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Floquet-surface bound states in the continuum in a resonantly driven one-dimensional tilted
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We study the Floquet-surface bound states embedded in the continuum (BICs) and bound states out the
continuum in a resonantly driven one-dimensional tilted defect-free lattice. In contrast to fragile single-particle
BICs assisted by specially tailored potentials, we find that Floquet-surface BICs, stable against structural
perturbations, can exist in a wide range of parameter space. By using a multiple-time-scale asymptotic analysis
in the high-frequency limit, the appearance of Floquet-surface bound states can be analytically explained by
effective Tamm-type defects at boundaries induced by the resonance between the periodic driving and tilt. The
phase boundary of existing Floquet-surface states is also analytically given. Based on the repulsion effect of
surface states, we propose to detect transition points and measure the number of Floquet-surface bound states by
quantum walk. Our work opens a door to experimental realization of BICs in a quantum system.
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I. INTRODUCTION

Surface bound states in the continuum (BICs), localized
interface waves with energy penetrating into a continuous
spectrum of radiative waves, have attracted much attention in
several physical fields ranging from condensed-matter physics
to optics [1–9]. Their unique properties have led to numerous
applications, including lasers, sensors, filters, low-loss fibers,
and Raman spectroscopy [1,2]. Surface BICs generally are
regarded as fragile states that usually decay into resonance
surface states when the system parameters are slightly per-
turbed, and thus can exist in only a few special systems.
Recently, theory works have suggested surface BICs in a one-
dimensional (1D) lattice with tailored potentials [6–9]. Fur-
thermore, surface BICs with algebraic [10] or compact [11]
localization have been demonstrated in experiments by using
photonic structures that allow robust control of parameters.
These types of surface BICs manifest themselves through
inverse construction achieved by engineering the potential
or the hopping rate. Therefore, such previous studies have
been limited to consider static (i.e., undriven) lattices, and
then surface BICs tuned from a single resonance is lacking.
In particular, the realization of quantum surface BICs still
remains a challenge.

Recently, the concept of Floquet BICs has been intro-
duced in a periodically driven 1D tight-binding defective
lattice [12–14]. By tailing inhomogeneous hopping rates and
applying external sinusoidal driving, Floquet BICs appear
as a result of selective destruction of tunneling [13]. As
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happened in other contexts, moving to the many-particle
framework, two-particle Floquet BICs have been predicted to
exist in defect-free Hubbard lattices, either in the bulk [15]
or at the surface [16]. It has been shown that in the high-
frequency limit, the external periodic driving can induce a
virtual surface defect in the defect-free semilattice, and thus
results in two-particle Floquet-surface BICs [16]. However,
strong particle interaction and bichromatic driving play a key
role in the formation of Floquet-surface BICs; otherwise, no
Floquet-surface BICs were observed without particle inter-
action [16]. Therefore, a natural question arises: can single-
particle Floquet-surface BICs be realized using a 1D defect-
free lattice?

In this paper, we show that single-particle Floquet-surface
BICs appear in a resonantly driven 1D tilted defect-free
lattice, which can be readily realized in cold atom systems
where resonantly modulated tilted lattices have applied to
produce artificial magnetic fields [17–21] or to control tun-
neling dynamics [22–25]. We find pairs of Floquet-surface
BICs and bound states out the continuum (BOCs) in a wide
range of parameter space are immune to perturbations of
system parameters, in stark contrast to static surface BICs that
require the lattice possessing intrinsic surface impurity [6–8],
disorder [6], or inhomogeneous hopping rates [10]. Based on
the repulsion effect related to the localization properties of
surface states [26], we propose to use quantum walk for de-
tecting transition points and measuring the number of Floquet-
surface states. We have successfully explained the underlying
mechanism for the formation of Floquet-surface states via a
multiple-time-scale asymptotic analysis (MTSAA), that is, the
resonance between the periodic driving and tilt can induce
effective Tamm-type defects at boundaries of the lattice, and
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thus results in the appearance of Floquet-surface states. The
boundary of existing Floquet-surface states is analytically
given, which can be tuned by the coupling strength and the
driving amplitude. We should emphasize that the previous rel-
ative studies focus on the delocalization in the bulk induced by
the resonant modulations [23,27]. Here we show localization
at the edges of a lattice induced by resonant modulations.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, Floquet BICs, and BOCs and their
detection via quantum walks. In Sec. III, we apply MTSAA
in the high-frequency limit to understand the formation of
Floquet-surface bound states and parameter boundary for the
existence of Floquet-surface bound states. At last, we give a
conclusion in Sec. III.

II. RESONANCE BETWEEN THE PERIODIC DRIVING
AND TILT INDUCED FLOQUET-SURFACE BICs AND BOCs

A. Model

We consider the coherent hopping dynamics of a quantum
particle in a 1D periodically driven optical lattice subjected to
a tilted potential, which is described by a single-band tight-
binding Hamiltonian

H (t ) = J (t )
∑

n

(|n〉〈n + 1| + |n + 1〉〈n|) − ξ
∑

n

n(|n〉〈n|).

(1)

Here, |n〉 represents the Wannier state localized at the nth
site (n = 0,±1,±2, . . .). J (t ) = C + F cos(ωt ) is the time-
modulated hopping strength with constant C, modulated am-
plitude F , and modulated frequency ω. ξ is the lattice tilt. The
model has been investigated in different physical contexts. It
describes, for example, coherent transport of ultracold atoms
in periodically shaken optical lattices [23,25], or light prop-
agation in arrays of periodically curved waveguides [28]. In
cold atom systems, the modulation in hopping term can be
experimentally realized by applying an amplitude-modulated
standing wave of laser, V (x, t ) = V0[1 + ε cos(ωt )] cos2(kx),
with the lattice depth V0, the wave vector k, and modulated
strength ε [25,27]. C and F can be independently tuned
by adjusting the lattice depth V0 and modulated strength ε.
The linear potential can be produced by a magnetic-field
gradient [27,29,30], or aligning the optical lattice along the
gravitational field [31,32]. Though not discussed here, mod-
ulation of linear potential helps to control the localization
properties in disordered semiconductor superlattices [33].

In the case of resonance, i.e., for ω = |ξ |, resonant inter-
play between the periodic driving and tilt may lead to delocal-
ization, which was previously studied in Refs. [23,25,27]. As
we will show in our work, the resonant interplay can induce
localization at the surface of the lattice, and enables one to
observe surface bound states with a quasienergy embedded in
the spectrum of scattered states, which we call Floquet-surface
BICs. Since the ratio relation between the parameter values
(C, F, ω, ξ ) plays a crucial role in the emergence of Floquet-
surface states, we set the other parameters in the unit of F in
most of the cases hereafter.

To do this, according to the time-dependent Schrödinger
equation −i dψ (t )/dt = H (t )ψ (t ) (by setting h̄ = 1) with

ψ (t ) = ∑
n an(t )|n〉 and applying the gauge transformation

an(t ) = e−iξntφn(t ), we can obtain the coupled-mode equa-
tions with probability amplitudes φn(t ) satisfying

−i
dφn(t )

dt
= �(t )φn−1(t ) + �∗(t )φn+1(t ), (2)

where �(t ) = J (t )eiξ t and �∗(t ) is the complex conjugate,
which satisfies �(t ) = �(t + T ) with T = 2π/ω = 2π/|ξ |.
Then the system can be described by an effective model with-
out tilt. According to the Floquet theorem, the evolution of a
time-dependent system obeys φn(t ′) = U (t ′, t )φn(t ), where U
is the time evolution operator

U (t ′, t ) = Q

{
exp

[
−i

∫ t ′

t
H (t ′′)dt ′′

]}
, (3)

where Q is a chronological operator. Then the quasienergy of
the system E can be obtained by diagonalizing the Floquet
Hamiltonian Hf , which satisfies e−iHf T ≡ U (T, 0). As is well
known, quasienergies are defined apart from integer multiples
of ω, and conventionally they are restricted to the interval
(−ω/2 � E � ω/2). Once the quasienergies and the corre-
sponding eigenvectors are determined, the search of bound
states, either embedded or outside the spectrum of scattered
states, is done by inspection of the inverse participation ratio
(IPR). For the ith quasienergy eigenstate ϕ(Ei ), 1 � i � N ,
which is spanned as ϕ(Ei ) = ∑

n φi
n|n〉 in the single-particle

Hilbert space, the IPR is defined as [26,34]

IPR(Ei ) =
∑

n

∣∣φi
n

∣∣4( ∑
n

∣∣φi
n

∣∣2)2 . (4)

Obviously, the IPRs of the localized (bound) states have
nonzero values, and the IPRs of the extended (scattered) states
are in practice zero for large N . A typical example is displayed
in Fig. 1 by choosing total lattice sites N = 41, ξ = ω = 8,
and F = 1. An inspection of the quasienergy diagram shows
that, as the coupling strength increases to C > C1 (C1 � 2.05),
Floquet-surface BOCs emerge in pairs, above and below
the band of scattered states, which are clearly visible as
isolated dispersion curves that detach from the continuous
band of scattered states, as shown in Fig. 1(a). The number
of Floquet-surface BOCs always increases in pairs as the
coupling strength further increases. Especially, in the strong-
coupling region of 8.8 < C < 10.3, the dispersion curves of a
pair of Floquet-surface BOCs first penetrate into the band of
scattered states, and Floquet-surface BICs are clearly visible
in the participation ratio diagram [see Figs. 1(f) and 1(h)].
An important property of the Floquet-surface BICs and BOCs
is that they are localized at the left and right edges of the
lattice, so that it corresponds to a single-particle surface state
of the Tamm type in the one-dimensional lattice, as shown in
Figs. 1(b)–1(d). This explains the physical origin of Floquet-
surface BICs and BOCs: the resonance interplay between the
periodic driving and tilt pushes the particle near the edges
of the lattice, which will be clarified in the next section. It
should be noted that, as opposed to single-particle Floquet-
bulk BICs recently predicted in Ref. [13], Floquet-surface
BICs are robust against parameter fluctuations and exist in
a wide parametric region. Note also that the localizations of
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FIG. 1. (a) Quasienergy E versus the coupling strength C, where a1,2 denote the Floquet-surface BOCs at C = 4.6, and a3,4 (a5,6) denote
the Floquet-surface BOCs (BICs) at C = 9. (b)–(d) The eigenstate profiles corresponding to a1,2, a3,4, and a5,6 marked in (a). (e)–(h): (top) the
quasienergy spectrum and (bottom) inverse participation ratio with different coupling strengths—C = 4.6 for (e) and (g) and C = 9 for (f) and
(h). The other parameters are chosen as ξ = ω = 8, F = 1, and the total lattice number N = 41.

Floquet-surface BOCs in the same quasienergy but different
parameters [e.g., (a1, a3) and (a2, a4) in Fig. 1(a)] are different,
and so are the Floquet-surface BICs and BOCs in the same
parameter but different quasienergies [e.g., a3, a4, a5, and a6

in Fig. 1(a)]. This feature may provide a promising approach
for detecting these Floquet-surface states, as discussed later.

B. Localization property and robustness of Floquet-surface
BICs and BOCs

In this subsection, we will investigate the localization
property and robustness of Floquet-surface BICs and BOCs.
To study the localization property of all Floquet-surface states,
we compute the IPRs of all Floquet-surface states as a func-
tion of the coupling strength C, as shown in Fig. 2(a). It
clearly shows that there exist three transition points at C1, C2,
and C3 (C1 � 2.05, C2 � 5.57, and C3 � 9.25), which corre-
spond to the appearance of new Floquet-surface states, and
the localized degrees of Floquet-surface states that primarily
emerge are stronger than the later ones, that is, IPR(Ered ) >

IPR(Eblue ) > IPR(Eblack ) for a fixed coupling. In the yellow
area indicating the existence of Floquet-surface BICs, the
localized degrees of the Floquet-surface BICs are stronger
than Floquet-surface BOCs. As an example with the coupling
strength C = 9 shown in Fig. 1(h), the localized degrees of
a pair of Floquet-surface BICs are obviously stronger than
that of a pair of Floquet-surface BOCs. Because the system
satisfies chiral symmetry, the localized degrees of a symmetric
pair of Floquet-surface states at the left and right edges around
0 are the same for a given coupling strength.

The Floquet-surface states emerge in an ideal finite lat-
tice with perfectly homogeneous coupling strength. However,
the coupling strength C in reality may have non-negligible
fluctuations whose effects need to be evaluated. As shown
in previous studies [6–9,13], lattice imperfections or disorder
are expected to destroy the Floquet-surface BICs, which de-
cays into a resonance surface state. Generally, single-particle
BICs are fragile states, which decay into resonance states by

small perturbations. Here, we show that the Floquet-surface
BICs possess relatively stronger robustness for the parameter
perturbations. To this end, disorder is added to the constant
coupling strength and yields C = C0 + δχ , where C0 is a
homogeneous coupling strength considered in the previous
subsection, χ is a random number uniformly distributed in

FIG. 2. (a) IPRs of all of Floquet-surface states as a function of
the coupling strength C, where the yellow area indicates the existence
of Floquet-surface BICs. The IPR values denoted by the red, blue,
and black lines correspond to quasienergies shown by the red, blue,
and black lines in Fig. 1(a), respectively. After an average of 100
samples of disordered configurations, (b) and (c) show IPRs as a
function of the disorder strength δ for different coupling strengths
C0 = 8 and 9, respectively. The other parameters are chosen as
ξ = ω = 8, F = 1, and the total lattice number N = 41.
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the range (−1, 1), and δ measures the strength of disorder.
Figures 2(b) and 2(c) show typical results of IPRs versus
disorder strength δ for C0 = 8 and C0 = 9, respectively. In
Figs. 2(b) and 2(c), each point is calculated by averaging
100 samples of disordered configurations. The IPRs of both
Floquet-surface BICs and BOCs are larger than those of the
continuum states. Larger IPRs indicate that the states are more
localized. Although the IPRs of continuum states become
larger because stronger disorder localizes the states, the IPRs
of both Floquet-surface BICs and BOCs are still separate
from those of the continuum state. This means that Floquet-
surface BICs and BOCs induced by the resonance between
the periodic driving and tilt in our system are robust against
disorder in hopping strength. For Floquet-surface BOCs, the
robustness comes from the fact that the energy gap between
Floquet-surface BOCs and continuum states is so large that
it is hard to hybrid them by modest disorder. For Floquet-
surface BICs, their quasienergies embedded in the continuum
spectrum result from folding of BOCs in the first Floquet
zone; hence these BICs have the properties of wave functions
similar to the BOCs and hardly hybrid with the continuum
states. With further increase of the disorder intensity, the
localized degrees of BICs will be weakened, for their IPRs
gradually decrease. Although Floquet-surface BOCs are not
sensitive to the perturbation of disorder, strong disorder can
lead to the Anderson localization of bulk states (gray dots),
which may cause invisibility of the surface state for large
disorder strength. Although we only consider the disorder in
coupling strength of finite systems, the size effects are almost
negligible, and one can also reach similar conclusions for the
disorder in the on-site energies; see Appendix A.

C. Detecting the transition point of Floquet-surface states
by quantum walks

In this subsection, we investigate the dynamics of the quan-
tum walks initially located in the middle of a lattice with site
number N = 21. As is shown in Figs. 3(a) and 3(b), the quan-
tum walks initiated from the center site expand ballistically
and no localization phenomenon is shown for two different
coupling strengths C = 1 (Floquet-surface state is absent)
and C = 4.6 (a pair of Floquet-surface BOCs are present).
However, close and careful observation reveals an intriguing
effect of the Floquet-surface states. If we focus on the two
boundary sites of the lattice in Figs. 3(a) and 3(b), the edge
probability in the absence of Floquet-surface state is smaller
than that in the presence of Floquet-surface state. Similar to
the repulsion effect of the topologically protected edge state
shown in Ref. [26], this also can be seen as a repulsion effect
of the Floquet-surface states, and its strength is determined
by the localization properties of the Floquet-surface states.
To make it clearer, we show the time-dependent distribution
on the left edge of the lattice, P10(t ), for a long time. It
is evident that, because there is no Floquet-surface state for
C = 1, the quantum walk can easily reach the left boundary
site. Conversely, for C = 4.6, where Floquet-surface states
exist, the quantum walk is repelled from reaching the left
boundary site as the distribution in the 10th site remains a very
small value all the time; see the red solid line in Fig. 3(c).

FIG. 3. Repulsion effect of the Floquet-surface states.
(a),(b) Long-time dynamical evolution for two different coupling
strengths (a) C = 1 and (b) C = 4.6. (c) Time-dependent probability
distribution on left edge of the lattice (n = 10). (d) Long-time
average of edge degree D as a function of the coupling strengths
C. The quantum walk is initially positioned on the center site 0.
The other parameters are chosen as ξ = ω = 8, F = 1, and the total
lattice number N = 21.

Interestingly, we find that the repulsion effect may provide
a promising approach for experimentally detecting the transi-
tion point of the Floquet-surface state, and then measuring the
number of Floquet-surface states. In the experiment, one can
detect the long-time average of edge degree

D = 1

T ′
∑

n

∫ T ′

0
|n|Pn(t )dt, (5)

where Pn(t ) = |an(t )|2 = |φn(t )|2 and T ′ is the total evolution
time. Larger D means more distribution in the edge sites in
the long-time average. In Fig. 3(d), we show the value of D as
a function of the coupling strength C by selecting T ′ = 400.
Due to the repulsion effect, the value of D gradually decreases
in a stepped way with the appearance of new Floquet-surface
states. The repulsion effect can be understood from two
aspects. On one hand, the larger IPR of the Floquet-surface
state means more localization and hence weak repulsion. As C
increases, IPRs of new Floquet-surface states become smaller
and lead to stronger repulsion and smaller D. On the other
hand, the number of Floquet-surface states increases with
C in a step way. The more Floquet-surface states also lead
to stronger repulsion and make the value of D drop in a
stepped way. It is worth noting that there are three abnormal
peaks in the variational process of D, which correspond to the
transition points C1, C2, and C3 of Floquet-surface states in
Fig. 2(a), where the repulsion effect is inversely weakened.
The main reason is that the new Floquet-surface states and
the scattered states are nearly degenerate in the vicinity of
the transition point and convert to each other. Hence it pro-
vides a possible approach for detecting the transition point
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and measuring the number of Floquet-surface states in the
experiment.

III. MULTIPLE-TIME-SCALE ASYMPTOTIC ANALYSIS

To get deeper physical insights into the properties and
the mechanism underlying the formation of Floquet-surface
states, in this section we will develop an analytical theory
for Floquet-surface states in the high-frequency limit. We
show how the resonant interplay between periodic driving and
tilt introduce effective Tamm-type defects, and then generate
Floquet-surface states in a 1D defect-free lattice. In Sec. III A,
we develop multiple-time-scale asymptotic analysis (MT-
SAA) for Floquet-surface states. In Sec. III B, we analytically
give the asymptotic phase boundary, which can be used to
determine the generated threshold of Floquet-surface states
in the high-frequency limit. It is worth noting that, although
we only analyze the high-frequency region, our analytical
results also have guiding significance for the appearance of
Floquet-surface states in the low-frequency (strong-coupling)
region.

A. Resonance between periodic driving and tilt induced
effective Tamm-type defects

We perform a MTSAA of the 1D driven and tilted finite
lattice in the high-frequency limit C � max[ω,

√|F |ω] (see,
for instance, Refs. [35,36]). To this end, we rewrite Eq. (2) as

−i
dφn(t )

dt
=

∑
m

W (t ; n, m)φm(t ), (6)

with

W (t ; n, m) = δn,m+1�(t ) + δn,m−1�
∗(t ).

Here δn,m is the Kronecker delta function. For the open bound-
ary condition, we have φn<−N ′ ≡ 0 and φn>N ′ ≡ 0, in which
2N ′ + 1 = N is the total lattice number. Therefore, W (t ; n, m)
can be rewritten as

W (t ; n, m) = (1 − δn,−N ′ )δn,m+1�(t )

+ (1 − δn,N ′ )δn,m−1�
∗(t ). (7)

Because the coupling �(t ) and �∗(t ) are periodic functions,
we have W (t ; n, m) = W (t + T ; n, m), where T = 2π/ω =
2π/ξ . In the high-frequency limit (ω 
 C), we can introduce
a small parameter ε, which satisfies T = O(ε). Thus the
solution of Eq. (6) can be given by the series expansion

φn(t ) = Un(t0, t1, t2, . . .) + εvn(t−1, t0, t1, t2, . . .)

+ ε2wn(t−1, t0, t1, t2, . . .)

+ ε3ζn(t−1, t0, t1, t2, . . .) + O(ε4), (8)

where tl ′ = εl ′t . Then the differential is performed according
to the convention:

d

dt
= ε−1 ∂

∂t−1
+ ∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · . (9)

In the series solution, the function Un describes the averaged
behavior

〈φn〉 = Un,

〈
dφn

dt

〉
= dUn

dt
, (10)

in which the average notation is given by

〈•〉 = εT −1
∫ ε−1(t+T )

ε−1t
(•)(t−1)dt−1.

It is worth noting that Un does not depend on the “fast”
variable t−1, which means that

〈Un〉 = Un,

〈
dUn

dt

〉
= dUn

dt
. (11)

From Eqs. (10) and (11), we have

〈vn〉 = 〈wn〉 = 〈ζn〉 ≡ 0,

〈
∂vn

∂tl ′

〉
=

〈
∂wn

∂tl ′

〉
=

〈
∂ζn

∂tl ′

〉
≡ 0,

(12)

for l ′ = −1, 0, 1, 2, . . ..
Substituting Eq. (8) into Eq. (6) and collecting terms with

different orders of ε, we can obtain a closed-form equation for
Un:

−i
dUn

dt
=

∑
m

Ws(n, m)Um. (13)

Here the effective coupling coefficients are given by

Ws(n, m) = W0(n, m) +
∑

j

W1(n, j, m) +
∑
q, j

W2(n, q, j, m),

(14)

with

W0(n, m) = 〈W (t ; n, m)〉

= (1 − δn,−N ′ )δn,m+1
F

2
+ (1 − δn,N ′ )δn,m−1

F

2
,

∑
j

W1(n, j, m) = i
∑

j

〈W (t ; n, j)M(t ; j, m)〉

= −δn,−N ′� + δn,N ′�,

∑
q, j

W2(n, q, j, m) =
∑
q, j

〈M(t ; n, q)[W (t ; q, j)

−W0(q, j)]M(t ; j, m)〉
+

∑
q, j

〈M(t ; n, q)[W0(q, j)M(t ; j, m)

− M(t ; q, j)W0( j, m)]〉 ≈ 0,

where M(t ; n, m) = ∫ t
0 [W (t ′; n, m) − W0(n, m)]dt ′. Finally

the effective equations for the slowly varying functions Un

read as

−i
dUn

dt
= F

2
Un+1 + F

2
Un−1 − δn,−N ′�U−N ′ + δn,N ′�UN ′ .

(15)

Here the effective energy bias � = ω−1(C2 + F 2/8), which
describes the virtual defects at boundaries, as shown in the
schematic diagram in Fig. 4(a).

Based on the above discussions, the periodically driven
and tilted system can be described by effective static coupled
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FIG. 4. (a) Schematic diagram for the effective model Eq. (15).
(b) Phase diagram of Floquet-surface states, where the colors denote
the value of gap parameter �. The white region (I) does not support
Floquet-surface states and the colorized region (II) supports Floquet-
surface states. The blue curve corresponds to the phase boundary,
which satisfies Eq. (25). The other parameters are chosen as ξ = ω =
8 and the total lattice number N = 41.

mode equation (15) without tilt. The major difference is the
existence of virtual Tamm-type defects at boundaries in the
effective model. Similar to a surface perturbation, the virtual
defects can form defect-free surface states [35,36]. Therefore,
in our system, without any embedded or nonlinearity-induced
defects, the surface perturbation (virtual defect) is induced by
the resonant interplay between periodic driving and tilt, which
is the primary reason for appearing Floquet-surface states. In
the next subsection, we will give the parameter regions of
Floquet-surface states.

B. Asymptotic phase boundary and phase diagram

To estimate the cutoff values (phase boundaries) for the
regions of Floquet-surface states caused by virtual defects, we
will study the phase diagram of Floquet-surface states about
coupling strength C and driving amplitude F . We consider
stationary solutions in the form of Un(t ) = Un(0)eiEt with E
being quasienergy. Substituting it into Eq. (15), we obtain

EUn = F

2
Un+1 + F

2
Un−1 − δn,−N ′�U−N ′ + δn,N ′�UN ′ .

(16)

For an infinite lattice, we have

EbUn = F

2
Un+1 + F

2
Un−1. (17)

The solution of Eq. (17) can be given by the ansatz

Un = Y eikn + Z e−ikn, (18)

where Y and Z are undetermined coefficients. Substituting
Eq. (18) into Eq. (17), we can obtain the band of scattered
states Eb = F cos(k) with k ∈ [−π, π ].

For a finite lattice with a sufficiently large number of sites,
considering the two edges, we have

EU−N ′+1 = F

2
U−N ′ + F

2
U−N ′+2,

EU−N ′ = F

2
U−N ′+1 − �U−N ′ ,

EUN ′ = F

2
UN ′−1 + �UN ′ ,

EUN ′−1 = F

2
UN ′ + F

2
UN ′−2. (19)

Besides U−N ′ and UN ′ , the coupling equations are consistent
with Eq. (17), so that we should rewrite the ansatz similar to
Eq. (18), i.e.,

Un = Un (n = −N ′, N ′),

Un = Y eik(n+N ′ ) + Z e−ik(n+N ′ ) (−N ′ < n < N ′). (20)

First, we consider the left boundary of the lattice and we can
give a set of equations

EU−N ′ = F

2
U−N ′+1 − �U−N ′ ,

EU−N ′+n′ = F

2
U−N ′+n′−1 + F

2
U−N ′+n′+1, (21)

where n′ > 0; combining Eq. (20) and Eq. (21), we have

e−i2kn′ = −F eik + 2�

−F e−ik + 2�
. (22)

We set k = −i� and have e−i2kn′ = e−2�n′
, where � is a

real number. If � > 0, when n′ → ∞, we have e−2�n′ � 0,
−F e� + 2� = 0, and 2� > F . If � < 0, when n′ → ∞, we
have e−2�n′ � ∞, −F e−� + 2� = 0, and 2� > F . Conse-
quently, e±� are given by

e� = 2�

F
= d, e−� = F

2�
= d−1, (23)

in the condition 2� > F , i.e., |C| >

√
F
2 (ω − F

4 ). Thus the
left Floquet-surface state induced by the effective Tamm-type
defect with the quasienergy Es1 is given by

Es1 = F

2
(eik + e−ik ) = F

2
(d + d−1) = � + F 2

4�
. (24)

When we consider the right boundary of the lattice, we can
also obtain the quasienergy of the Floquet-surface state at
the right edge, Es2 = −Es1 . These quasienergies obtained by
asymptotic analysis agree well with those obtained by diago-
nalizing the Floquet Hamiltonian Hf and effective model (15);
see Appendix B for more details.

Alternately, we can obtain the cutoff value as an approxi-
mation of C1,

C1 � Ccutoff =
√

F

2

(
ω − F

4

)
(25)
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by |Esi | = max(Eb), where i = 1, 2 and max(Eb) is given by
cos(k) = 1. The cutoff value defines the boundary between
the regions with and without Floquet surface states; see the
blue curve in Fig. 4(b). Especially, for a fixed C, the region
of existing Floquet-surface states can be tuned by the driving
amplitude.

To verify the above analytical results, we numerically
calculate the quasienergy spectra under open boundary con-
dition. Combining the band of scattered states Eb and
quasienergy E , we define a parameter,

� = max(E ) − max(Eb), (26)

which represents the energy gap between Floquet-surface
states and the band of scattered states. � = 0 indicates the
absence of Floquet-surface states. Otherwise, � > 0 indicates
the appearance of Floquet-surface states. In Fig. 4(b), we
numerically show the phase diagram of Floquet-surface states
in the parameter plane (C, F ), where the colors denote the
gap parameter �. The white region does not support Floquet-
surface states and the colorized region supports Floquet-
surface states. Our numerical results clearly show that the
phase boundary well agrees with our analytical result; see the
blue solid line in Fig. 4(b).

IV. CONCLUSION

In summary, we have studied the Floquet-surface states in
a resonantly driven 1D tilted defect-free lattice. It is found
that the Floquet-surface BICs and BOCs can be induced
in such a system by using the resonant interplay between
the periodic driving and tilt. Compared with single-particle
Floquet-bulk BICs [13], which are fragile states and whose
existence requires fulfillment of certain condition, Floquet-
surface BICs can exist in a wide range of parameter space
and are structurally stable against perturbations of system
parameter. Analytical results are derived in the high-frequency
limit by a MTSAA. It is found that the resonance between
the periodic driving and tilt can induce effective Tamm-
type defects at boundaries of the lattice, and thus results in
the appearance of Floquet-surface states. According to the
asymptotic analysis, the phase boundary of existing Floquet-

surface states is analytically given as Ccutoff =
√

F
2 (ω − F

4 ).
The region of existing Floquet-surface states can be adjusted
by tuning the coupling strength or the driving amplitude.

With currently available techniques, it is possible to real-
ize our model and observe our theoretical predictions with
experiments. Our proposed tilted lattices resonantly driven
can be demonstrated experimentally in numerous cold-atom
setups [17–21,37]. For instance, one can use the Wannier-
Stark ladder with large static energy offset ξ [18,21,38]
to realize a 1D tilted lattice. Periodic driving can be in-
troduced by harmonically modulating the tunneling rate at
the tilted frequency ξ [27]. For such a resonantly driven
1D tilted lattice, Floquet-surface BICs and BOCs may be
observed via quantum walks. Our work paves a way to the
experimental realization of BICs in a single-particle quantum
system.
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APPENDIX A: INFLUENCE OF SYSTEM SIZE AND
ON-SITE-ENERGY DISORDER ON

FLOQUET-SURFACE STATES

There is negligible size effect of disorder on Floquet-
surface states. To show this, we calculate the IPRs as a
function of lattice number N ; see Fig. 5. The parameters are
chosen as ξ = ω = 8, F = 1, δ = 1, and C0 = 8 for Figs. 5(a)
and C0 = 9 for 5(b). Each point is the average of 100 samples
of disorder configurations in the coupling strength. Here, one
can clearly find that the IPRs of Floquet-surface states almost
do not change as the system size increases from N = 20 to
N = 200.

As an example, we also consider the disorder in on-site
energies, �n = δ1χ , where �n represent the fluctuation of
the on-site energies on the nth lattices and δ1 measures the
strength of on-site-energy disorder. After an average of 100
disordered samples, we show the IPRs as a function of dis-
order strength δ1 in Fig. 6. Similar to the case of hopping

FIG. 5. IPRs as a function of system size for coupling strengths
(a) C0 = 8 and C0 = 9. Each point is the average of 100 samples of
disordered configurations in coupling strengths. The other parame-
ters are chosen as ξ = ω = 8, F = 1, and δ = 1.
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FIG. 6. IPRs as a function of the on-site energies disorder
strength δ1 for coupling strengths C = 9. Each point is the average
of 100 samples of disordered configurations in on-site energies. The
other parameters are chosen as ξ = ω = 8, F = 1, and the total
lattice number N = 41.

disorder, both the IPRs of Floquet-surface BICs and BOCs are
separate from those of continuum states, but the IPR values
of Floquet-surface BICs will decrease with the increase of
disorder intensity. We find that the Floquet-surface BICs and
BOCs are also robust against disorder in on-site energies.

APPENDIX B: VALIDITY OF THE MTSAA

To show the validity of the MTSAA, we compare the
quasienergies of Floquet surface states obtained via asymp-
totic analysis and those obtained from the effective model

0 1 2 3 4 5C
-3

-2

-1

0

1

2

3

E

FIG. 7. Quasienergy E versus the coupling strength C. The blue
circles, red dots, and gray dots represent the results obtained via
asymptotic analysis (Es1 and Es2 ), diagonalizing effective model
Eq. (15), and Floquet Hamiltonian Hf , respectively. The other param-
eters are chosen as ξ = ω = 8, F = 1, and the total lattice number
N = 41.

Eq. (15) and Floquet Hamiltonian Hf ; see Fig. 7. Here, the
blue circles, red dots, and gray dots represent the results
obtained via asymptotic analysis (Es1 and Es2 ), diagonalizing
Eq. (15) and Hf , respectively. The results obtained via asymp-
totic analysis and diagonalizing Eq. (15) are a perfect match.
The small differences between the results of asymptotic anal-
ysis and the exact ones via diagonalizing Floquet Hamiltonian
Hf will gradually disappear with the decrease of coupling
strength.
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