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Phase separation of a Bose-Bose mixture: Impact of the trap and particle-number imbalance
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We explore a few-body mixture of two bosonic species confined in quasi-one-dimensional parabolic traps of
different length scales. The ground-state phase diagrams in the three-dimensional parameter space spanned by
the harmonic length scale ratio, interspecies coupling strength, and particle-number ratio are investigated. As a
first case study we use the mean-field ansatz (MF) to perform a detailed analysis of the separation mechanism.
It allows us to derive a simple and intuitive rule predicting which of the immiscible phases is energetically
more favorable at the miscible-immiscible phase boundary. We estimate the critical coupling strength for the
miscible-immiscible transition and perform a comparison to correlated many-body results obtained by means
of the multilayer multiconfiguration time-dependent Hartree method for bosonic mixtures (ML-X). At a critical
ratio of the trap frequencies, determined solely by the particle-number ratio, the deviations between MF and
ML-X are very pronounced and can be attributed to a high degree of entanglement between the components. As a
result, we evidence the breakdown of the effective one-body picture. Additionally, when many-body correlations
play a substantial role, the one-body density is in general not sufficient for deciding upon the phase at hand
which we demonstrate exemplarily.
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I. INTRODUCTION

Binary mixtures of ultracold gases have been extensively
studied over the past years. They represent a unique plat-
form for the investigation of complex interacting many-body
quantum systems in a well-controlled environment. In par-
ticular, it is experimentally possible to shape the geometry
of the trap [1], to reduce the dimensionality of the relevant
motion [2,3], to tune the interparticle interactions [4–8], and
prepare samples of only a few atoms [9,10]. Numerous ex-
periments have been conducted with different hyperfine states
[11–24], different elements [25–38], or different isotopes
[39,40] to reveal how the interplay between two conden-
sates impacts their stationary properties and nonequilibrium
dynamics. Highlights of these explorations include among
others the phase separation between the components and
symmetry-breaking phenomena [12,17,36,37,39], the obser-
vation of Efimov physics [38], and creation of deeply bound
dipolar molecules [28,32,33], as well as dark-bright solitary
waves [18,19] and quantum droplets [23,24].

One of the key properties, which makes the multicom-
ponent systems attractive and their physics very rich, is the
miscibility, which has significant implications for sympathetic
cooling [15,26], coarse-graining dynamics [41–44], and vor-
tex formation [45,46], to name a few. In the very early theo-
retical investigations a very rich phase space for the ground
state of the Bose-Bose mixture has been identified. These
investigations [47–52] are based on the one-body densities
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obtained from solving the underlying mean-field equations,
commonly known as Gross-Pitaevskii equations. In case of
a weak intercomponent coupling one finds a miscible phase
with a high spatial overlap between the components. For a
sufficiently large repulsive coupling there are three types of
segregated phases with a rather small overlap. Two of them are
core-shell phases with one component being symmetrically
surrounded by the other component, whereas the third is an
asymmetrical phase, where the rotational or parity symmetry
of the underlying trapping potential is broken. Neglecting
the kinetic energy (Thomas-Fermi approximation), a simple
separation criterion for the miscible-immiscible transition has
been derived [53–55]. It depends solely on the intraspecies
and interspecies interaction strengths, which are easily ad-
justable by Feshbach or confinement-induced resonances
[4–8].

However, it has been shown that this separation criterion,
while valid in homogeneous systems, should be applied with
care in inhomogeneous geometries. Thus, in a harmonic
confinement, system parameters such as trap frequency, par-
ticle numbers, and mass ratio have also an impact on the
miscible-immiscible phase boundary [56–60]. The miscibility
of a binary mixture of both bosons and fermions has been
recently addressed also in other trapping geometries, i.e., in
a box [61], double well [62–64], ring lattice [65–67], and
combinations thereof [68], as well as the dynamical aspect of
phase separation leading to pattern formations [69–72]. From
the intuitive point of view, the trap pressure favors miscibility
since it costs energy to extend in space. Thus, it requires
stronger intercomponent repulsion for the species to separate.
However, there are still open questions regarding the impact
of different length scales, the characterization of boundaries
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between the immiscible phases, and what type of separation
will occur once the critical coupling is reached.

Another relevant topic affecting the critical coupling
strength for a transition as well as the resulting type of phase
are the interspecies correlations, which generate entanglement
between the components and lead to bunching of particles of
the same species. Although a mean-field treatment is often
justified in experimental setups, a very thorough numerical
analysis of one-dimensional (1D) few-body systems has re-
vealed that an asymmetric immiscible phase is one of the two
possible configurations of an entangled many-body state, the
other one being the mirror image. The one-body densities
of this so-called composite fermionization phase [73–77]
preserve parity symmetry of the underlying trapping potential
and have a high spatial overlap, which is uncharacteristic
for an immiscible phase. Nevertheless, the components are
indeed separated, which is encoded in the interspecies two-
body density matrix. In experiments, the single shots do
not represent one-body densities but are projections on one
of the two mutually exclusive configurations. An averaging
procedure would reveal a parity-preserving density, unless
the Hamiltonian itself violates that symmetry, such as not
coinciding trap centers of the one-body potentials. Apart from
composite fermionization, there are a whole class of so-called
spin-chain phases with an even higher degree of entanglement
[78–80]. When all interactions in the system become nearly
resonant, many states become quasidegenerate and particles,
being bosons, gain fermionic features like the Pauli exclusion
principle.

Considering the above, our work addresses three differ-
ent points. First, we characterize the phase diagram in a
three-dimensional parameter space spanned by the ratio of
the harmonic trap lengths, the interspecies coupling strength,
and the particle-number ratio. We switch off intracompo-
nent interactions to reduce the complexity and gain a better
understanding of the separation process. A very rich phase
diagram is revealed admitting two tricritical points, where
three phases may coexist. Second, within the framework of
a mean-field approximation, we perform a detailed analysis
of the separation mechanism. Equipped with this knowledge
we derive a selection rule for phase separation processes and
a simple algorithm to estimate the miscible-immiscible phase
boundary. Finally, we investigate the deviations of the mean-
field picture to a many-body approach. For this we use the
multilayer multiconfiguration time-dependent Hartree method
for bosonic mixtures [81–83]. We find that in the vicinity of
the high-entanglement regime the phase diagram is indeed
greatly affected. The symmetry-broken phase is replaced by
the composite fermionization, while the onset of symmetry
breaking is linked to the degree of entanglement reaching a
certain threshold. Furthermore, the location of this beyond-
mean-field regime strongly depends on the harmonic length
scale ratio and the particle-number ratio. We also find that
the one-body density is in general not sufficient to distinguish
between a core-shell phase and the composite fermionization.

This work is organized as follows. In Sec. II we intro-
duce our physical setup and in Sec. III our computational
approach. Section IV is dedicated to a detailed study of a few-
body mixture. Section IV A provides intuitive insights in the
framework of the mean-field approximation, while Sec. IV B

focuses on correlation and entanglement effects using multi-
layer multiconfiguration time-dependent Hartree method for
bosonic mixtures. The few-to-many-body transition is subject
of Sec. V. Finally, we summarize our findings in Sec. VI.

II. GENERAL FRAMEWORK

Our system consists of a particle-imbalanced mixture of
two distinguishable bosonic components, denoted by σ ∈
{M, I}, with NM particles in the majority component and NI

impurities. All particles are assumed to be of equal mass m
and the intracomponent interactions are assumed to be zero
or negligibly small. The majority species interacts with the
impurities via s-wave contact interaction of coupling strength
gMI . The species are confined in separate quasi-1D harmonic
traps of different length scales aσ = √

h̄/mωσ with trap fre-
quency ωσ and coinciding trap centers. By choosing aM and
h̄ωM as length and energy scales we arrive at the rescaled
Hamiltonian:

H = HM + HI + HMI

=
NM∑
i=1

(
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2

∂2

∂x2
i

+ 1

2
x2

i

)
+

NI∑
i=1

(
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i

+ 1

2
η2y2

i

)

+ gMI

NM∑
i=1

NI∑
j=1

δ(xi − y j ), (1)

where xi labels the spatial coordinate of the ith majority parti-
cle, yi of the ith impurity particle, and η = ωI/ωM denotes the
trap frequency ratio.

In this work we focus on the ground-state characterization
and consider both attractive and repulsive interactions ranging
from weak to intermediate couplings gMI ∈ [−2, 2] with the
impurity being localized or delocalized with respect to the
majority species, i.e., aI/aM = √

1/η ∈ [0.5, 1.5]. We also
study the impact of the particle-number ratio NI/NM on the
system’s properties concentrating on a few-body system.

All the ingredients necessary for the realization of such a
Hamiltonian system have been demonstrated experimentally.
Mixtures of two-component BECs with the same mass can
be prepared with different atomic spin states [11–24]. The
1D geometry can be achieved by strong transversal confine-
ment or by a two-dimensional optical lattice. The interaction
strengths are tunable by Feshbach and confinement-induced
resonances allowing to vary the coupling strength between
the components and to make the intracomponent interactions
negligible [4–8]. Species-dependent trapping techniques have
been demonstrated [84,85]. Few-body systems are obtainable
for fermions via trap spilling [86] and for bosons by cutting
out a subsystem of a Mott insulator [87]. High-resolution mea-
surements with single-atom sensitivity have been proposed for
nonlattice traps by using a quantum gas microscope [88]. The
experimental realization, however, has yet to be demonstrated.

III. COMPUTATIONAL APPROACH

To find the ground state of our binary mixture, we employ
imaginary-time propagation by means of the multilayer mul-
ticonfigurational time-dependent Hartree method for atomic
mixtures (ML-MCTDHX). For reasons of brevity we call it
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ML-X from now on. This multiconfigurational wave-function-
based method for efficiently solving the time-dependent
Schrödinger equation was first developed for distinguishable
degrees of freedom [89] and ML-X is an extension to indis-
tinguishable particles such as bosons or fermions and mixtures
thereof [81–83]. ML-X is an ab initio method, whose power
lies in expanding the wave function in time-dependent basis
functions. Let us demonstrate the underlying ansatz for the
system at hand:

|�(t )〉 =
S∑

i=1

√
λi(t )

∣∣�M
i (t )

〉 ⊗ ∣∣�I
i (t )

〉
, (2)

∣∣�σ
i (t )

〉 =
∑
�nσ |Nσ

Ci,�nσ (t ) |�nσ (t )〉 . (3)

The time-dependent many-body wave function |�(t )〉 has
two layers: the so-called species layer (2) and the particle
layer (3). In the first step (2) we separate majority and
impurity species and assign them to S ∈ N corresponding
species wave functions |�σ

i (t )〉. The time-dependent coeffi-
cients λi(t ) are normalized

∑S
i=1 λi(t ) = 1 and describe the

degree of entanglement between the components. In case
∃ i ∈ {1, . . . , S} : λi(t ) ≈ 1 the components are said to be
disentangled. In the second step (3) each species wave func-
tion |�σ

i (t )〉, which depends on Nσ indistinguishable coordi-
nates, is expanded in terms of species-dependent symmetrized
product states, also known as permanents or number states
|�nσ 〉 = |nσ

1 , . . . , nσ
sσ

〉 admitting sσ ∈ N normalized single-
particle functions (SPF) |ϕσ

j (t )〉. The sum is over all possible
configurations �nσ |Nσ fulfilling the constraint

∑sσ

i=1 nσ
i = Nσ .

The time dependence of number states is meant implicitly
through the time dependence of the underlying SPFs. Finally,
each SPF is represented on a primitive one-dimensional time-
independent grid [90].

When one applies the Dirac-Frenkel variational principle
[91] to the above ansatz, one obtains coupled equations of mo-
tion for the expansion coefficients λi(t ), Ci,�nσ (t ) and the SPFs
|ϕσ

j (t )〉. This procedure allows to considerably reduce the size
of the basis set as compared to choosing time-independent
SPFs constituiting the number states on the particle layer (3).
We note that S = 1 ∧ sσ = 1 is equivalent to solving coupled
Gross-Pitaevskii equations. We will show parameter regions,
where the mean-field description is valid and regions where it
fails as a result of increasing interspecies correlations. These
generate entanglement between the components and decrease
the degree of condensation of the noninteracting majority
atoms.

The results of the ML-X calculations are considered to be
converged if two criteria are simultaneously satisfied. First,
the expansion coefficients λi on the species layer as well as
populations of the natural orbitals mσ

i
1 of species σ on the

particle layer feature an exponential decay2 as a function of
the number of orbitals. This ensures that every newly added

1In the spectral decomposition of the one-body density operator
ρ̂σ

1 = ∑sσ
i=1 mσ

i |mσ
i 〉 〈mσ

i | the mσ
i are called natural populations and

|mσ
i 〉 natural orbitals.

2λi and mσ
i are sorted by magnitude in descending order.

orbital or SPF adds a significantly smaller correction to the
many-body wave function. Second, the smallest coefficients
λS < ε and mσ

sσ
< ε are below some threshold value ε. The

value of ε depends in general on the observable of interest
and ensures that the least contributing orbital or SPF does only
a minor correction to the observable. The ML-X simulations
obtained in this work are converged in the above sense with
ε = 10−3 unless stated otherwise.

In the following, we will often refer to the one-body density
ρσ

1 (z) of species σ , two-body density matrix ρσ
2 (z, z′) of

species σ , and interspecies two-body density matrix ρMI
2 (x, y)

of the many-body density operator ρ̂ = |�〉 〈�| defined as

ρσ
1 (z) = 〈z| trNσ \1

{
trNσ̄

{ρ̂}} |z〉 , (4)

ρσ
2 (z, z′) = 〈z, z′| trNσ \2

{
trNσ̄

{ρ̂}} |z, z′〉 , (5)

ρMI
2 (x, y) = 〈x, y| trNM \1

{
trNI \1{ρ̂}} |x, y〉 , (6)

where Nσ \ n stands for integrating out Nσ − n coordinates of
component σ and σ̄ �= σ .

IV. PHASE SEPARATION: FEW-BODY MIXTURE

We start our analysis with a few-body system consisting
of NM = 5 majority particles with NI ∈ {1, 2} impurities. In
Sec. V we will discuss cases with larger particle imbalance.
Since we aim at the comparison between the mean-field
approximation and a many-body approach, we can ensure
reasonably converged results only for relatively small system
sizes. As we have emphasized previously in Sec. II, such
few-body systems are experimentally accessible.

The outline is as follows. First, in Sec. IV A, we obtain
the phase diagram within the mean-field approximation. We
uncover the mechanism responsible for the phase separation
by using an effective description and apply the obtained intu-
ition to derive an estimate for the miscible-immiscible phase
boundary. Second, in Sec. IV B, we perform a comparison
to the correlated many-body treatment by means of ML-X.
Apart from visible changes in the phase diagram we identify
the parameter space with a quick buildup of the entanglement
reaching large values already for moderate couplings. We then
develop an understanding how our intuitive one-body picture
is altered due to the presence of entanglement and what
implications it has for the ground-state phases, in particular
in the parameter space with considerable entanglement.

A. Mean-field approach: Basic mechanism of phase separation

For the mean-field description we choose a single
species orbital S = 1, yielding a nonentangled state |�(t )〉 =
|�M (t )〉 ⊗ |�I (t )〉 on the species layer. On the particle layer
a single SPF sσ = 1 is used for each component, meaning
that particles of the same species are forced to condense into
the same single-particle state ϕσ (z, t ) and |Nσ 〉 is the only
possible number state on the particle level. Thus, our ansatz
is |�(t )〉 = |NM (t )〉 ⊗ |NI (t )〉 and only ϕσ (z, t ) are time de-
pendent. As a result of imaginary-time propagation, we end
up with the ground-state orbitals ϕσ

MF
(z). The interpretation of

the mean-field treatment is that each species feels in addition
to its own external potential an averaged one-body potential
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induced by the other component. To obtain the effective mean-
field Hamiltonian HMF

σ of species σ we need to integrate out
the other component σ̄ . For convenience, we also subtract
the energy offset cσ̄ = 〈Nσ̄ |Hσ̄ |Nσ̄ 〉 caused by the one-body
energy of component σ̄ :

HMF
σ = 〈Nσ̄ |H |Nσ̄ 〉 − cσ̄

= Hσ + Nσ̄ gMI

Nσ∑
i=1

ρσ̄

MF
(zi )

=
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ Vσ (zi ) + V ind
σ (zi )

)

=
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ V eff
σ (zi )

)
, (7)

where ρσ
MF

(z) = |ϕσ
MF

(z)|2 is the one-body density of species
σ normalized as

∫
dz ρσ

MF
(z) = 1, V ind

σ (z) = Nσ̄ gMI ρ
σ̄
MF

(z) the
induced one-body potential, V eff

σ (z) = Vσ (z) + V ind
σ (z) the ef-

fective one-body potential and σ̄ �= σ .
To systematically distinguish between different phases, we

define the following two functions, applicable also in the more
general case of a many-body treatment in Sec. IV B:

�σ = ρσ
1 (z = 0)

maxz ρσ
1 (z)

, (8)

d =
∣∣∣∣
∫ ∞

−∞
dz zρM

1 (z) −
∫ ∞

−∞
dz zρI

1(z)

∣∣∣∣, (9)

with the one-body density ρσ
1 (z) of component σ (4). Equa-

tion (8) compares the one-body density ρσ
1 (z) at the trap

center with its maximum value, while Eq. (9) checks for parity
asymmetry, as we will argue below. The above equations
are motivated from the literature on binary mixtures and
we provide a brief summary on the discovered ground-state
phases and some of their properties, which will be relevant in
the following discussions.

For weak couplings there is a miscible phase M with a high
spatial overlap of the one-body densities ρσ

1 (z). As a result,
both components exhibit a Gaussian profile (�σ = 1) and
occupy the center of their trap (d = 0). The state is disentan-
gled and both species are condensed. For negative couplings,
i.e., attractive interactions, the phase remains miscible and
the widths of the Gaussian densities shrink with decreasing
coupling strength. For stronger positive couplings, three dif-
ferent phase separation scenarios are possible. In case the
majority species occupies the trap center (�M = 1), pushing
the impurities outside in a way that the impurity density forms
a shell around the majority density with two parity-symmetric
humps (�I < 1 and d = 0), we have a core-shell IMI phase.
When the impurities remain at the trap center instead (�I =
1) with the majority species forming a shell (�M < 1 and
d = 0), we have a core-shell MIM phase. Finally, when both
species develop two parity-symmetric humps with a local
minimum at the trap center (�σ < 1 and d = 0), we have a
composite fermionization phase CF . On the level of one-body
densities CF appears to be miscible owing to the high spatial
overlap between the components. However, the deviations to
the miscible phase become evident upon investigating the

two-body density matrices (5) and (6). Namely, two particles
of the same component can be found either on the left or the
right side with respect to trap center, while two particles of
different components are always on opposite sides.

While the core-shell phases IMI and MIM do not rely
on entanglement between the components, CF is always an
entangled many-body state made out of two major species
orbitals S = 2 and two major SPFs sσ = 2 on the particle
layer. Thus, CF cannot be obtained within the mean-field ap-
proximation. In fact, we observe that once the entanglement of
the true many-body state, characterized by the von Neumann
entropy (see Sec. IV B), reaches a certain threshold, a collapse
to a phase with broken parity symmetry (d > 0) will take
place in the mean-field picture. We abbreviate this phase with
SB from now on.

The origin of SB is the onset of a quasidegeneracy between
the ground state and the first excited state of the many-body
spectrum, which becomes an exact degeneracy in the limit
of gMI → ∞. Once this limit is reached, any superposition
of those two states is also an eigenstate of (1). Since they
are of different parity symmetry P and [H, P] = 0, it is
possible to choose the superposition to be parity symmetric
or to break the parity symmetry of (1). It was suggested
[73] that the corresponding many-body wave function may be
written in terms of number states as |�〉 = c1 |NM〉L |0M〉R ⊗
|0I〉L |NI〉R + c2 |0M〉L |NM〉R ⊗ |NI〉L |0I〉R with two parity-
broken SPFs ϕσ

j (z) featuring an asymmetric Gaussian shape
with a maximum on the j = L (left) or j = R (right) side
with respect to the trap center. Within the mean-field approx-
imation, the eigenenergy of the first excited state coincides
with the ground-state energy already for a finite coupling
gMI . Since mean field does not incorporate entanglement, the
state collapses either to |NM〉L ⊗ |NI〉R or to |NM〉R ⊗ |NI〉L,
resulting in a phase with broken parity symmetry.

With this we end our overview over different phases and
showcase a compact summary of the phases:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M : d = 0 ∧ �M = 1 ∧ �I = 1,

IMI : d = 0 ∧ �M = 1 ∧ �I < 1,

MIM : d = 0 ∧ �M < 1 ∧ �I = 1,

CF : d = 0 ∧ �M < 1 ∧ �I < 1,

SB : d > 0 ∧ �M < 1 ∧ �I < 1.

(10)

In Fig. 1 we depict the ground-state phases within the
mean-field approximation for NB = 5 with (a) NI = 1 and
(b) NI = 2 impurities as a function of the intercomponent
coupling strength gMI and the impurity localization aI/aM . As
expected, CF is not among the phases in Fig. 1. The transition
region on the aI/aM axis, where core shell MIM is replaced
by core shell IMI , can be tuned by variation of the particle-
number ratio such that for NI = NM it lies at aI/aM = 1 (not
shown), while for increasing particle imbalance NI/NM < 1 it
is shifted toward a lower aI/aM ratio. This is also the point
where the coupling strength gMI , required for the realization
of the SB phase, is the smallest. We will see later in Sec. IV B
that the species entropy has here its global maximum. Note
that each phase diagram features critical points, where three
different phases can coexist (green circles).

Now that we have identified the phases, we are going to
shed some light on the mechanism behind the phase separation
taking place for different specific coupling strength gMI for
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units of units of

(a) (b)

FIG. 1. Mean-field ground-state phase diagram for NB = 5 majority particles and (a) NI = 1 or (b) NI = 2 impurities as a function of
the intercomponent coupling strength gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap frequency ratio and aσ =√
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of phases is as follows: M for miscible, MIM for core shell with

impurity at the core, IMI for core shell with majority at the core, CF for composite fermionization, and SB for a phase with broken parity
symmetry. The blue solid curve represents the miscible-immiscible phase boundary according to (19). The blue dotted line is an estimate for
the SB phase boundary according to (21). Green circles indicate tricritical points. The coarse structure is due to the finite step size of our data
with respect to aI/aM .

a fixed trap ratio η. In particular, we will provide a simple
formula, which determines which of the core-shell structures
is energetically more favorable. Additionally, we provide an
estimate on the miscible-immiscible transition region and on
the SB phase boundary.

Let us make two horizontal cuts across the phase diagram
of Fig. 1(b) at aI/aM = 0.5 and at aI/aM = 1.1. In Fig. 2 we
take a closer look at the variation of the one-body densities
ρσ

MF
being part the effective one-body potential V eff

σ (7) when
increasing the coupling strength gMI . First, let us focus on

(a1)

(a2)

(a3)

(a4)

(b1)

(b2) (c2)

(b3)

(b4)

(c1)

(c3)

(c4)

(d2)

(d1)

(d3)

(d4)

FIG. 2. Ground-state densities ρσ

MF
(z) inside the induced one-body potential V eff

σ (z) from (7) for NM = 5, NI = 2 and either aI/aM =
0.5 (columns 1 and 2 for majority and impurity species, respectively) or aI/aM = 1.1 (columns 3 and 4 for majority and impurity species,
respectively). Rows from top to bottom correspond to a variation of the intercomponent coupling gMI ∈ {0.05, 0.2, 0.4, 0.6}. Horizontal lines
depict eigenenergies of (7).
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columns 1 and 2, corresponding to aI/aM = 0.5. For very
weak coupling (first row), every atom to a good approximation
populates the energetically lowest harmonic oscillator orbital
of the respective potential Vσ . The induced potential V ind

σ

gains an amplitude linearly with gMI and with the density
profiles being Gaussians of different widths we observe the
appearance of a small barrier in V eff

M at gMI = 0.2 [Fig. 2(a2)].
This barrier grows with gMI and at gMI = 0.4 [Fig. 2(a3)]
it becomes comparable to the ground-state energy of the
effective potential, while the one-body density ρM

MF
turns flat at

the trap origin. Once the ground-state energy drops below the
barrier height, two density humps appear and core shell MIM
is established [Fig. 2(a4)]. Meanwhile, the effective potential
of the impurity V eff

I does not show significant deviations from
the harmonic case (second column). Especially, the induced
part V ind

I , being initially also a Gaussian, is not capable to
produce a barrier at the trap center. Similar statements can be
made for columns 3 and 4, corresponding to aI/aM = 1.1. The
only difference is that V eff

I develops a barrier instead, whereas
V eff

M shows only a slight variation, which finally leads to the
core-shell IMI phase.

Motivated by the above observation, we define an alterna-
tive phase classification from an energetical point of view:⎧⎪⎪⎨

⎪⎪⎩

M : EMF
0,σ

− V eff
σ (0) > 0,

IMI : EMF
0,M

− V eff
M (0) > 0 ∧ EMF

0,I
− V eff

I (0) < 0,

MIM : EMF
0,M

− V eff
M (0) < 0 ∧ EMF

0,I
− V eff

I (0) > 0,

SB : d > 0,

(11)

where EMF
0,σ

is the ground-state energy of (7). As long as
the ground-state energy of the effective species Hamiltonian
exceeds the effective potential height at the trap center, the
species remains at the trap center. Phase diagrams produced
this way match exactly the ones shown in Fig. 1.

The interpretation is now as follows. For a very weak cou-
pling, both the majority and the impurity reside in the ground
state of the harmonic oscillator. Once the induced potential
V ind

σ of species σ becomes large enough to produce a barrier
in V eff

σ , the corresponding density ρσ
MF

will start to expand.
By growing in width it will prevent the other component σ̄

from developing a barrier of its own. When the height of the
potential barrier becomes of the same magnitude as the lowest
energy of the corresponding effective potential, the species σ

splits into two fragments. Then, it starts squeezing the other
component σ̄ by increasing the effective trap frequency of the
renormalized harmonic oscillator V eff

σ̄ .
The barrier in V eff

σ appears once the following condition is
fulfilled:

∃ x0 �= 0 :
d

dx
V eff

σ

∣∣∣
x0

= 0. (12)

Assuming one-body densities to be unperturbed harmonic
oscillator ground states, we obtain the following effective
potentials:

V eff
M (z) ≈ 1

2
z2 + gMI NI

√
η

π
e−ηz2

, (13)

V eff
I (z) ≈ 1

2
η2z2 + gMI NM

√
1

π
e−z2

, (14)

and the corresponding barrier conditions
√

π

2NI

√
η3

=̂ gM
MI

< gMI , (15)

√
πη2

2NM
=̂ gI

MI
< gMI . (16)

For given particle numbers NM , NI and trap ratio η either
condition (15) or condition (16) will be fulfilled first upon
increasing the coupling gMI and thus either the majority or the
impurity will form a shell. We remark that the above criterion
for barrier formation is inversely proportional to the particle
number of the other component, while the dependence on
the trap ratio η for the majority differs substantially from the
one for the impurity. Furthermore, for a fixed particle-number
ratio there is a critical trap ratio ηc, for which (15) and (16)
can be fulfilled simultaneously:√

1/ηc = 7
√

NI/NM . (17)

Around this critical region we expect that none of the compo-
nents will occupy the trap center. We summarize our findings
in a simple formula, which determines the type of phase
separation at the miscible-immiscible phase boundary:⎧⎪⎨

⎪⎩
core shell MIM : η � ηc,

core shell IMI : η � ηc,

CF or SB : η ≈ ηc.

(18)

For particle-number ratios discussed in this section, the criti-
cal region lies at aI/aM ≈ 0.8 [Fig. 1(a)] and at aI/aM ≈ 0.9
[Fig. 1(b)].

Next, we want to find an estimate for the miscible-
immiscible phase boundary gc

MI
. To this end, we combine the

energetical separation criterion in Eq. (11) with approximate
effective potentials from (13) and (14). Specifically, for a
given particle number ratio NI/NM we determine the critical
trap ratio ηc. Then depending on the choice of η we solve
numerically for the ground-state energy of a single particle
inside the effective potential (13) or (14). Finally, we compare
this energy to the potential height at the trap center:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aI/aM < 7
√

NI/NM : H eff
M = −1

2

∂2

∂x2
+ V eff

M (x)

⎧⎨
⎩

E eff
0,M

> gMI NI

√
η

π
⇒ M,

E eff
0,M

< gMI NI

√
η

π
⇒ MIM,

aI/aM > 7
√

NI/NM : H eff
I = −1

2

∂2

∂y2
+ V eff

I (y)

⎧⎨
⎩

E eff
0,I

> gMI NB

√
1
π

⇒ M,

E eff
0,I

< gMI NB

√
1
π

⇒ IMI.

(19)
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units of units of

(a) (b)

FIG. 3. ML-X ground-state phase diagram for NB = 5 majority particles and (a) NI = 1 or (b) NI = 2 impurities as a function of the
intercomponent coupling strength gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap frequency ratio and aσ =√
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of phases is as follows: M for miscible, MIM for core shell with

impurity at the core, IMI for core shell with majority at the core, CF for composite fermionization, and SB for a phase with broken parity
symmetry. The green solid curve represents the miscible-immiscible phase boundary based on the mean-field treatment. The coarse structure
is due to the finite step size of our data with respect to aI/aM .

The results are plotted as blue solid curves in Fig. 1. We
recognize that it performs quite well except for η ≈ ηc, where
it underestimates gc

MI
.

We can also get a rough estimate on the SB phase boundary
gSB

MI by using the following Gaussian ansatz:

ϕσ (z) = 4

√
βσ

π
e− βσ (z−zσ )2

2 , (20)

with the width βσ and the displacement zσ of component
σ being variational parameters. We evaluate the expectation
value of (1) and minimize the energy with respect to the above
variation parameters. By looking further at the special case
when the relative position |zM − zI | becomes zero, one arrives
after some algebraic transformations at

gSB
MI NI =

√
π

2η
4

√
γ

1 + γ η2
(1 + η2√γ )

3
2 , (21)

with particle-number ratio γ = NI/NM . We remark that this
equation reduces to Eq. (8) from [60] for η = 1. Although
this equation describes well the qualitative behavior of the
SB phase boundary, quantitatively it scales badly when the
trap ratio η deviates from ηc (blue dotted line in Fig. 1).
There are two possible reasons for this. First, our ansatz
incorporates only M and SB phases, while ignoring the core-
shell phases. Thus, as one draws away from ηc the core-shell
parameter region, which lies in-between M and SB, grows
in size, making the estimate inefficient. The other reason is
that the mean-field solution ϕσ

MF
of the SB phase is rather an

asymmetric Gaussian.
Finally, we discuss the limiting cases. When η → ∞

(aI/aM → 0) the impurity becomes highly localized at z = 0.
It will not be affected by the majority atoms. Meanwhile, the
majority species will be subject to an additional delta poten-
tial at z = 0 with potential strength gMI NI . This analytically
solvable one-body problem results in a Weber differential

equation. Upon increasing the delta-potential prefactor gMI NI ,
the initially unperturbed Gaussian solution develops a cusp
at the trap center, whose depth tends to zero as the prefactor
goes to infinity. When η → 0 (aI/aM → ∞), we can change
our perspective by rescaling the Hamiltonian in impurity
harmonic units and argue in a similar way as above.

In the following section, we compare to the results obtained
for the corresponding correlated many-body approach of
ML-X.

B. ML-X: Modifications of the phase diagram due
to correlations and entanglement

For the total wave function in Eq. (2) we use S = 8 species
orbitals and sσ = 8 SPFs for each component. We perform
again an imaginary-time propagation of an initially chosen
wave function and obtain the ground state of (1). In Fig. 3 we
show the resulting ground-state phases based on the selection
rules (10) for NB = 5 and (a) NI = 1 or (b) NI = 2. We remark
that the alternative selection scheme defined in Eq. (11) does
not apply here, and below we provide an explanation why it
fails. The first eye-catching feature is that the SB phase has
completely disappeared, as expected, since it is an artifact
of the mean-field treatment. Additionally, we observe the
presence of composite fermionization CF for the case of two
impurities in Fig. 3(b). Overall, the transition between the
miscible phase and separated phases takes places at a different
coupling strength gc

MI
for a fixed trap ratio η.

In order to better understand why the phase diagram is
altered this way, we investigate in Figs. 4 and 5 the von
Neumann entropy SvN on the species layer as well as the von
Neumann entropy of the majority species SM

vN and the impurity
species SI

vN . SvN characterizes the degree of entanglement
between the components (entanglement entropy) while Sσ

vN
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units of

(a)

(b)

FIG. 4. Ground-state (species) entanglement entropy SvN

(a) from Eq. (22) and the fragmentation entropy SM
vN from Eq. (23)

for the majority (b) for NB = 5 majority particles and NI = 1
as a function of the intercomponent coupling strength gMI and
impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap
frequency ratio and aσ = √

h̄/mωσ the harmonic oscillator length of
species σ .

reflects the degree of species fragmentation (fragmentation
entropy). The definitions are as follows:

SvN = −
S∑

i=1

λi ln λi, (22)

Sσ
vN = −

sσ∑
i=1

mσ
i ln mσ

i with ρ̂σ
1 =

sσ∑
i=1

mσ
i

∣∣mσ
i

〉 〈
mσ

i

∣∣ , (23)

where λi are expansion coefficients from (2) and mσ
i natural

populations satisfying
∑sσ

i=1 mσ
i = 1 and |mσ

i 〉 natural orbitals
of the spectrally decomposed one-body density operator ρ̂σ

1
of species σ . The entanglement entropy is bounded by the
equal distribution of orbitals SvN � ln(S), whereas for two
dominantly occupied orbitals we expect SvN � ln(2) ≈ 0.7.
If SvN = 0, then there is no entanglement between the species

units of

(a)

(b)

(c)

FIG. 5. Ground-state (species) entanglement entropy SvN from
Eq. (22) (a) and the fragmentation entropy Sσ

vN from Eq. (23) for the
majority (b) and impurity (c) for NB = 5 majority particles and NI =
2 impurities as a function of the intercomponent coupling strength
gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being
the trap frequency ratio and aσ = √

h̄/mωσ the harmonic oscillator
length of species σ .
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(b)

(c)

(d)

units of units of

(a)

FIG. 6. Projection amplitudes of the many-body ground state on number states | 〈�nM | ⊗ 〈�nI | |�〉 |2 for NB = 5 majority particles and NI = 1
(first column) or NI = 2 (second column) impurities as a function of the intercomponent coupling strength gMI and impurity localization
aI/aM = √

1/η with η = ωI/ωM being trap frequency ratio and aσ = √
h̄/mωσ the harmonic oscillator length of species σ . The SPFs

constituting the permanents are eigenfunctions of the effective Hamiltonian (24). The first row corresponds to the projection on the condensed
number state |NB〉 |NI〉, while in the second row one sums over contributions from two-particle excitations |NB − 2, 2〉 |NI〉, |NB〉 |NI − 2, 2〉,
and |NB − 1, 1〉 |NI − 1, 1〉.

and the wave function is a simple product state on the species
layer. Similarly, fragmentation entropy Sσ

vN = 0 means that
all particles occupy the same SPF and the species is thus
condensed. For parameter values where this is fulfilled, a
mean-field treatment is well justified. However, in Figs. 4 and
5 we recognize that for stronger couplings gMI this is not the
case. Particularly, in the vicinity of the critical region aI/aM ≈

7
√

NI/NM at positive gMI , identified in the previous section as
highly competitive, the entanglement entropy SvN is very pro-
nounced [Figs. 4(a) and 5(a)] . The fragmentation entropy of
the majority species SM

vN is comparatively weaker and slightly
shifted toward a smaller length scale ratio aI/aM at positive
gMI [Figs. 4(b) and 5(b)]. The fragmentation entropy of the
impurity species SI

vN for NI = 1 (not shown) coincides with
the entanglement entropy SvN [Fig. 4(a)], while for NI = 2
there are substantial differences [see Fig. 5(c)]. Namely, the
impurity shows a higher degree of fragmentation when it is

less confined compared to the majority species and vice versa.
In contrast to positive couplings gMI , for negative couplings
the entanglement and species fragmentation build up with a
much slower rate. Finally, we emphasize that phase separa-
tions like core shell MIM or IMI are not necessarily related to
a high degree of entanglement or species depletion, whereas
CF is located in the parameter region, where SvN takes the
highest values. Another striking observation is that the onset
of the SB phase from Fig. 1 is related to the entanglement
entropy reaching some threshold value around SvN ≈ 0.5 at
positive couplings gMI [compare to Figs. 4(a) and 5(a)].

Now that we have identified the parameter space where
deviations from mean field are to be expected, we want to gain
a deeper insight into how the effective picture is affected as a
result of increasing correlations. For this purpose we define
an effective single-body Hamiltonian of species σ similar to
the one in Eq. (7), except that we use the exact many-body
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(a) (b)

(c) (d)

FIG. 7. ML-X ground-state densities ρσ
1 (z) inside effective one-body potentials V eff

σ (z) from (24) for NM = 5, NI = 2, gMI = 2, and
aI/aM = 0.8 (first row) or aI/aM = 0.9 (second row). Horizontal lines are eigenenergies of (24).

densities ρσ
1 instead of the mean-field densities ρσ

MF
:

H eff
σ = Hσ + Nσ̄ gMI

Nσ∑
i=1

ρσ̄
1 (zi) with

σ̄ �= σ =
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ V eff
σ (zi)

)
. (24)

Next, we diagonalize (24) and use the obtained eigenfunctions
ϕ̃σ

i as SPFs for number states |�nM〉 ⊗ |�nI〉 on which we
project our many-body ground state |�〉. The reader should
distinguish the latter SPFs ϕ̃σ

i from the numerical SPFs ϕσ
i

obtained by improved relaxation which define the permanents
contained in our ML-X total wave function. Thus, we decom-
pose our ground state in terms of disentangled product states
made out of single permanents. We anticipate that |NM〉 |NI〉
represents dominant contribution to |�〉, which should be the
case whenever a mean-field approach is valid. From the previ-
ous analysis we observed that the entanglement entropy values
were mostly Sσ

vN � 0.7, which suggests two relevant SPFs.
Indeed, our many-body state consists of two major orbitals
and two major SPFs. Furthermore, taking parity symmetry
into account and considering at most two-particle excita-
tions, we conclude that number states |NM − 1, 1〉 |NI − 1, 1〉,
|NM − 2, 2〉 |NI〉, and |NM〉 |NI − 2, 2〉 may become of rel-
evance too at stronger couplings. We remark that the
one-body density operator of number state |Nσ − nσ

2 , nσ
2 〉 with

nσ
2 particles in the odd orbital ϕ̃σ

2 will be a mixed state of
one even and one odd orbital, eventually featuring two humps
in the corresponding one-body density. Thus, depending on
the occupation amplitude of such states, they may either
accelerate or slow down the development of humps in ρσ

1 (z),
thereby quantitatively shifting the critical coupling gc

MI
, at

which the mixed phase transforms into one of the species-
separated phases.

In Fig. 6 we show the projection on number state |NM〉 |NI〉
(first row) and a sum over projections on the above-mentioned

permanents (second row) for NB = 5 and NI = 1 (first col-
umn) or NI = 2 (second column). For negative couplings the
state |NM〉 |NI〉 provides a major contribution and the effec-
tive picture holds. Let us focus in the following on positive
couplings. In Fig. 6(a) (NI = 1), we observe that the state
|NM〉 |NI〉 has indeed a major contribution at coupling strength
below 1.0. Once interspecies correlations build up with in-
creasing coupling strength, the state |NM − 1, 1〉 |NI − 1, 1〉
grows in importance, which corresponds to a simultaneous
single-particle excitation within each component. This is
mostly pronounced around ηc. Double excitations within the
majority species |NM − 2, 2〉 |NI〉 are of minor amplitude and
rather of relevance for a localized impurity aI/aM � 1. All in
all, the low-lying excitations of the effective potentials (24)
provide a good description [Fig. 6(b)]. In Fig. 6(c) (NI = 2),
we observe that the state |NM〉 |NI〉 loses its contribution very
quickly as one goes deeper into the regime of strong entan-
glement. Although we are able to get a better understanding
for weak entanglement by including two-particle excitations
mentioned above, our effective picture clearly does not hold
in the parameter region characterized by strong entanglement.
There, we may account only for as much as ≈50% of the
ground state, even though the one-body density in Eq. (24)
incorporates beyond-mean-field corrections. We remark that
while it is indeed intuitive that the one-body picture will break
at some point as the entanglement becomes stronger, it is not
at all obvious to predict the corresponding threshold (trap ratio
and coupling strength) where it will happen.

Let us take a closer look at this regime, where the single-
particle picture (24) tends to break down. We show in Fig. 7
the one-body densities for NB = 5 majority particles and NI =
2 impurities in the strong entanglement region at gMI = 2.
The first row corresponds to the CF phase at aI/aM = 0.8.
Here, we recognize immediately why the effective picture
fails. The origin of the two humps in the one-body density
is counterintuitive considering that they are at the position
of local maxima of the effective potential. One would rather
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(a) (b) (c)

FIG. 8. (a) Majority two-body density matrix ρM
2 (x1, x2) from Eq. (5). (b) Impurity two-body density matrix ρI

2(y1, y2) from Eq. (5).
(c) Interspecies two-body density matrix ρMI

2 (x, y) from Eq. (6) of the ground state for NM = 5, NI = 2, gMI = 2, and aI/aM = 0.9.

expect a density profile with three peaks at the positions of the
potential minima.

The second row (aI/aM = 0.9) seems at first glance to be
an IMI phase. The majority is at the core, while the impurity
forms a shell. Upon a more detailed investigation we notice
that the majority species is broader than it should be inside
the squeezed “harmonic” trap. The humps of the impurity
also do not coincide with the positions of the minima of
the respective effective potential. As a matter of fact, this
phase is a latent CF phase, which becomes clear when we an-
alyze the corresponding two-body density matrices in Fig. 8.
The intraspecies two-body density matrices (5) [Figs. 8(a) and
8(b)] indicate that particles of the same component avoid the
trap center and form a cluster either on the right or the left side
with respect to trap center. Moreover, the interspecies density
matrix (6) [Fig. 8(c)] tells us that the two different clusters
of majority and impurity will always be found on opposite
sides of the trap with a rather small spatial overlap between
them. It allows to diminish the impact of the repulsive energy
on the total energy at the cost of paying potential energy.
These are clear signatures of the CF , which are blurred in the
reduced one-body density. We note that the parameter space
where ML-X predicts an IMI phase, whereas MF produces SB
phase, we have in fact a latent CF , hidden behind a one-body
quantity. Thus, in general, the classification of immiscible
phases by the one-body density is not sufficient to distinguish
CF from IMI or MIM. Nevertherless, sometimes it is still
possible to identify CF by the one-body density, namely,
when it features two reflection-symmetric humps.

Above, we have mentioned that in the literature the
CF phase was suggested to be a superposition of

two parity-broken mean-field states |�〉 = c1 |NM〉L |0M〉R ⊗
|0I〉L |NI〉R + c2 |0M〉L |NM〉R ⊗ |NI〉L |0I〉R as a result of the
degeneracy onset. Indeed, ML-X has two prominent orbitals
on the species layer and two major SPFs on the particle
layer. Nevertheless, the other occupied species orbitals and
SPFs provide a minor contribution, as we have evidenced
in Fig. 5, where the entropies take values beyond ln(2). To
provide an illustrative example, we displace the trap centers
in Eq. (1) by a small amount to energetically separate the
two symmetry-broken configurations. For parameter values
for which the CF phase is observed, we perform again the
improved relaxation to the find ground state of the system
in order to check whether it is indeed a MF state. It turns
out that the majority species and the impurity species are still
fragmented states though the degree of depletion is much less
compared to the parity-symmetric ground state. The species
entropy SvN is greatly reduced, but still appreciable. The
impact of correlations is also visible in Fig. 9. The ground
state of the effective potential (24) is different from the one-
body density of the many-body ML-X wave function. This
is caused by induced attractive interactions mediated by the
intercomponent coupling, a beyond-mean-field effect [92].

To conclude our discussion about the high-entanglement
regime, we state that the mean-field approach, being an ef-
fective one-body model, fails to explain a one-body quantity
such as reduced one-body density. Nevertheless, it manages to
characterize quite well one of the two possible configurations
of the entangled many-body state. The latter is not just a
simple superposition of two mean-field states describing two
different parity-broken configurations. A thorough analysis
showed that on the many-body level the SB phase is in fact
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FIG. 9. ML-X parity-broken ground-state densities ρσ
1 (z) obtained from (1) by slightly displacing centers of harmonic traps in opposite

directions for NM = 5, NI = 2, gMI = 2, and aI/aM = 0.9. Induced one-body potentials V eff
σ (z) are calculated from (24) and ϕ̃σ

0 (z) are the
corresponding ground states. Horizontal lines are eigenenergies of (24).
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units of units of

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 10. Mean-field (first column) and ML-X (second column) ground-state phase diagrams for NI = 1 impurity and NM = 10 (first row),
NM = 20 (second row), or NM = 1000 (third row) as a function of the intercomponent coupling strength gMI and impurity localization aI/aM =√

1/η with η = ωI/ωM being the trap frequency ratio and aσ = √
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of the

phases is as follows: M for miscible, MIM for core shell with impurity at the core, IMI for core shell with majority at the core, CF for composite
fermionization, and SB for a phase with broken parity symmetry. The blue solid curve (first column) represents the miscible-immiscible phase
boundary according to (19). The green solid curve (second column) is the miscible-immiscible phase boundary based on mean field. The coarse
structure is due to the finite step size of our data with respect to aI/aM .
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slightly entangled, while each species is partially fragmented.
We also evidenced that CF completely dominates the highly
correlated regime and made a link of its appearance to the
onset of SB on the mean-field level. Sometimes, CF is even
camouflaged behind core-shell IMI or MIM densities, indi-
cating that the one-body density is not enough to distinguish
between them.

V. PHASE SEPARATION: IMPACT
OF PARTICLE NUMBERS

When increasing the number of majority atoms NM , while
keeping NI fixed, one might expect two properties based on
an intuition for few-body systems. First, the location of the
strong entanglement regime will be shifted toward lower val-
ues of aI/aM ≈ √

1/ηc = 7
√

NI/NM . Thus, the IMI phase will
cover the most part of our parameter space for positive gMI .
Second, at a fixed η the critical coupling gc

MI
for the miscible-

immiscible transition will decrease, because according to (16)
the majority species will be able to induce a barrier for the
impurity species already for a much weaker coupling. The
induced barrier of the majority on the other hand will not be
affected according to (15).

Indeed, this is what we observe in the phase diagrams
depicted in Fig. 10. In the mean field (first column) the
location of the SB phase relocates from

√
1/ηc ≈ 0.79 [NM =

5, Fig. 1(a)] to
√

1/ηc ≈ 0.72 [NM = 10, Fig. 10(a)], then
to

√
1/ηc ≈ 0.65 [NM = 20, Fig. 10(b)] and finally moves

outside our parameter space
√

1/ηc ≈ 0.37 [NM = 1000,
Fig. 10(c)]. The blue curve, which estimates the miscible-
immiscible transition according to (19) is in good agree-
ment (except for the critical region ηc) with the mean-field
phase boundary. We also recognize that for a fixed trap
ratio η, the critical coupling strength gc

MI
decreases with

increasing NM and at NM = 1000 a very small gc
MI

< 0.05
is sufficient to cause phase separation, which is below our
resolution.

We have also performed the corresponding ML-X cal-
culations (second column) with S = sσ = 6 (first row), S =
sσ = 4 (second row), and S = sσ = 2 (third row) orbitals. We
remark that the latter case might not be converged to the exact
solution, which is beyond numerical capabilities to verify.
Still, it provides valuable beyond-mean-field corrections. The
deviations to the mean field, still clearly visible at NM = 10,
are most pronounced near ηc. They become less as the particle
imbalance is increased until finally at NM = 1000 the phase
diagrams almost coincide except for a small SB region. This
is mainly attributed to the fact that the strong entanglement
regime, where deviations are to be expected, moves outside
our parameter space (aI/aM < 0.5). Furthermore, the devia-
tions may still be there, but on a finer coupling scale gMI <

0.05 according to (15) and (16).

VI. CONCLUSIONS

In this work we have investigated the phase separation of
a quasi-1D inhomogeneous Bose-Bose mixture in a three-
dimensional parameter space spanned by the intercomponent

coupling gMI , harmonic length scale ratio aI/aM = √
1/η, and

the particle-number ratio NI/NM , when the intracomponent
couplings gσ are switched off. Although we have concentrated
on the case of equal masses, our results may be easily ex-
tended to the more general case of unequal masses. We expect
some quantitative changes, but the qualitative picture and the
line of argumentation will remain unchanged.

The commonly used separation criterion gMI >
√

gM gI ,
which is valid for homogeneous mixtures, would predict a
miscible-immiscible transition for any finite coupling gMI >

0. However, this separation rule does not apply here since
we have harmonic traps of different length scales. We have
analyzed the mechanism, which leads to phase separation, by
using an effective mean-field picture. Within this description
each species is subject to an additional induced potential
caused by the other component. This potential has initially a
Gaussian shape and grows linearly with the coupling strength
gMI . However, it does not immediately trigger a barrier at
the center of the harmonic trap. In fact, the species, which
first manages to induce a barrier for the other component
upon increasing the coupling gMI , will stay at the center of
its parabolic trap. Meanwhile, the other species will split
up, once the ground-state energy of the effective potential
drops below the barrier height. Thus, we end up with either a
core-shell IMI or a core-shell MIM phase, except for a highly
competitive region, where the barrier conditions can be met
simultaneously for both components. We have derived a sim-
ple rule to predict the type of phase separation, developed a
straightforward algorithm to identify the miscible-immiscible
phase boundary gc

MI
, and gave a rough estimate on the phase

boundary between the segregated phases gSB
MI .

As a next step, we compared mean-field (MF) results to
the numerically exact many-body calculations based on mul-
tilayer multiconfigurational time-dependent Hartree method
for atomic mixtures (ML-X). It turns out that MF agrees
well with ML-X far away from the critical region

√
1/ηc =

7
√

NI/NM . At ηc there are considerable quantitative deviations
and sometimes the two methods do not even agree on the type
of phase separation. This is caused by the growing interpar-
ticle correlations, which generate entanglement between the
components and increase the degree of species fragmentation.
We have seen that symmetry-broken phase (SB) is replaced
by composite fermionization (CF ), which is an entangled
parity-symmetric ground state. Furthermore, we have linked
the onset of SB to the fact that the entanglement entropy
reaches a certain threshold and saw a clear breakdown of
the effective single-particle picture in the strong entanglement
region in terms of a corresponding number state analysis. This
led to the discovery of a latent CF phase in the IMI region.
The latent CF phase has the characteristic one-body density
of the IMI phase, but a thorough analysis of the two-body
densities reveals typical CF features. We have argued that at
a finite coupling gMI the CF is not a simple superposition of
two SB states given by mean field.

We have studied the impact of particle-number variations,
which confirmed our intuition that ηc and thus the location
of the strong entanglement regime can be manipulated as
a function of the particle-number ratio. Furthermore, for a
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fixed particle-number ratio the critical coupling gc
MI

of the
miscible-immiscible transition can be tuned to lower values by
increasing the number of particles while keeping the particle-
number ratio fixed.

Finally, we remark that an intriguing next step would
be to perform a similar study of phase separation at finite
intracomponent coupling gσ . The broadening or shrinking of
the density profiles, depending on the sign and strength of gσ ,
will definitely modify the barrier conditions (15) and (16).

Another interesting but challenging direction would be the
nonequilibrium dynamics by quenching the trap ratio across
the phase boundaries.
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