some
of these methods. Moreover, Dornheim [41] has reported that
fermions with dipolar interaction exhibit a substantially less
severe FSP compared to electrons with Coulomb interaction,
which is a strong indication that the success of PIMC simula-
tion of WDM might be carried over into this field.

In this context, we have performed extensive ab initio
PIMC simulations of both bosonic and fermionic quantum
dipole systems in a 2D harmonic confinement. In addition to
its worth as a proof-of-principle study, we mention that the
investigation of trapped quantun systems is quite interesting in
its own right [63] and constitutes an active research field; see,
e.g., Refs. [49,64–74]. Moreover, there has been considerable
progress in the experimental preparation of few-body sys-
tems [75–77], which makes the present study of 2 � N � 7
particles a relevant reference.
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In particular, we study the interesting and intricate in-
terplay of the dipolar repulsion with quantum statistics by
computing different quantities. First and foremost, we study
both the total [31,78] and local superfluid fraction [79–83]
in dependence of system size, temperature, and coupling
strength. Remarkably, we find that the superfuid fraction
can be negative in the case of fermions, which is in good
agreement with previous results [84] for ultracold atoms
with a different pair potential. In addition, we investigate the
impact of quantum statistics on the structural properties of
the system, like the radial density distribution n(r), and a
somewhat more advanced center-two-particle (C2P) distribu-
tion function [66,85–87]. In this way, it is shown that PIMC
simulations are indeed capable of clearly resolving the effect
of quantum statistics on physical observables upon increasing
the degree of quantum degeneracy despite FSP.

While the present study is restricted to finite systems in
a harmonic confinement, similar investigations can be per-
formed for bulk systems in periodic boundary conditions, and
we hope to spark more research in this direction. Furthermore,
our highly accurate PIMC data can be used as a benchmark
for approximate theories and to guide the development of new
simulation methods [88].

The paper is organized as follows: In Sec. II, we introduce
the required theoretical background, including the Hamilto-
nian (Sec. II A), the PIMC method and how it is afflicted with
a sign problem in the case of fermions (Sec. II B), how we
estimate the superfluid fraction in terms of the nonclassical
rotational inertial (Sec. II C), and the C2P function that al-
lows us to study the structural properties of trapped quantum
systems (Sec. II D). In addition, we give some formulas
for noninteracting systems for both bosons and fermions in
Sec. II E, which are helpful to interpret our results and as
a benchmark for our implementation. Sec. III is devoted to
the presentation of our extensive new PIMC results, starting
with the in principle well known yet still interesting case of
ideal particles in Sec. III A. Here, we compare PIMC data
to exact theoretical results and demonstrate the utility of the
C2P function as a diagnostic for quantum degeneracy effects.
In Sec. III B, we present PIMC data for correlated quantum
dipole systems and investigate the temperature and coupling-
strength dependence of different structural properties. Finally,
the superfluid fraction is investigated in Sec. III C for both
bosons and fermions, and put into the context of other observ-
ables. The paper is concluded by a brief summary and outlook
in Sec. IV.

II. THEORY

A. Hamiltonian

The Hamiltonian of a harmonically confined quantum
dipole system can be written as

Ĥ = −1

2

N∑
k=1

∇2
k + 1

2

N∑
k=1

r̂2
k +

N∑
k>l

λ

|r̂l − r̂k|3 , (1)

where we assume oscillator units, i.e., the characteristic length
l0 = √

h̄/m� (with � being the trap frequency) and energy
scale E0 = h̄�. As usual, the first term corresponds to the
kinetic contribution and the last two terms to the external

potential and the dipole-dipole interaction, respectively.
Moreover, we note that the coupling constant λ can, in princi-
ple, be tuned in experiments via different techniques [89,90].
All simulation results in this work have been obtained for
strictly two-dimensional systems.

B. Path-integral Monte Carlo

In statistical physics, all thermodynamic expectation values
can be computed from the partition function, which, in the
canonical ensemble (i.e., fixed particle number N , inverse
temperature β = 1/kBT , and trap frequency �), can be ex-
pressed in coordinate space as

ZB/F = 1

N!

∑
σ∈SN

sgnB/F(σ )
∫

dR 〈R| e−βĤ |π̂σ R〉 , (2)

where the sum is carried out over all possible permutations
σ of the permutation group SN , and π̂σ is the corresponding
permutation operator acting on the N-particle state |R〉. More-
over, the signs for bosons (B) and fermions (F) are given by

sgnB(σ ) = 1,
(3)

sgnF(σ ) = (−1)lσ ,

with lσ being the number of pair exchanges for a given σ .
Note that we restrict ourselves to a single particle species of
N spin-polarized bosons or fermions throughout this work.

The main obstacle regarding Eq. (2) is that the matrix
elements of the density operator cannot be directly evaluated
as the kinetic (K̂) and potential (V̂ ) contributions to the
Hamiltonian do not commute,

e−βĤ = e−βK̂ e−βV̂ + O(β2). (4)

To solve this problem, we recall the following semigroup
property of the exponential function,

e−βĤ =
P−1∏
α=0

e−εĤ , (5)

which implies that the density matrix can be expressed as the
integral over the product of P density matrices, but evaluated
at a P-times higher temperature,

ZB/F = 1

N!

∑
σ∈SN

sgnB/F(σ )

×
∫

dR0 . . . dRP−1

P−1∏
α=0

〈Rα| e−εĤ |π̂σ,PRα+1〉 , (6)

where the notation π̂σ,P indicates that the permutation op-
erator is only acting on |RP〉. Therefore, the factorization
error in Eq. (4) can be made arbitrarily small by increasing
P (this follows from the celebrated Trotter formula [92]),
which is a convergence parameter within the PIMC formal-
ism. For completeness, we note that we typically use P = 200
primitive high-temperature factors, which is sufficient for the
parameters considered in this work; see the Appendix of
Ref. [41] for more details.
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FIG. 1. Schematic illustration of path-integral Monte Carlo.
Shown is a configuration of N = 3 electrons with P = 6 imaginary-
time propagators in the x-τ plane. Because of the single pair ex-
change, the corresponding configuration weight W (X) [cf. Eq. (7)] is
negative. Reprinted from T. Dornheim et al. [91] with the permission
of AIP Publishing.

In the end, the partition function can be written in a
compact form as

ZB/F =
∫

dX W B/F(X), (7)

where we are integrating over the metavariable X =
(R0, . . . , RP−1)T , which is often interpreted as a configura-
tion. This is illustrated in Fig. 1, where we show an example
configuration of N = 3 particles in the τ -x plane. First and
foremost, we note that each particle is now represented by an
entire path of P particle coordinates in the imaginary time
τ ∈ [0, β] (with ε = β/P being the imaginary-time step),
which is a direct consequence of Eq. (5). While all paths are
closed, there appear trajectories containing multiple particles,
such as on the left-hand side of Fig. 1, which are due to
the permutation operator π̂σ,P. The basic idea of the PIMC
method is to use the METROPOLIS algorithm [93] to generate
a Markov chain of configurations {Xi}, which are distributed
proportionally to the configuration weight W B/F(X), which is
a function that can be readily evaluated.

For bosons (and for distinguishable particles, i.e., boltz-
mannons), W (X) is strictly positive and simulations of N ≈
103–104 particles are feasible. In the case of fermions, on the
other hand, the density matrix is antisymmetric with respect
to pair exchanges, and the sign of the configuration weight
changes, cf. Eq. (3). This means that PF(X) = W F(X)/ZF

cannot be interpreted as a probability, and a straightforward
sampling of the configurations X is not possible. To work
around this issue, we switch to the modified configuration
space defined by

Z ′ =
∫

dX |W F(X)| =
∫

dX W B(X) = ZB, (8)

which, in the case of the standard PIMC methods as in-
troduced above, is equal to the configuration space of the

corresponding Bose system; see Ref. [61] for an extensive and
accessible discussion.

It is easy to see that the exact fermionic expectation value
of an arbitrary observable Â is then given by

〈Â〉F = 〈ÂŜ〉B

〈Ŝ〉B . (9)

In a nutshell, Eq. (9) implies that PIMC results for a Fermi
system are obtained from a simulation of a corresponding
bosonic simulation at the same parameters by keeping track of
Eq. (3) and thus taking into account all cancellations due to the
antisymmetry of the density matrix under particle exchange.

The denominator in Eq. (9) is commonly known simply
as the average sign S, and constitutes a convenient measure
for the degree of cancellation of positive and negative terms.
In particular, the relative statistical uncertainty of the Monte
Carlo expectation value is inversely proportional to S [94],


AF

〈Â〉F ∼ 1

S
√

NMC
∼ eβN ( fF− fB )

√
NMC

, (10)

which is the origin of the notorious fermion sign prob-
lem [39–41]. More specifically, it is straightforward to see
that it holds S ∼ e−βN ( fF− fB ) (with fB,F being the free energy
density of bosons and fermions), which leads to an exponen-
tial increase in 
AF both toward low temperature (increas-
ing β) and with increasing system size N . The increasing
error bar can only be reduced by increasing the number of
Monte Carlo samples NMC as 
AF ∼ 1/

√
NMC, which at some

point becomes computationally too expensive. In practice, one
eventually runs into an exponential wall regarding β or N and
the simulations become unfeasible; see Ref. [41] for a recent
review article. In fact, the sign problem constitutes the main
bottleneck in this work and limits our results to N < 10.

For completeness, we mention that all PIMC simulations
in this work have been carried out using an implementation of
the worm algorithm introduced in Refs. [28,29].

C. Superfluidity and nonclassical rotational inertia

For a finite system, the superfluid fraction is typically
defined by the response of the system to an infinitesimal
rotation. More specifically, one assumes a two-fluid model,
where the total particle density is decomposed into a normal
part that reacts to the rotation, and a superfluid component that
does not, n = nn + nsf. The superfluid fraction is then readily
defined as the ratio of nsf and n,

γsf = nsf

n
= 1 − I

Icl
(11)

(with I and Icl denoting the moments of inertia in the quantum
and classical cases, respectively) which, in the path-integral
picture, can be expressed as [31]

γsf = 4m2
〈
A2

z

〉
β h̄2Icl

. (12)

Equation (12) is often referred to as the area estimator, as it
depends on the expectation value of the area enclosed by the
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paths in the PIMC simulations,

A = 1

2

N∑
k=1

P∑
i=1

(rk,i × rk,i+1). (13)

Note that our system is located in the x-y plane, and, hence,
the z component of Eq. (13) denotes the area therein.

In an inhomogeneous system, the superfluid density is
typically not distributed uniformly throughout the system. In
that situation, it is highly desirable to obtain a local measure
of nsf, which can be defined as [79]

nsf(r) = 4m2

β h̄2Icl(r)
〈AzAz,loc(r)〉 , (14)

with Icl(r) = mr2 and Aloc(r) being the contribution to
Eq. (13) around the position r. For completeness, we mention
that the estimator from Eq. (14) is consistent in the sense that
it integrates to the correct quantum mechanical moment of
inertia, ∫

dr nsf(r)r2 = γsfIcl. (15)

This is in contrast to an alternative estimator presented in
Ref. [95], which is normalized differently.

D. Structural properties

The spatial correlations within a system are fully char-
acterized by the two-particle distribution function ρ2(r1, r2),
which gives the probability of finding two particles at the
coordinates r1 and r2. In a uniform system, ρ2 only depends
on the modulus of the distance, and it is sufficient to consider
the one-dimensional function ρ2(|r1 − r2|). In a harmonic
confinement, such a simplification is not possible or, to be
more precise, information about correlation is averaged out
and therefore lost.

Still, ρ2(r1, r2) can be simplified as the system exhibits
rotational symmetry. This is illustrated in Fig. 2, where
a schematic configuration of N = 13 quantum particles is
shown with the smeared out red circles illustrating the quan-
tum delocalization of the particles. In particular, one can
define a center-two-particle distribution function ρ2(r1, r2, α)
(observe that the relative angle α is denoted as ϑ in Fig. 2),
which gives the probability to find two atoms at the distances
to the center of the trap of r1 and r2 with a relative angle of α

toward each other.
In order to analyze angular correlations and to filter out

effects that are purely caused by the inhomogeneous density
profile n(r), it is quite useful to define a center-two-particle
correlation function (hereafter referred to as C2P) [85]

gc2p(r1, r2, α) = ρ2(r1, r2, α)

ρ0
2 (r1, r2, α)

. (16)

Here the denominator corresponds to the two-particle density
of a hypothetical uncorrelated (ideal) system, but with the
exact, fully correlated inhomogeneous density profile n(r),

ρ0
2 (r1, r2, α) = N − 1

N
4πr1r2n(r1)n(r2), (17)

which, by design, does not depend on the relative angle
α between two atoms. As the handling, visualization, and

FIG. 2. Illustration of the center-two-particle correlation func-
tion ρ2(r1, r2, ϑ ). Because of the rotational symmetry of the Hamilto-
nian Eq. (1), the two-particle correlations only depend on the relative
angle ϑ (denoted as α throughout this work) and the respective dis-
tances to the center of the trap. Taken from Ref. [66]. Reprinted with
permission of Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
Germany.

interpretation of a three-dimensional function is quite cum-
bersome, we define the integrated C2P function

gint
c2p(r1, α; r2,min, r2,max) =

∫ r2,max

r2,min
dr2 ρ2(r1, r2, α)∫ r2,max

r2,min
dr2 ρ0

2 (r1, r2, α)
, (18)

which allows for a straightforward interpretation: Given that
one atom is located at a distance r2,min � r2 � r2,max to the
center of the trap (typically r2,min and r2,max are chosen as
the boundaries of a shell), Eq. (18) constitutes a measure for
the relative probability to find a second particle at r1 with a
relative angular difference of α between the pair.

E. Ideal bosons and fermions

The partition function of N spin-polarized noninteracting
bosons or fermions at the inverse temperature β is readily
expressed in terms of permutation cycle frequencies [91,96],

ZB,F(N, β ) = 1

N!

∑
{Cq}r

σ B,F({Cq})M({Cq})
N∏

q=1

Z (1, qβ )Cq ,

(19)

with {Cq}r denoting the set of all permutation cycle occupa-
tions that are possible for N particles,

N∑
q=1

qCq = N. (20)

Here M({Cq}) denotes a combinatorial factor of the form

M({Cq}) = N!∏N
q=1 Cq!qCq

, (21)

and the sign is given by

σ B,F({Cq}) = (±1)
∑N

q=1(q−1)Cq , (22)
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with the plus and minus signs corresponding to bosons and
fermions, respectively. Moreover, the single-particle partition
function appearing in Eq. (19) is equal for Bose and Fermi
statistics and is known from the literature,

Z (1, β ) =
(

e−β/2

1 − e−β

)2

. (23)

To compute the classical and quantum mechanical expec-
tation values of the moment of inertia, which are needed to
estimate the superfluid fraction [see Eq. (11)], we introduce
the ancilla function

�
B,F
N,β (q) =

∑
{Cq}r

σ B,F({Cq})
N∏

r=1

Z (1, rβ )Cr

Cr!rCr
Cq, (24)

which leads to

I = 2h̄2β

ZB,F(N, β )

N∑
q=1

[
�

B,F
N,β (q)

q2e−qβ h̄ω

(1 − e−qβ h̄ω )2

]
(25)

and

Icl = 1

ZB,F(N, β )

h̄

ω

N∑
q=1

[
�

B,F
N,β (q)q

1 + e−qβ h̄ω

1 − e−qβ h̄ω

]
. (26)

The final result for γsf is then obtained by evaluating Eq. (11).
Furthermore, we introduce the permutation cycle fre-

quency (i.e., the probability to find a trajectory with l particles
in it) as

P(l ) = ZB(1, lβ )ZB(N − l, β )

lZB(N, β )
, (27)

with the bosonic partition functions obeying the recursion
relation [96]

ZB(N, β ) = 1

N

N∑
q=1

ZB(1, qβ )ZB(N − q, β ). (28)

III. RESULTS

A. Ideal bosons and fermion

Let us start our investigation by revisiting the behavior of
ideal, i.e., noninteracting bosons and fermions in a harmonic
trap, which corresponds to the limit of λ → 0 in Eq. (1). Our
motivation for this is threefold: (1) The partition function and
all derivative thermodynamic properties can be expressed in
terms of permutation cycle distributions, which are known
from theory; see Sec. II E. This allows us to verify the imple-
mentation of our code. (2) Yan and Blume [84] have reported
that the noninteracting case already allows for useful insights
regarding the anomalous behavior of the superfluid fraction
γsf in the case of fermions, and this analysis is helpful to put
our new PIMC results for λ > 0 into the proper context. (3)
The noninteracting case constitutes a useful test case for the
C2P function introduced in Sec. II D.

In Fig. 3, we show the temperature dependence of γsf

for bosons (solid lines) and fermions (dashed lines) for five
different particle numbers N . For completeness, we note
that a similar plot has been presented in Ref. [84] for
the same system, but in 3D. In the case of bosons, we observe

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ s
f

β-1

 N=2
N=3
N=4
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N=6

FIG. 3. Temperature dependence ([β−1] = h̄�, cf. Sec. II A) of
the superfluid fraction γsf of N = 2, 3, 4, 5, 6 ideal (noninteracting)
bosons (solid) lines and fermions (dashed lines) in a 2D harmonic
confinement. The corresponding formulas are given in Sec. II E. Note
that the curves are in ascending order with N for the bosonic case.

a crossover from the classical regime at large temperature,
where γsf vanishes, to the ground-state limit with γsf = 1.
It is important to note that this is a consequence of the
quantum moment of inertial I vanishing [cf. Eq. (11)] and
does not necessarily indicate the onset of a frictionless flow
such as in He4 and other bulk materials [14]. Indeed, it is
well known that by the Landau criterion ideal bosons are not
superfluid, and a small value of the coupling parameter λ is
needed [97]. Therefore, the designation of γsf as defined in
Eq. (11) as the superfluid fraction is somewhat misleading.
At the same time, we note that this notation has been a
standard practice in previous investigations of similar systems
using the PIMC method [79–84] and thus continue with this
notation. Moreover, it is known that superfluidity emerges
as a consequence of an off-diagonal long-range order of
the density matrix [78], which, by definition, cannot occur
in a few-particle system. Therefore, it is more accurate to
speak of nonclassical rotational inertial (NCRI) in the present
case. Proceeding with our investigation, we observe that the
curves are ordered with ascending N , as the systems are more
degenerate at larger density. In addition, we mention that the
crossover will eventually approach a real phase transition for
substantially larger system sizes; cf. Ref. [83].

In contrast, the corresponding fermionic results exhibit
a significantly more complicated behavior. For N = 3 (red)
and N = 6 (blue), the system also attains a vanishing mo-
ment of inertia with γsf = 1, although at significantly lower
temperature than for bosons. Further, γsf becomes negative
for N = 2 (green), N = 4 (black), and N = 5 (yellow), and,
in fact, even diverges toward −∞ in those cases. This odd
behavior is an artifact of the definition of γsf, Eq. (11),
and indicates a diverging moment of inertia. This feature
was vividly explained in Ref. [84] by the topology of the
density matrix: Without an energetically low eigenstate with
finite rotation, the system cannot respond to an infinitesimal
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FIG. 4. Temperature dependence ([β−1] = h̄�, cf. Sec. II A) of
the superfluid fraction of N = 3 ideal bosons (green) and fermions
(red) in a 2D harmonic confinement. The lines and points correspond
to the exact result known from theory, cf. Sec. II E, and our PIMC
data calculated via the area estimator from Eq. (12).

rotation. A further investigation of this effect, possibly taking
into account the role of open-shell structures and anisotropy,
is beyond the scope of this work and constitutes an interesting
topic for future research.

Let us next use the exact data for the superfluid fraction
to demonstrate the correctness and consistency of our PIMC
simulations. To this end, we show the temperature dependence
of γsf in Fig. 4 for N = 3 ideal bosons (green) and fermions
(red), again in 2D. More specifically, the solid lines depict
the exact curves, and the symbols the PIMC data that was
obtained using the area estimator defined in Eq. (13); see
Sec. II C. First and foremost, we note that the PIMC data
are in perfect agreement with the theoretical prediction for
all temperatures. We stress that this is a striking validation
of our code since γsf is highly sensitive to the distribution
of permutation cycles within the PIMC simulation. This is
particularly true in the case of fermions, where the expectation
value for both the area estimator and the classical moment of
inertia are strongly dependent on the cancellation of positive
and negative terms [cf. Eq. (9)] and, consequently, on the
respective permutation lengths; see also Ref. [91] for a topical
discussion.

Second, we observe a significantly increased statistical
uncertainty (error bars) in the case of fermions. This is a
direct consequence of the fermion sign problem (cf. Sec. II B),
as the average sign S monotonically decreases towards low
temperature. More specifically, we find S = 3.5(2) × 10−4 for
β = 4, which is the lowest depicted temperature in the case of
fermions, and the sign nearly vanishes for β = 5. In contrast,
we find S ≈ 0.028 at β = 2, which means that the simulations
are more involved for fermions as compared to bosons, but
that simulations are still feasible and the corresponding error
bar is relatively small. However, a more extensive discussion
of the sign problem has been presented elsewhere [41] and
need not be repeated here.

While the physics of ideal Bose and Fermi systems might
seem almost trivial, it is still worthwhile to use them as
a first test case to demonstrate the capability of the inte-
grated C2P (see Sec. II D). In Fig. 5, we show results for
gint

c2p(r1, α, 0.75, 1.25), i.e., for the probability to find one
particle at 0.75 � r2 � 1.25 (see the dashed dark gray lines
in the top left panel), and a second particle at an angular
distance α (x axis) and a distance r1 to the center of the trap
(y axis). The left and right columns correspond to bosons
and fermions, and the different rows correspond to different
temperatures. At the lowest temperature (β = 1, top row), the
results for bosons and fermions vividly demonstrate the key
difference between these two particle species. Ideal bosons
tend to cluster around each other, and the probability to find
two particles close to each other is significantly increased. In
contrast, fermions are repelled by the Pauli blocking, and we
find a distinct exchange-correlation hole around α = 0. This
can be seen particularly well in Fig. 6, where we show scan
lines over gint

c2p(r1, α, 0.75, 1.25) at r1 = 1 (see the red solid
line in the top left panel of Fig. 5). Let us first restrict ourselves
to the red curves corresponding to β = 1, i.e., to the same
conditions as in the top row of Fig. 5. The solid curve corre-
sponds to fermions, which experience a degeneracy pressure,
whereas the dashed curve depicts bosonic results, which feel
an effective attraction.

The center row in Fig. 5 corresponds to β = 0.5 and
exhibits a qualitatively similar behavior as for β = 1, which
is also true for the scan lines depicted as the green curves
in Fig. 6. Lastly, the bottom row shows the integrated C2P
for a high-temperature case, β = 0.05. First and foremost, we
note that almost all structure disappears from the system, and
gint

c2p(r1, α, 0.75, 1.25) becomes nearly flat. Still, there remain
distinct vestiges both of the fermionic exchange-correlation
hole and the bosonic maximum for 0 � α � 30; cf. the black
curves in Fig. 6. This is particularly remarkable as the bosonic
and fermionic partition functions are almost equal, and we
find an average sign of S ≈ 0.99.

To further illustrate these findings, we show the corre-
sponding radial density distributions n(r) in Fig. 7. Upon
changing the temperature, there appear two main trends: (i)
With increasing temperature, the density is more smeared out
and particles are more frequently found at larger distances to
the center of the trap r, and (ii) the effect of quantum statistics
decays and eventually vanishes. In particular, the difference
between the fermionic and bosonic curves at β = 0.05 cannot
be resolved within the given statistical uncertainty.

To explain the remarkable differences in
gint

c2p(r1, α, 0.75, 1.25) even at high temperature, we directly
examine the manifestation of quantum statistics in our
PIMC simulations in Fig. 8. More specifically, we show the
permutation-cycle frequencies P(l )l , i.e., the probability to
find a particle in a permutation cycle of length l obeying
Eq. (20). The solid lines correspond to the exact result known
from theory [Eq. (27)], and the symbols to the results from
our PIMC simulations at the same conditions. Again, we
note the perfect agreement between theory and simulations,
which further validates our implementation. At the lowest
temperature, permutation cycles of all possible lengths occur
with high probability in our simulation, which explains the
relatively small average sign and the significant differences
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FIG. 5. Integrated center-two-particle correlation function gint
c2p(r1, α, 0.75, 1.25) [cf. Eq. (18)] for N = 4 and λ = 0 (ideal). The left and

right columns correspond to Bose and Fermi statistics. Top, β = 1; center, β = 0.5; bottom, β = 0.05. The dashed black lines in the top
left panel indicate the integration boundaries for the reference particle, and the solid red line denotes the scan line depicted in Fig. 6. Units:
[rl ] = l0; cf. Sec. II A.

between bosons and fermions for both gint
c2p(r1, α, 0.75, 1.25)

and n(r). In fact, P(l )l will eventually become completely
flat in the low-temperature limit [91,96], which means
that S vanishes and fermionic PIMC simulations become
impossible.

Upon increasing the temperature, on the other hand, the
probability to find particles not involved in any exchange-
cycles, P(1), increases whereas P(l ) decreases for all other
l � 2. At β = 0.05, around 99% of the particles within the
PIMC simulation are involved in single-particle cycles, which
explains the nearly vanishing impact of quantum statistics
on n(r) in that case. We stress that this is a consequence of
(i) the particles being spread out at larger r, which makes
exchange less likely, and (ii) the thermal wavelength λβ =√

2πβ being small. However, those configurations in which
two particles do come close to each other have similarly large
probabilities to have or not have a permutation cycle in it,
which would result in a negative or positive configuration
weight, respectively. Consequently, gint

c2p(r1, α, 0.75, 1.25) at

small angular distances constitutes the perfect tool to resolve
the resulting impact of quantum statistics, which nearly com-
pletely vanishes from averaged observables like the radial
density.

We have thus demonstrated that the integrated C2P does
indeed constitute a suitable tool for the investigation of the
structural properties of trapped quantum systems. In the fol-
lowing section, it will be used to illuminate the interplay
of quantum statistics and scattering, and thermal excitations
for the more interesting case of ultracold atoms with dipole
interaction.

B. Structural properties of quantum dipole systems

Let us start our discussion of the ab initio PIMC simula-
tion of ultracold dipolar atoms with a further check of our
implementation. While the partition function and, hence, all
derivative thermodynamic properties are a priori unknown
for λ �= 0, the different contributions to the total energy are
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related by the virial theorem [98]. For example, it is possible
to express the expectation value of the kinetic energy K in
terms of the potential energy due to the external potential Vext

and the interaction energy W as

K = Vext − 3
W

2
. (29)

Note that Eq. (29) holds for all system parameters (N , β,
and λ) and both for bosons and fermions. To use the virial
theorem as a verification, we independently estimate the three
different contributions to the energy in our PIMC simulations
and compare the left-hand side of Eq. (29) to the expression
on the right-hand side.

The results are shown in Fig. 9, where we plot the relative
difference between the two expressions for four different
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FIG. 7. Radial density distribution n(r) of N = 4 ideal bosons
(dashed) and fermions (solid) for β = 1 (red), β = 0.5 (green), β =
0.25 (blue), and β = 0.05 (black). Units: [r] = l0 and [n(r)] = 1/l2

0 ;
cf. Sec. II A. Note that the curves are in ascending order with β for
both bosons and fermions for small r.
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FIG. 8. Probability to find a particle in a permutation cycle of
length l for N = 4 ideal bosons in a 2D harmonic trap. The solid
lines depict the exact result from Eq. (27), and the symbols indicate
the corresponding data from our PIMC simulations.

particle numbers at moderate coupling (λ = 3) versus the
inverse temperature β. Note that the results for N = 4, 5, 6
have been shifted upward for better visibility; see the dashed
gray lines. The left column corresponds to Bose statistics, and
the results are of high quality. More specifically, the difference
between the two different estimators for K vanishes within
the given statistical uncertainty for all data points with an
accuracy of 
K/K ≈ 10−4. For completeness, we mention
that the comparably large fluctuations at high temperature for
N = 4 (red circles) and N = 5 (black squares) are a conse-
quence of the inherent large variance of the thermodynanmic
estimator for the kinetic energy; see Ref. [99] for an extensive
discussion of this issue.

Let us now proceed to the right column corresponding to
Fermi statistics. Recall that the fermionic expectation values
are extracted from a standard bosonic PIMC simulation by
keeping track of cancellations and the sign, and subsequently
evaluating Eq. (9); see Sec. II B. Again, 
K vanishes within
the Monte Carlo error bars, although the uncertainty is some-
what larger due to the fermion sign problem (see Ref. [41]
for an accessible topical discussion). In particular, the sign
problem is the reason for the increasing error bars toward low
temperature, which becomes even more pronounced for larger
system sizes.

Still, we conclude that the virial theorem is perfectly ful-
filled by our PIMC expectation values, and thus fully validates
our implementation.

Being equipped with the PIMC approach and the previ-
ously discussed integrated C2P, we are now in a position
to address the first major point of this work: the transition
from the ideal system (λ = 0) to the interacting quantum
dipole case upon increasing the coupling parameter λ, and
how it is affected by quantum statistics. To this end, we
show the integrated C2P gint

c2p(r1, α, 0.75, 1.25) in Fig. 10 for
N = 4 particles at a moderate temperature, β = 1. As usual,
the left and right columns correspond to Bose and Fermi
statistics, and the four rows belong to λ = 0, 0.001, 0.01, 0.1
(in descending order).
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Let us start our discussion by revisiting the noninteracting
case depicted in the top row, with an effective attraction
of bosons and the exchange-correlation hole in the case of
fermions. Again, this can be seen particularly well in the scan
lines depicted in the bottom panel of Fig. 11 as the dashed
(Bose) and solid (Fermi) red curves.

The second row from the top in Fig. 10 corresponds to
very weak coupling, λ = 0.001, and the situation substantially
changes. In particular, the dipole potential Wλ(r) = λ/r3 di-
verges toward r = 0 for every finite values of λ and therefore
counters the tendency of bosons to cluster around each other.
Consequently, there appears a dip in gint

c2p(r1, α, 0.75, 1.25)
for small α; see also the dashed green curve in the bot-
tom panel of Fig. 11. For completeness, we mention that
the dip around α = 0 would be even more pronounced, if
the integration interval of r2 was decreased. Presently, it is
potentially possible to have two particles at the same angle,
but, say, r1 = 0.75 and r2 = 1.25, which are hardly affected
by the divergent dipole potential but would still contribute to
gint

c2p(r1, α = 0, 0.75, 1.25), thereby reducing the dip.
For fermions, on the other hand, the finite coupling strength

has no discernible effect on the integrated C2P, as it is hidden
by the exchange-correlation hole. Consequently, the scan
line in the bottom panel of Fig. 11 cannot be distinguished
from the ideal curve with the bare eye. In addition, the top
panel of the same figure depicts the corresponding radial
density distributions n(r). Here, too, we find a significant
difference between λ = 0 and λ = 0.001 for bosons, but none
for fermions.

Upon further increasing the coupling strength to λ = 0.01,
the competition between bosonic clustering and the dipolar
repulsion becomes even more pronounced and we observe
the emergence of a correlation hole, albeit substantially less
pronounced than in the case of fermions. The latter are still
hardly affected by the interaction both regarding the integrated
C2P and the radial density, whereas the bosons are further
pushed away from the center of the trap.

Finally, the bottom row of Fig. 10 corresponds to λ =
0.1. In this case, the correlation hole constitutes the most
prominent feature for bosons, too, and gint

c2p(r1, α, 0.75, 1.25)
resembles the case of fermions. The same is true for the
radial density distribution, as the particles are more strongly
separated, and the bosonic clustering is almost completely
masked by the dipolar repulsion. Remarkably, the fermionic
results are still hardly affected by the finite value of λ, and
we find only small deviations from the ideal data both in the
integrated C2P and the radial density.

We note that this might indicate that mean-field theories
and weak-coupling expansions might be much better in the
case of fermions.

Let us next investigate the transition from the classical
regime, where the particles are separated by the strong cou-
pling, to the quantum regime. To this end, we simulate N = 6
ultracold atoms at a relatively low temperature, β = 5, where
the expectation values are close to the respective ground
state. For completeness, we mention that going to even lower
temperature is not possible in the case of fermions due to the
fermion sign problem; see Ref. [41] for a review article, and
the discussion below.

In Fig. 12, we show PIMC data for the radial density for
different values of λ, with the red circles and blue diamonds
corresponding to fermions and bosons. The bottom plot has
been obtained for strong coupling, λ = 30, and both curves
cannot be distinguished with the naked eye. More specifically,
we find a pronounced structure with two distinct shells, and
the density almost completely vanishes in between.

For λ = 10 (second from the bottom), we still find a shell
structure for both kinds of particles, although there do appear
significant differences around the center of the trap and the
subsequent minimum. Moreover, there is substantially more
overlap between the shells than for λ = 30, and the particles
are pushed less far away from the center of the trap. Thus, λ =
10 might still be viewed as a strong coupling, with quantum
statistics acting as a perturbation.
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FIG. 10. Integrated center-two-particle correlation function gint
c2p(r1, α, 0.75, 1.25) [cf. Eq. (18)] for N = 4 and β = 1. The left and right

columns correspond to Bose and Fermi statistics, and the rows correspond to different values of the coupling parameter λ. The dashed dark
gray lines in the top left panel indicate the integration boundaries for the reference particle, and the solid red line denotes the scan line depicted
in the bottom panel of Fig. 11. Units: [rl ] = l0; cf. Sec. II A.

Further decreasing the coupling parameter to λ = 3 (cen-
ter) brings us to the interesting transition regime, where both
quantum statistics and the dipole interaction are important
at the same time. As a consequence, the shell structure
nearly fully disappears for bosons, but remains remarkably
pronounced in the case of Fermi statistics. Hence, quantum
exchange can no longer be interpreted as a small perturbation
at such a moderate coupling strength, and we find an average
sign of S ≈ 0.063 in our PIMC simulation.

Finally, we approach the more weakly coupled regime
for λ = 1 (second from the top) and λ = 0.7 (top), and the
shell structure has completely vanished for bosons in the
latter case. Evidently, quantum statistics significantly shape
the physical behavior of the system, and we find average signs
of S ≈ 2.3 × 10−3 and S ≈ 6.9 × 10−4 for the two values
of λ. Hence, the PIMC simulations are rendered computa-
tionally expensive by the fermion sign problem, and it takes
O(104) CPU hours to accurately resolve the fermionic density.
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Remarkably, the shell structure is still clearly pronounced and
thus constitutes a quantum exchange effect. For completeness,
we mention that going to even lower values of the coupling
parameter is not feasible at these conditions, again due to the
fermion sign problem.

The second type of classical-to-quantum transition in har-
monically confined ultracold atoms takes place upon increas-
ing the inverse temperature β. This is investigated in Fig. 13
for N = 6 particles, with the left panel corresponding to λ =
1. At the highest considered temperature, β = 0.75, the sys-
tem is nearly classical and the bosonic and fermionic curves
almost coincide. Doubling the inverse temperature to β =
1.5 makes the effect of quantum statistics more pronounced:
The bosonic curve progresses very smoothly, whereas there
appears a saddle point for fermions at r ≈ 1. At β = 3,
the system already almost resembles the ground state, and
the results are similar to the curves discussed in Fig. 12.
Finally, for β = 5 and β = 6 (the two top curves), the bosonic
curves remain almost structureless, whereas the fermionic
shell structure has become even more pronounced, and we find
an average sign of S ≈ 6.8 × 10−4 in the latter case. Thus,
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30
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0.7
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FIG. 12. Effect of quantum statistics on the radial density in
dependence of the coupling strength. Shown are PIMC results for
n(r) for N = 6 ultracold atoms at β = 5 for different values of the
coupling parameter λ. The red circles and blue diamonds distinguish
Fermi and Bose statistics. Units: [r] = l0; cf. Sec. II A.

going to even lower temperature is presently computationally
too expensive.

The right panel of Fig. 13 shows similar information, but
at three times the coupling strength, λ = 3. As the general
trend is similar as for λ = 1, we restrict ourselves to a brief
summary of the key differences: (i) the stronger repulsive
forces push the particles further away from the center of
the trap for both types of quantum statistics; (ii) quantum-
statistical effects start to manifest at lower temperatures; (iii)
although the shell structure is significantly more pronounced
for fermions, it does appear for bosons as well due to the
moderate coupling strength.

Let us conclude the investigation of the static properties of
quantum dipole systems with results for the integrated C2P for
the most interesting transition regime. To this end, we show
gint

c2p(r1, α, 1.5, 2.5) in Fig. 14, which measures the correlation
between a particle in the outer shell (1.5 � r2 � 2.5; see the
dashed dark gray lines in the top left panel and also the density
profiles in the right panel of Fig. 13) and the rest of the system
for N = 6 and λ = 3. As usual, the left and right columns
correspond to bosons and fermions, and the top row has been
computed for low temperature, β = 7, which is close to the
ground state. First and foremost, we note that the C2P exhibits
a qualitatively similar behavior for both types of quantum
statistics, namely a pronounced exchange-correlation hole
around α = 0 followed by a maximum around α ≈ 75. Yet,
this structure is significantly more pronounced in the case
of fermions, which can be seen particularly well in Fig. 15,
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Units: [rl ] = l0; cf. Sec. II A.
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where we show scan lines over r1 = 2; see the solid red line
in the top left panel.

Let us for now ignore the crosses and focus on the red
(black) circles corresponding to the fermionic (bosonic) data
at β = 7. In particular, the red curve exhibits a pronounced
minimum around α ≈ 100, followed by a second maximum
at α ≈ 140, and even a second minimum at α = 180 (i.e., at
the opposite end of the trap), which are almost absent in the
black data set. We thus conclude that, at moderate coupling
and low temperature, Fermi statistics effectively enhance the
impact of the dipole repulsion on the structural properties of

the system. This is in contrast to the weak-coupling regime
(see Fig. 10 and the corresponding discussion), where we
observed the opposite effect, as the dipole interaction was
essentially masked by the exchange hole, and the fermionic
system closely resembled the ideal case for comparatively
larger values of λ.

In the bottom panel of Fig. 14, we show the same data
for the integrated C2P but at a relatively high temperature,
β = 1. In this case, the effect of quantum statistics does not
only vanish in the radial density (cf. the right panel of Fig. 13)
but also cannot be resolved in gint

c2p(r1, α, 1.5, 2.5). Again, this
becomes especially clear in the scan line over r1 = 2 shown
as the crosses in Fig. 15.

As a final example for the utility of the integrated C2P re-
garding the investigation of the structural properties of trapped
quantum systems, we show gint

c2p(r1, α, r2,min, r2,max) for N =
6 and λ = 1 in Fig. 16. In particular, the top row has been
obtained by integrating over 1.5 � r2 � 2.5 (see the dashed
dark gray lines in the top left panel), which corresponds to
particles in the outer shell for fermions, and the outer region
for bosons, cf. Fig. 13. As usual, the left panel shows the
results for Bose statistics, and we find a pronounced corre-
lation hole around α = 0, but no pronounced features beyond.
In stark contrast, the fermionic data exhibit in addition to
the exchange-correlation hole a distinct structure for all an-
gles α, i.e., beyond next-neighbor effects and throughout the
entire system.

Again, this can be seen best from a scan line over r2 = 2
(solid red line in the top left panel), which is shown in Fig. 17.
The bosonic curve (black circles) remains nearly flat for
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FIG. 16. Integrated center-two-particle correlation function gint
c2p(r1, α, r2,min, r2,max) [cf. Eq. (18)] for N = 6, at β = 5 and λ = 1. The left
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inner shell, 0 � r2 � 0.75. The solid red lines correspond to scan lines shown in Fig. 17. Units: [rl ] = l0; cf. Sec. II A.
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r1 = 3/8 (crosses). The colored and black symbols refer to Fermi
and Bose statistics, respectively.

α � 60, whereas there are pronounced oscillations in the
fermionic curve (red circles) even for α = 180.

Finally, the bottom row of Fig. 16 shows the integrated C2P
for 0 � r2 � 0.75, which measures the correlation toward a
particle in the inner region. Overall, we observe similar trends
as in the outer region, with the fermionic data exhibiting
correlations throughout the entire system. Moreover, the scan
line depicted in Fig. 17 shows that it is much less likely to find
a second particle in the inner shell for fermions as compared
to bosons in the first place.

In a nutshell, we have used the recent integrated C2P to
analyze the structural properties of harmonically confined
quantum dipole systems. Our three key findings are (i) the
comparably much later impact (i.e., for larger λ) of the dipole
interaction for fermions as compared to bosons, (ii) the emer-
gence of a shell structure in the density profile and system-
wide correlations in the C2P for fermions at intermediate
coupling strength, and (iii) the value of the integrated C2P
as a tool for the investigation of correlated quantum systems,
which is interesting in its own right.

C. Superfluidity and nonclassical rotational inertia

Let us conclude our investigation of ultracold atoms in
a harmonic trap with a systematic study of the impact of
the dipole interaction on the moment of inertia. To this end,
we plot PIMC results for the superfluid fraction versus the
temperature T = β−1 in Fig. 18 for λ = 3 (i.e., intermediate
coupling strength) and five different particle numbers N (dif-
ferent symbols and colors). The top panel has been obtained
for Bose statistics and all five curves exhibit the expected
crossover from a classical system with γsf = 0 to a quantum
system where I vanishes (γsf = 1). Moreover, we find that the
curves are ordered with increasing the system size N just as in
the case of ideal bosons; cf. Fig. 3.

The bottom panel shows the same information for
fermions. For N = 3 (green crosses) and N = 6 (yellow tri-
angles), we observe a qualitatively similar crossover as in the
case of Bose statistics, whereas for N = 4 (red circles) and

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

γ s
f

β-1

N=7
N=6
N=5
N=4
N=3

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

λ

γ s
f

FIG. 18. PIMC results for the temperature dependence of the
superfluid fraction for Bose (top) and Fermi statistics (bottom) at λ =
3. The black squares, yellow triangles, blue diamonds, red circles,
and green crosses distinguish PIMC data for N = 7, 6, 5, 4, and 3.
The blue arrow in the bottom panel indicates the decreasing coupling
strength, and the two light blue points at β = 5 correspond to λ = 1
and λ = 0.7 (in descending order) for N = 5. Units: [β−1] = h̄�; cf.
Sec. II A.

N = 7 (black squares), γsf diverges toward negative infinity.
This is precisely the behavior exhibited by ideal fermions
(see Sec. III A), which strongly indicates that the symmetry
of the ground-state wave function is not changed by the
interaction [84]. A seeming exception to this pattern is given
by the blue diamonds corresponding to N = 5: In the nonin-
teracting case, the superfluid fraction diverges toward negative
infinity, although it does so for lower temperature as compared
to N = 6; the λ = 3 curve shown in Fig. 18, on the other
hand, exhibits a monotonically increasing γsf for the depicted
temperature range. Still, the quantum moment of inertia has
not fully vanished even for the lowest temperature point, and
the low-temperature limit cannot presently be resolved due to
the fermion sign problem.
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FIG. 19. Temperature dependence of the average sign at λ =
3. Shown are PIMC results for the sign S plotted vs the inverse
temperature β for N = 7 (blue diamonds), N = 6 (green crosses),
N = 4 (red circles), and N = 3 (black squares). Units: [β−1] = h̄�;
cf. Sec. II A.

To further illuminate this issue, we have also performed
PIMC simulations of the N = 5 system at λ = 1 and λ = 0.7
for β = 5, and the results are shown as the light blue points.
In contrast to bosons, where γsf monotonically increases when
the system becomes more ideal, the superfluid fraction drops
in the present example and, eventually, becomes negative.

Let us now briefly revisit the sign problem. In Fig. 19,
we show our PIMC results for the average sign S for the
same conditions as in Fig. 18. First and foremost, we note
that all curves exhibit the same expected qualitative behav-
ior: At large temperature, the system is nearly ideal, quan-
tum degeneracy and exchange effects are negligible, and the

average sign approaches one. In the path-integral picture, this
means that the probability to find a particle in a single-particle
cycle [(P(1); cf. Fig. 8] becomes 100%. With increasing
β, the single-particle wave functions become more extended
and paths begin to overlap. Consequently, permutations of
length l > 1 start to appear with increasing frequency, and
the average sign drops due to the cancellation of positive and
negative weights. Since the Monte Carlo error bar is (in first
approximation) inversely proportional to S [cf. Eq. (10)], the
simulations become computationally more involved and even-
tually unfeasible for S < 10−3. However, a more extensive
discussion of the sign problem is beyond the scope of the
present work, and the interested reader is referred to Ref. [41]
for a topical review.

In order to more systematically study the impact of the
dipole interaction on the nonclassical rotational inertia, we
show the superfluid fraction of N = 4 (left panel) and N = 6
(right panel) interacting quantum dipole particles in Fig. 20
for different values of the coupling parameter λ. Let us start
with a discussion of the bosonic results (black symbols and
lines), which exhibit the same behavior for both particle
numbers. The solid lines correspond to the exact ideal result
known from theory (see Sec. II E), and the pluses to PIMC
data at the same conditions. Here, too, we find perfect agree-
ment between theory and simulations, as is expected. While
we do observe the by now familiar crossover from the classical
to the quantum regimes for all values of λ, γsf significantly
decreases with increasing coupling strength for intermediate
temperatures. Equivalently, it can be said that the crossover is
shifted to substantially lower temperatures, which can be in-
tuitively understood in the following way: At weak coupling,
the paths corresponding to different particles in our PIMC
simulations can overlap and form permutation cycles even
when the temperature is relatively high and, consequently, λβ
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FIG. 20. Temperature dependence of the superfluid fraction γsf for N = 4 (left) and N = 6 (right) ultracold atoms. The symbols depict
PIMC data for different values of the coupling parameter λ (with black and colored symbols corresponding to Bose and Fermi statistics), and
the solid lines to the corresponding ideal results. Units: [β−1] = h̄�; cf. Sec. II A.
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FIG. 21. PIMC results for the radial density n(r) (colored) and
superfluid density [black, see Eq. (14)] of N = 4 ultracold atoms with
λ = 10 and β = 6. The diamonds and circles correspond to bosons
and fermions, and the respective total superfluid fractions are given
by γsf ≈ 0.76 and γsf ≈ −0.45. Units: [r] = l0 and [n(r)] = 1/l2

0 ; cf.
Sec. II A.

is small. With increasing λ, the particles are further pushed
away from each other and the average interparticle distance
r becomes larger. Thus, it requires lower temperatures for r
and λβ to be of comparable size, and the superfluid crossover
happens at larger values of β.

The colored symbols show the same information as the
black ones but for fermions. For completeness, we mention
that here, too, we find excellent agreement between our PIMC
simulations and the theoretical curve for λ = 0, although
simulations are restricted to much smaller values of β (in
particular for N = 6) due to the fermion sign problem. Fur-
thermore, the N = 4 curve approaches negative infinity for
all considered coupling strengths, whereas the N = 6 curve
approaches one; cf. the discussion of Fig. 18 above. While
the respective curves are shifted toward lower temperature
with increasing λ, the effect of the coupling strength on γsf

is much less pronounced than in the case of bosons. This is
in good agreement to the trends reported in Sec. III B that
fermions react less strongly to the dipole interaction, which
is effectively masked by the Pauli repulsion.

A further interesting question is whether the drastic differ-
ence in the quantum mechanical moment of inertia in the case
of N = 4 are somehow reflected by the structural properties
of the system. To address this issue, we show both the radial
density distribution n(r) (colored symbols) and the superfluid
density [black symbols, see Eq. (14)] in Fig. 21 for λ = 10
and β = 6. First and foremost, we note that there appears
hardly any difference in n(r) between bosons (diamonds) and
fermions (circles) apart from a somewhat more pronounced
minimum around the center of the trap in the latter case. For
completeness, we mention that we find an average sign of
S ≈ 0.57.

In contrast, the superfluid density behaves entirely differ-
ently in both cases: For bosons, nsf approximately follows the
full density n(r), and the maximum occurs at roughly the same
position; for fermions, on the other hand, nsf is negative over
the entire r range and the minimum is shifted significantly
toward smaller r as compared to the maximum of n(r). This is
in qualitative agreement with the results reported in Ref. [84]
for a noninteracting system.

While the onset of the negative superfluid fraction is
evidently not connected to a divergence from the bosonic
results in the radial density n(r), more subtle pair correlation
effects might be resolved using the integrated C2P that was
introduced and applied in the previous sections. In Fig. 22,
we show PIMC results for gint

c2p(r1, α, 1.4, 2.4) for the same
conditions as in Fig. 21. Remarkably, here, too, we do not find
any substantial impact of the type of quantum statistics. This is
further confirmed by the scanline shown in Fig. 23: Both the
bosonic (blue diamonds) and fermionic (red circles) curves
can hardly be distinguished with the naked eye and exhibit the
same structure with a pronounced exchange-correlated hole
around α = 0, followed by a first maximum, a minimum, and
a subsequent second maximum around α = 180, i.e., at the
opposite end of the system.

We thus conclude that the onset of the negative superfluid
fraction does not leave a distinct signature on the structural
properties of the system.
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FIG. 22. Integrated center-two-particle correlation function gint
c2p(r1, α, 1.4, 2.4) [cf. Eq. (18)] for N = 4, λ = 10, and β = 6. The dashed

dark gray lines in the left panel indicate the integration boundaries for the reference particle, and the solid red line denotes the scan line depicted
in Fig. 23. The left and right panels correspond to Bose and Fermi statistics, respectively. Units: [rl ] = l0; cf. Sec. II A.
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blue diamonds and red circles correspond to bosons and fermions,
respectively.

IV. SUMMARY AND OUTLOOK

In summary, we have presented extensive ab initio PIMC
results for quantum dipole systems in a harmonic confine-
ment, taking into account both Bose and Fermi statistics.
More specifically, we have briefly revisited the noninteracting
case, which was used to benchmark the implementation of
our simulation scheme and to demonstrate the utility of the
integrated C2P as a diagnostic for the impact of quantum
statistical effects on the structural properties of the system.
Subsequently, we have investigated correlated quantum dipole
systems, starting with an analysis of the emergence of the
exchange-correlation hole upon increasing the coupling pa-
rameter λ. Here we have found that bosons sensitively react
even for a small degree of nonideality, whereas coupling
effects are effectively masked by the Pauli exclusion principle
for fermions. This indicates that mean-field theories and other
perturbative methods might perform better for Fermi as com-
pared to Bose systems. Moreover, we have investigated radial
density profiles, where we were able to clearly resolve the
impact of quantum statistics on the respective shell structure.
In addition, it was shown that the integrated C2P can be used
to measure quantum exchange effects even for parameters
where they are almost absent in averaged quantities like the
radial density.

A further important question studied in this work is given
by the nonclassical rotational inertia, and how it is affected
by quantum statistics and the structural properties of the
system. More specifically, we have found that the superfluid
fraction of harmonically confined fermions with dipole-dipole
interaction can be negative for certain particle numbers N ,
which is in good agreement to a previous study for a different
type of pair interaction [84], and can be explained by the

topology of the density matrix. Remarkably, this effect does
not seem to be influenced by the structural characteristics of
the system that are nearly equal for both bosons and fermions,
whereas the moments of inertia diverge from each other.

Let us conclude this work by outlining a few topics for
future investigations. First and foremost, we mention that,
while the previous study was restricted to finite systems in a
harmonic trap, it is possible to extend these efforts to bulk sys-
tems in periodic boundary conditions [12,13]. Here, possible
research topics include the bosonization for fermionic bilayer
or multilayer systems or the investigation of collective exci-
ations that can be obtained from PIMC data for imaginary-
time correlation functions [100] via a subsequent analytical
continuation [12,13,32,101]. Despite being seemingly ambi-
tious in the light of the FSP, the latter project was recently
achieved for correlated electrons in the warm dense matter
regime [33–35], where the sign problem is expected to be even
more severe [41]. Similarly, fermionic PIMC simulations can
directly be used to study the static density response [102–104]
of bulk quantum dipole systems.

In addition, the investigation of trapped quantum systems
is very interesting in its own right and yields many additional
topics for future research. For example, PIMC simulations
can be used to estimate the quantum breathing mode [64,65],
which is possible for different types of pair potentials, in-
cluding dipole-dipole interaction. Moreover, we mention the
study of both crystallization [18,19,105] and also quantum
melting [106,107], which is not trivial for Monte Carlo sim-
ulations of finite systems. More specifically, the widely used
Lindemann-type criteria for melting [108] are problematic as
they depend on the unphysical dynamics within the respective
Markov chain. A better alternative is given by the C2P studied
above (or a triple-correlation function in 3D), as it allows for
the estimation of a reduced entropy that signals the onset of
different crossovers while also being a proper observable that
can potentially be measured in experiments [85–87].

Lastly, we mention that it is straightforward to extend
the present investigation to other geometries [73,74] or pair
potentials, with electrons in 2D quantum dots [49,67–72]
constituting a particularly interesting application.
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