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Third-order nonlinear effects on femtosecond x-ray-absorption near-edge spectra
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Reduced density matrix equations combined with a cluster molecular-orbital method are formulated to
describe resonant core-valence electron excitation by an intense femtosecond x-ray pulse. The electron-hole
interaction is treated by the time-dependent unrestricted Hartree-Fock approximation supplemented by a
screening correction in the Born approximation. Nonlinear K-shell absorption spectra of metallic copper are
thereby computed. Numerical results indicate that, in the third-order nonlinear regime, where the fraction
of excited electrons increases in proportion to the x-ray intensity, the absorption spectra above the K edge
undergo shifts toward high-energy side. The origin of this third-order nonlinearity can be traced to a negative
renormalization of the core orbital energy due to strong electron-hole attraction, which offers a sharp contrast
to the usual optical nonlinearity due simply to the increment of upper-state populations. For higher intensities,
broadening of the absorption edge and saturation of absorption are predicted. These trends are qualitatively
consistent with nonlinear spectroscopy experiments using the SACLA x-ray free-electron laser.

DOI: 10.1103/PhysRevA.102.023120

I. INTRODUCTION

When a laser pulse with sufficiently high intensity is
incident on a material, its linear optical constants such as
the refractive index and absorption coefficient are modified,
which in turn affects the propagation of the pulse itself [1].
In such a nonlinear self-action process, the complex elec-
tric susceptibility χe(ω), defined as the ratio between the
frequency-dependent electric polarization density P̃(ω) and
the incident electric field Ẽ(ω), depends on laser intensity [1].
From a perturbation-theoretic point of view, the lowest-order
correction to the linear optical constant arises from the third-
order nonlinearity [1–4]. As a dominant contribution to the
third-order nonlinearity of a metal in the visible frequency
range, modification of electron population near the Fermi
level, which results from resonant interband excitation and/or
generation of hot electrons, has been proposed [5,6].

Recent experiments using x-ray free-electron lasers
(XFEL’s) demonstrated nonlinear absorption of an x-ray pulse
transmitting through metallic films [7–9]. In these exper-
iments, intense resonant excitation of K-shell electrons to
the conduction band results in saturable absorption [8,9] or
change in x-ray-absorption near-edge spectra [7]. In core-
level excitation, localized core holes are created and their
strong perturbation can induce anomalies in the x-ray spectra
even in low-intensity (linear-response) regime [10]. It is an
outstanding issue of nonlinear optics to elucidate the influence
of core holes on the shape of absorption spectrum as the x-ray
intensity is gradually elevated.

In this paper, we formulate reduced density-matrix (RDM)
equations, combined with a cluster molecular-orbital method,
to simulate time evolutions of nonlinear electric polarization
associated with resonant core-level excitation by a femtosec-
ond x-ray pulse. As a numerical example, complex suscepti-

bilities and the corresponding K-shell absorption spectra of
metallic copper are computed for various x-ray intensities
by focusing especially on the third-order nonlinear regime.
The laser pulse duration is assumed to be less than 10 fs
so that we ignore those energetic processes as hot plasma
formation, collisional ionization, Auger heating, and so on.
We thus find that renormalization of the core orbital energy
serves as a dominant source of nonlinearity, giving rise to a
blueshift of absorption spectra as the intensity increases. This
mechanism is a consequence of large electron-hole attraction
energy inherent in a localized core orbital, which is absent in
usual optical nonlinearity caused by excitation of delocalized
valence electrons.

II. REDUCED DENSITY MATRIX (RDM) EQUATIONS

Our theoretical framework is outlined as follows: We con-
sider a finite cluster consisting of N atoms that mimics a
local portion of the bulk crystal [10,11]. The positions of
the nuclei Rμ (μ = 1, . . . , N ) are fixed. We first calculate
one-electron wave functions and energies of the cluster in the
ground state by the molecular-orbital (MO) method. We then
introduce a one-electron RDM in spectral representation by
regarding these MOs as an orthonormal basis set. Electric
polarization induced by an x-ray pulse can be obtained by
solving time evolution equations for the off-diagonal elements
of the RDM. Fourier transform of the induced polarization
gives the nonlinear complex susceptibility, whose imaginary
part yields the absorption spectrum. The x-ray electric field
will be treated classically throughout this work.

A. Cluster molecular orbitals

The electronic structures of the cluster are computed
self-consistently by the semiempirical unrestricted
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Hartree-Fock (UHF) MO method based on the
neglect of diatomic differential overlap (NDDO)
approximation; the details are described elsewhere
[12]. We adopt a spin-unrestricted formalism, in which
the wave function ψkσ (r) and energy εkσ of each
MO depend on the spin index σ = α, β. The core
orbitals ψcμ,σ (r) (c = 1, . . . , Ncore) localized at atom
μ (= 1, . . . , N) and their energy eigenvalues εcμ,σ are
assumed to be identical to those of an isolated atom. Each
valence MO ψvσ (r) (v = 1, . . . , NMO) is expressed as a
linear combination of Nvo valence atomic orbitals (AO’s)
as ψvσ (r) = ∑N

μ=1

∑Nvo
k=1 Cσ

kμ,vφk (r − Rμ), where the total
number of MO’s is NMO = NNvo. The AO’s {φk (r)} consist of
occupied and unoccupied (virtual) states, including discrete
pseudostates in continuum. The NDDO approximation
neglects an overlap of AO’s centered at different sites as

φk (r − Rμ)φk′ (r − Rμ′ ) = 0 for μ �= μ′. (1)

The resultant MO’s {ψcμ,σ (r)} and {ψvσ (r)} form a set
of (approximately) orthonormal basis functions, which are
employed to evaluate the matrix elements of dipole transitions
and Coulomb repulsion integrals as we shall explain later in
Sec. II C.

B. Slowly varying envelope approximation (SVEA)

The slowly varying envelope approximation (SVEA) is a
standard procedure to analyze ultrafast laser pulse phenomena
[13]. The electric field associated with the applied x-ray pulse
at time t and position r in the cluster is assumed to take the
form

E(r, t ) = 1
2

[
Eν (t )ei(kν ·r−ων t ) + E∗

ν (t )e−i(kν ·r−ων t )
]
. (2)

The complex field envelope Eν (t ) varies slowly in time
compared to the x-ray frequency ων ; its spatial variation inside
the cluster is neglected. As far as we exclude high harmon-

ics, we may likewise express the local induced polarization
density as

P(r, t ) = 1
2

[
Pν (t )ei(kν ·r−ων t ) + P∗

ν (t )e−i(kν ·r−ων t )
]
. (3)

We consider a nearly resonant excitation of an electron
from core level c to valence level v by the x-ray field (2).
The complex off-diagonal element of the one-electron RDM
relevant to this process is decomposed as〈

ρσ
v,cμ(r, t )

〉
= 1

2

[〈
ρσ

v,cμ(t )
〉
ν
ei(kν ·r−ων t ) + 〈

ρσ
cμ,v (t )

〉∗
ν
e−i(kν ·r−ων t )

]
+ 〈

ρσ
v,cμ(r, t )

〉
0
. (4)

The quantity 〈ρσ
v,cμ(t )〉ν is directly connected with res-

onantly induced electric polarization, whereas the nonreso-
nant component 〈ρσ

cμ,v (t )〉ν is ignored by the rotating-wave
approximation [13]. The component 〈ρσ

v,cμ(t )〉0 related to
orbital deformation [14] will also be neglected so far as the
excitation is not so strong. The SVEA assumption enables
one to eliminate the rapidly oscillating exponential factors
common to Eqs. (2)–(4); slow dynamics of the remaining
envelope functions will be studied in the following sections.

C. Time evolutions of RDM

A variety of representations are applicable to general RDM
formalisms for optical phenomena [15]. In this work, we
adopt spectral representation and describe the dynamics of
RDM in the space spanned by the cluster MO’s introduced
in Sec. II A. Since these MO’s are eigenstates of the un-
perturbed cluster Hamiltonian, the RDM is diagonal initially
(t = 0). Off-diagonal elements of the RDM describe mixing
of different one-electron states after an x-ray pulse is applied.
By rearranging the time-dependent unrestricted Hartree-Fock
(TDUHF) equations for one-particle RDM within SVEA
[12,14,16], we can derive the following closed set of equations
for one-particle RDM:

∂
〈
ρσ

v,cμ(t )
〉
ν

∂t
= i

{
ων − εvσ − εcμσ

h̄
− 1

h̄

[(
Ẽσ

vv (t )
)

0 − (
Ẽσ

cμ,cμ(t )
)

0

] + i


}〈
ρσ

v,cμ(t )
〉
ν

− i

h̄

[(
Ẽσ

v,cμ(t )
)sc
ν

− dσ
v,cμ · Eν (t )

]
[ fcμσ (t ) − fvσ (t )], (5a)

∂ fcμσ (t )

∂t
= 1

2h̄
Im

{
NMO∑
v=1

[(
Ẽσ

v,cμ(t )
)sc∗
ν

− dσ∗
v,cμ · E∗

ν (t )
]〈
ρσ

v,cμ
(t )

〉
ν

}
+ ∂ fcμσ (t )

∂t

]
Auger

, (5b)

∂ fvσ (t )

∂t
= 1

2h̄
Im

⎧⎨
⎩

Ncore∑
c=1

N∑
μ=1

[(
Ẽσ

v,cμ(t )
)sc
ν

− dσ
v,cμ · Eν (t )

]〈
ρσ

v,cμ
(t )

〉∗
ν

⎫⎬
⎭. (5c)

The diagonal elements of the RDM fcμσ (t ) and fvσ (t )
stand for the populations of core and valence MOs, respec-
tively, at time t , which are assumed to be slowly varying.
Electron screening beyond the UHF approximation is in-
corporated into (Ẽσ

v,cμ(t ))sc
ν within the Born approximation

(BA) [12] to be described below. We ignore x-ray induced
core-core and valence-valence transitions so that the corre-

sponding off-diagonal RDM’s are neglected. When we set
∂ fcμσ (t )/∂t = ∂ fvσ (t )/∂t = 0, the resultant Eq. (5a) reduces
to the linear-response equation studied earlier [12]. The core-
valence dipole transition matrix is defined as

dσ
v,cμ ≡ −e

∫
drψ∗

vσ (r)rψcμσ (r), (6)
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which is to be evaluated by expanding ψvσ (r) in terms of
AO’s and adopting the NDDO approximation (1). The last
term on the right-hand side of Eq. (5b) accounts for change
in core-level population due to Auger decay [17,18]. It is as-
sumed that the emitted Auger electrons escape freely from the
system.

Many-body effects due to the formation of core holes
may be classified into final-state interactions and cascaded
processes. The final-state interactions, such as scattering
of an excited electron by the core hole (excitonic effect
[19]) and valence electron redistribution (screening), are
taken into account through the screened self-energy matrix
[12]:

(
Ẽσ

v,cμ(t )
)sc

ν
= −

NMO∑
v′=1

W σσ
v,v′,cμ,cμ

〈
ρσ

v′,cμ
(t )

〉
ν
.

(7)

Here, the matrix element of screened Coulomb interaction,

W σσ
v,v′,cμ,cμ

= V σσ
v,v′,cμ,cμ +

NMO∑
v1,v2=1

∑
σ1=α,β

V σσ1
vv′v1v2

χσ1(0)
v1v2,v2v1

V σ1σ
v2,v1,cμ,cμ,

(8)

accounts for a process such that an electron excited to state
v is scattered immediately to v′ by the core hole c at site μ.
The first term on the right-hand side of (8) stands for the bare

Coulomb repulsion integral

V σσ1
kk′k1k2

≡
∫

dr
∫

dr′ψ∗
kσ (r)ψk′σ (r)

× e2

|r − r′|ψ
∗
k1σ1

(r′)ψk2σ1
(r′), (9)

whereas

χσ1(0)
v1v2,v2v1

= fv1σ1 (0) − fv2σ1 (0)

εv1σ1 − εv2σ1

(10)

represents the static response function accounting for screen-
ing action of valence electrons [12]. Expressions (7) and
(8) can be derived from the equation of motion for two-
particle RDM in BA as given in Ref. [12]. The summa-
tion on the right-hand side of Eq. (7) produces a mixing
of different off-diagonal elements (v′ �= v) of the RDM;
the v′ = v term acts to reduce the bare excitation energy
εvσ − εcμσ in Eq. (5a) [12]. It was shown in the previous
work [12] that the bare scattering matrix element V σσ

v,v′,cμ,cμ
in Eq. (8) considerably overestimates the excitonic enhance-
ment of absorption; the screening correction represented by
the last term of Eq. (8) is essentially important. The ma-
trix elements (9) should be evaluated within the NDDO ap-
proximation (1) to keep consistency with the formalism in
Sec. II A.

Formation of a core hole yields a renormalization of
energy levels due to Coulomb interaction, which is de-
scribed by a diagonal element of the self-energy matrix in
(5a) [14]. The core and valence self-energy matrices can
be expressed, respectively, in the TDUHF approximation
as

(
Ẽσ

cμ,cμ(t )
)

0
≈

Ncore∑
c′=1

N∑
μ′=1

∑
σ ′=α,β

(
V σσ ′

cμ,cμ,c′μ′,c′μ′ − δσσ ′δμμ′V σσ
cμ,c′μ,c′μ,cμ

)[
fc′μ′σ ′ (t ) − fc′μ′σ ′ (0)

]

+
NMO∑
v=1

∑
σ ′

V σσ ′
cμ,cμ,v,v[ fvσ ′ (t ) − fvσ ′ (0)], (11a)

(
Ẽσ

vv (t )
)

0 ≈
Ncore∑
c=1

N∑
μ=1

∑
σ ′=α,β

V σσ ′
v,v,cμ,cμ[ fcμσ ′ (t ) − fcμσ ′ (0)]

+
NMO∑
v′=1

∑
σ ′=α,β

(
V σσ ′

vvv′v′ − δσσ ′V σσ
vv′v′v

)
[ fv′σ ′ (t ) − fv′σ ′ (0)]. (11b)

Note that (Ẽσ
cμ,cμ(0))0 = (Ẽσ

vv (0))0 = 0 by definition. The
first line on the right-hand side of Eq. (11a) describes a
shift of one-electron energy for orbital cμ induced by for-
mation of a hole in orbital c′μ′; the electron-hole interac-
tion between these two orbitals is described by the Hartree
term V σσ ′

cμ,cμ,c′μ′,c′μ′ and the exchange term V σσ
cμ,c′μ,c′μ,cμ, where

the latter is relevant only for parallel-spin pairs. The sec-
ond line on the right-hand side of (11a) represents a shift
induced by population change in the valence band, where
the core-valence exchange term V σσ

cμ,v,v,cμ has been ne-
glected since it is small. The valence-level renormalization
(11b) can be interpreted in a similar way. The energy-

level renormalization may be viewed as a cascaded process
[2,4] that starts to develop a f ter the population change is
initiated.

Initial conditions to Eqs. (5a)–(5c) are

〈
ρσ

v,cμ(0)
〉
ν

= 0, fcμσ (0) = 1,

fvσ (0) =
{

1, v = 1, . . . , Nσ
val

0, v = Nσ
val + 1, . . . , NMO

, (12)

where Nσ
val designates the total number of valence electrons

with spin σ .
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D. Electric polarization and absorption coefficient

With the knowledge of the off-diagonal elements of RDM,
the induced electric polarization per unit volume can be
obtained by taking their average inside the cluster:

Pν (t ) = natom

N

Ncore∑
c=1

N∑
μ=1

NMO∑
v=1

∑
σ=α,β

dσ
cμ,v

〈
ρσ

v,cμ(t )
〉
ν
. (13)

The damping factor 
 in (5a) ensures that Pν (t ) → 0 for t
sufficiently longer than the pulse duration. We can then take
the Fourier transform into the frequency space,

P̃ν (ω) ≡
∫ ∞

0
dtPν (t )eiωt , Ẽν (ω) ≡

∫ ∞

0
dtEν (t )eiωt . (14)

If we assume that the x-ray is polarized along the x-
direction as Eν (t ) = Eν (t )x̂ and consider the polarization
component along that direction Pν (t ) = Pν (t )x̂, the nonlinear
complex electric susceptibility can be calculated as

χe(ω) = P̃ν (ω − ων )

Ẽν (ω − ων )
. (15)

The absorption coefficient is thus obtained as

κabs(ω) = 4πω

c
Imχe(ω). (16)

Electric polarization is related to some important physical
quantities derived from the RDM equations. The instanta-
neous core-valence excitation rate per unit volume, for in-
stance, can be calculated with the aid of Eq. (5c) as

wexc(t ) ≡ natom

N

NMO∑
v=1

∑
σ=α,β

∂ fvσ (t )

∂t
= 1

2h̄
Im[Pν (t ) · E∗

ν (t )].

(17)
Note that the self-energy matrix in (5c) does not contribute

to the final result (see Sec. 16.2 of Ref. [19]). For a stationary
pulse, Eq. (17) reduces further to the familiar expression [19]

wexc = 1

2h̄
|Eν |2Imχe(ω) = Iνκabs(ων )

h̄ων

, (18)

with Iν ≡ (c/8π )|Eν |2 denoting the x-ray intensity.
The total energy of the material at time t , including its

interaction with the x-ray field, can be written as [16]

〈H (t )〉 =
NMO∑
v=1

∑
σ=α,β

[
εvσ − 1

2
Wvvσ + 1

2

(
Ẽσ

vv (t )
)

0

]
fvσ (t )

+
Ncore∑
c=1

N∑
μ=1

∑
σ=α,β

[
εcμσ − 1

2
Wcμ,cμ,σ + 1

2

(
Ẽσ

cμ,cμ(t )
)

0

]
fcμσ (t )

+ 1

2
Re

⎧⎨
⎩

NMO∑
v=1

Ncore∑
c=1

N∑
μ=1

∑
σ=α,β

[
−dv,cμ,σ · Eν (t ) + 1

2

(
Ẽσ

v,cμ(t )
)sc

ν

]〈
ρσ

v,cμ
(t )

〉∗
ν

⎫⎬
⎭, (19)

with

Wvvσ ≡
NMO∑
v′=1

∑
σ ′=α,β

(
V σσ ′

vvv′v′ − δσσ ′V σσ
vv′v′v

)
fv′σ ′ (0) +

Ncore∑
c=1

N∑
μ=1

∑
σ ′=α,β

V σσ ′
v,v,cμ,cμ fcμσ ′ (0), (20a)

Wcμ,cμ,σ ≡
NMO∑
v=1

∑
σ ′=α,β

V σσ ′
cμ,cμ,v,v fvσ ′ (0) +

Ncore∑
c′=1

N∑
μ′=1

∑
σ ′=α,β

(
V σσ ′

cμ,cμ,c′μ′,c′μ′ − δσσ ′δμμ′V σσ ′
cμ,c′μ,c′μ,cμ

)
fc′μ′σ ′ (0). (20b)

When we set t = 0 in Eq. (19) and substitute the initial
conditions (12), the resultant 〈H (0)〉 coincides with the UHF
expression of the ground-state energy. To check the internal
consistency of our formalism, let us calculate the instanta-
neous energy absorption rate per unit volume,

wene(t ) ≡ natom

N

∂〈H (t )〉
∂t

, (21)

by using Eqs. (5), (7), (11), and (19). If the contribution of
Auger decay to 〈H (t )〉 is neglected, we arrive at an expression

wene(t ) = h̄ωνwexc(t ) − 1

2
Im

[
∂E∗

ν (t )

∂t
· Pν (t )

]
, (22)

where wexc(t ) is given by Eq. (17). Clearly, the first term on
the right-hand side of (22) can be interpreted as the photon
energy h̄ων absorbed per unit time; the second term, related
to a variation of the pulse shape, has been confirmed to be

negligibly small in the hard x-ray regime treated in this work.
Successful derivations of formulas (17) and (22) may justify
our RDM equations (5a)–(5c).

III. K-SHELL ABSORPTION OF COPPER

On the basis of the formalisms described in Sec. II, we
shall study the K-shell absorption spectra of copper and their
dependence on laser intensities. The NDDO MO calculation is
performed for a Cu19 cluster (N = 19) in face-centered-cubic
configuration [12], which consists of 12 nearest-neighbor
and 6 second-neighbor atoms surrounding a central atom.
The nearest-neighbor distance is taken to be Rnn = 2.55 Å,
which corresponds to the bulk atomic density natom = 8.47 ×
1022 cm−3. The cluster contains Nα

val = 105 up-spin and
Nβ

val = 104 down-spin valence electrons; the total number
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FIG. 1. Pulse shape Eν (t ) and intensity profile I(t) of the x-ray
electric field for Iν = 1017 W/cm2.

of valence MO’s is NMO = 399. Computational details are
given in Ref. [12]. The incident x ray is modelled by a
linearly chirped Gaussian pulse [13] polarized along the [100]
direction,

Eν (t ) = E0 exp

[
−(1 + ia)

(
t − t1
τG

)2
]
, (23)

with a = 9.95, τG = 4.84 fs, and t1 = 3τG. The pulse dura-
tion, defined as the full width at half maximum (FWHM)
of |Eν (t )|2, is τp = √

2 ln 2τG = 5.7fs. The FWHM �ωp of
the spectral profile |Ẽν (ω)|2 is �ωp =

√
8(1 + a2)ln2/τG,

which amounts to h̄�ωp = 3.2 eV. The parameter a has been
introduced to enlarge �ωp so that the spectrum over a reason-
ably wide frequency range can be obtained for a single-shot
pulse. The pulse shape Eν (t ) and the intensity profile I (t ) ≡
(c/8π )|Eν (t )|2 are illustrated in Fig. 1 for the peak intensity
Iν ≡ (c/8π )E2

0 = 1017 W/cm2. The x-ray carrier frequency is
chosen as h̄ων = 8945 eV. It should be noted that the actual
pulse shape of XFEL operating in the self-amplified spon-
taneous emission mode contains stochastic oscillations [20],
which cannot be reproduced by a simple analytic formula such
as Eq. (23). Simulation for such a rapidly fluctuating pulse
is not pursued in this work, however, since it is beyond the
applicability of the SVEA in Sec. II A.

We confine ourselves to K-shell excitation by setting
dσ

v,cμ ≡ 0 for c �= 1s. Since the Auger lifetime of a K-shell
hole in a copper atom is dominated by the K-L23L23 process
[17], we may set

∂ f1sμσ (t )

∂t

]
Auger

= 1

τAuger
[1 − f1sμσ (t )] f2pγ μσ (t ), (24a)

∂ f2pγ μσ (t )

∂t

]
Auger

= − 2

3τAuger
[1 − f1sμσ (t )] f2pγ μσ (t );

γ = x, y, z (24b)

0 5 10 15 20 25 30

−0.0001

0

0.0001

t (fs)

P
(t)

/n
at

om
 (a

.u
./a

to
m

)

I =1017 W/cm2

Re

Im

FIG. 2. Time evolutions of the electric polarization per atom for
copper at Iν = 1017 W/cm2. Real and imaginary parts are indicated
by blue and red curves, respectively.

in Eq. (5b), where f2pxμσ (t ) = f2pyμσ (t ) = f2pzμσ (t ) is as-
sumed and the total K-LL rate 1/τAuger ≈ 2 × 10−2a.u. is
adopted from the database [17]. Further cascade decay is
neglected. Starting with the initial conditions (12), Eqs. (5a)–
(5c) have been integrated numerically using the midpoint
method with h̄
 = 0.272eV and the time step �t = 0.121
as. The time evolutions of polarization (13) so computed are
illustrated in Fig. 2 for Iν = 1017 W/cm2. Figure 3 displays
the absorption spectra near the K edge computed on the basis
of Eq. (16) for various values of the peak intensity. The
spectrum at low intensities (Iν < 1015 W/cm2) agrees with
the linear-response result studied earlier [12]. We find that the

8940 8945 8950

h  (eV)−

ab
s(

cm
−1

) I (W/cm2)=1015

1016

3x1016

|E
(

)| (arb. units)

|E ( )|

1017

~

~

FIG. 3. K-shell absorption spectra of copper for various pulse
peak intensities. The spectrum of the electric-field envelope (14) is
superimposed by the dashed curve.
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FIG. 4. The fraction of excited electrons in copper as a function
of pulse peak intensity. Filled circles represent numerical results.
Solid line is a linear fit fexc ∝ Iν valid in the low-Iν limit.

spectrum above the K-edge (about 8943 eV) shifts to higher
energies as the intensity increases. At the highest intensity
(Iν = 1017 W/cm2), the originally sharp K edge becomes
broadened.

As mentioned in [12], the present cluster model is not
accurate enough to reproduce the known absorption spectra
of bulk copper [7]: The peaks and dips in the theoretical
spectra are absent in experimental data [7] and considered
as artifacts due to an incompleteness of the basis set and the
pseudospectral treatment of the continuum [12]. The theoreti-
cal K-edge energy is also slightly underestimated compared
to the experimental value, 8.98 keV [7]. Nevertheless, the
intensity dependence of the spectrum in Fig. 3 is clear and
meaningful. Recent advances in theoretical methods to com-
pute core-valence excitation spectra of atoms and molecules
are summarized in [21] and references therein; none of them
have reproduced intensity dependence of the spectra observed
experimentally [7], however.

In Fig. 4, we plot the excitation degree fexc

defined as the fraction of excited electrons, fexc ≡∑NMO
v=1

∑
σ=α,β [ fvσ (∞) − fvσ (0)]. In the region Iν <

1017 W/cm2, the linear relationship fexc ∝ Iν (∝ E2
0 ) can

be observed, which means that the population change is
second order in the electric field; the resultant change in the
absorption spectrum is a third-order effect. A departure from
the linear relationship can be found at Iν > 1017 W/cm2,
indicating a saturation of absorption. We may thus regard the
region Iν < 1017 W/cm2 as the third-order nonlinear regime.

Figure 5 illustrates time evolutions of 1s and 2p levels
of a central atom in the cluster for Iν = 1017 W/cm2. The
population of the 1s level initially decreases due to x-ray
excitation but is soon refilled through the Auger decay. Since
only the K-L23L23 process is taken into account, the core

0 5 10 15 20 25 30
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0.999
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f c1
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) I =1017 W/cm2
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2px
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FIG. 5. Time evolutions of 1s- and 2px-level populations of a
central copper atom for Iν = 1017 W/cm2.

hole eventually resides in 2p orbitals for t → ∞. We remark
that our analysis of the competition between excitation and
decay indicated in Fig. 5 is based on rate equations (24); a
full wave-function-based analysis of related phenomena for
molecules can be found in [22].

We find through comparison between Figs. 3–5 that an ex-
citation fraction of only 1% is sufficient to induce a blueshift
of the absorption spectrum by about a few eV. The origin of
the spectral shift can be traced to the negative renormalization
factor (Ẽσ

1sμ,1sμ(t ))0 < 0 in Eq. (5a), which acts to increase the
threshold energy of K-shell excitation. To see this, we show in
Fig. 6 the renormalized 1s energy level [14],

ε̃1s,μ,σ (t ) ≡ ε1s,μ,σ + (
Ẽσ

1sμ,1sμ(t )
)

0
, (25)

at Iν = 1017 W/cm2 for the central atom (μ = 1) in the
cluster. It can be seen that ε̃1s,1,σ (t ) is lowered by nearly
4 eV as the x-ray pulse passes through the cluster. In Fig. 7, we
depict the asymptotic values of (25) for all atoms in the cluster.
As the intensity increases, the energy levels ε̃1s,μ,σ (t → ∞)
are lowered and spread into a band; these features account
for the blueshift of the spectra and broadening of the K edge,
respectively, in Fig. 3. The energy spread reflects the fact
that (Ẽσ

1sμ,1sμ(t ))0 depends on both μ and σ . We observe in
Fig. 3 that the shift and broadening of the K edge result in net
reduction of absorption, which is thought to be the reason for
the saturation of absorption above 1017 W/cm2 in Fig. 4. The
renormalized energy levels of low-lying unoccupied valence
MO’s ε̃vσ (t ) ≡ εvσ + (Ẽσ

vv (t ))0 for t → ∞ are likewise exhib-
ited in Fig. 8. Comparison between Figs. 7 and 8 reveals that
the magnitude of valence-level lowering (Ẽσ

vv (t ))0 is signifi-
cantly smaller than that of core-level lowering (Ẽσ

cμ,cμ(t ))0.
Tamasaku et al. [7] measured K-edge absorption spectra

of copper by performing foil transmission experiments using
SACLA XFEL with h̄ων = 8.99 keV and τp ≈ 8 fs. They
demonstrated that, as the x-ray intensity increases up to about
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FIG. 6. Time evolutions of the renormalized 1s energy levels
ε̃1s,1,σ (t ) based on Eq. (25) for a central copper atom at Iν =
1017 W/cm2. Solid and dashed curves correspond to up-spin (σ =
α) and down-spin (σ = β ) states, respectively. The dotted curve
represents the intensity profile.

1017 W/cm2, the spectrum above the K edge deviates toward
the high-energy side, while the pre-edge region remains vir-
tually unaltered (see Fig. 4 of Ref. [7]). It is remarkable that
these features are qualitatively consistent with our prediction
in Fig. 3.

IV. DISCUSSION

In this section, physical mechanisms of the third-order
nonlinearity found for copper in Sec. III are examined from
a more general viewpoint. There are two contributions to
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FIG. 7. Renormalized 1s orbital energies (25) for copper at t →
∞ as functions of the pulse peak intensity.
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FIG. 8. Renormalized orbital energies of low-lying unoccupied

valence states for copper at t → ∞ as functions of the pulse peak
intensity.

the third-order nonlinearity in Eq. (5a): the energy renor-
malization factor (Ẽσ

vv (t ))0 − (Ẽσ
cμ,cμ(t ))0 and the population

inversion factor fcμσ (t ) − fvσ (t ). The latter quantity, coupled
directly with the optical field, is the usual source of saturable
absorption in nonlinear optics [1]. In the third-order nonlinear
regime treated in Sec. III, however, it turns out that the
difference between fcμσ (t ) − fvσ (t ) and fcμσ (0) − fvσ (0) is
less than 0.01 so that the contribution from the population
inversion factor is negligible. Bulk of the nonlinearity thus
arises from (Ẽσ

cμ,cμ(t ))0. In the summation on the right-hand
side of Eq. (11a), the quantity of particular relevance is the
on-site Coulomb repulsion Ucc′ ≡ V σσ ′

cμ,cμ,c′μ,c′μ between two
electrons in core orbitals c and c′ on the same atom, whose
magnitude can be considerably large [23]; we estimate that
U1s1s = 483.5 eV and U1s2p = 163.8 eV for 1s and 2p orbitals
in copper. When a down-spin electron in a 1s orbital is excited,
the net repulsive force exerted on the up-spin electron in
the same orbital is reduced, resulting in a negative energy
renormalization (Ẽα

1sμ,1sμ(t ))0 ≈ U1s1s[ f1sμβ (t ) − f1sμβ (0)] <

0. The K-shell holes are transferred rapidly to the L
shell through the K-LL Auger process, which again
yields a negative shift of the 1s level, (Ẽσ

1sμ,1sμ(t ))0 ≈
U1s2p

∑
γ=x,y,z

∑
σ ′=α,β [ f2pγ μσ ′ (t ) − f2pγ μσ ′ (0)] < 0; its mag-

nitude can easily exceed 1 eV even if the average number of
core holes per atom is as small as 0.01. Thus, the spectral shift
on the order of a few eV can naturally be accounted for by the
core-level renormalization effect.

The intraatomic energy renormalization effect mentioned
above is irrespective of the atomic density and hence may be
observable in small molecules and gaseous targets as well. To
confirm this point numerically, we have repeated analogous
calculations for an isolated Cu2 dimer (N = 2) by adopting
the experimental bond length Rnn = 2.22 Å [24] and the
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FIG. 9. K-shell absorption cross sections of a Cu2 dimer at Iν =
1015 and 3 × 1016 W/cm2.

damping parameter h̄
 = 0.544 eV; the direction of Eν (t ) is
perpendicular to the molecular axis. The resultant absorption
spectra are shown in Fig. 9. A blueshift of the spectrum similar
to Fig. 3 is indeed predicted above 8943 eV as the x-ray
intensity increases. In condensed phases, the contributions
from neighboring core holes (μ′ �= μ) and valence electrons
in Eq. (11a) also come into play. It should be noted on the
right-hand side of Eq. (5a) that the renormalization factor
(Ẽσ

vv (t ))0 − (Ẽσ
cμ,cμ(t ))0 depends on time and acts to modulate

the bare excitation frequency (εvσ − εcμσ )/h̄ dynamically; it
does not bring about a simple constant shift of the absorption
spectrum when Fourier-transformed into the frequency space.

A salient feature shown in the high-intensity region of
Fig. 7 is the spread of core orbital energies, which causes
a broadening of the absorption edge, leading to saturation
of absorption. Physical origin of the energy-level spread is
not trivial but can be traced to the μ and σ dependence of
(Ẽσ

cμ,cμ(t ))0 in (25). The μ dependence of (Ẽσ
cμ,cμ(t ))0 implies

that the excitation proceeds locally at a different rate depend-
ing on the atomic position. Such an inhomogeneous excitation
may generally occur when a core hole created locally in the
crystal breaks the translational symmetry. The σ dependence
of (Ẽσ

cμ,cμ(t ))0 indicates an imbalance between the excitation
dynamics of the two electrons within the same core orbital.
This is the case in usual atomic ionization from a doubly oc-
cupied orbital, where one of the electrons is ionized favorably
over the other [25]; spin-unrestricted formalism is essential
for treating such a selective excitation. The possibility of a
spontaneous emergence of such a “symmetry breaking” in
correlated electron-hole dynamics remains to be investigated
further in future works.

Tamasaku et al. [7] argued that collisional relaxation of
hot electrons created by XFEL might be responsible for the
observed spectral shift, while theoretical spectral shift in
Sec. III has been predicted from core-level renormalization

alone. Generally, hot electron relaxation in a metal accompa-
nies low-energy excitation of conduction electrons across the
Fermi level [26], so the absorption may be enhanced below
the edge and reduced above the edge [5]; such a feature has
been observed for pulse duration longer than ps in the case of
visible light [5]. For a femtosecond x-ray pulse, hot-electron
effects may be observable at sufficiently high x-ray intensities
where fexc becomes appreciably large. In the RDM formalism,
dynamics of hot electrons in the valence band can be taken
into account by adding a collision term on the right-hand side
of Eq. (5c) [26].

The blueshift of the spectrum predicted in this work may be
understood as an effective enhancement of the core-valence
band gap [19]. This is a feature opposite to the case of
valence electron excitation in semiconductors, where negative
exchange energy of the electron-hole plasma yields band-gap
reduct ion (see, e.g., Chap. 15 of Ref. [19]). Both phenomena
are the consequences of Coulombic renormalization effects
and accounted for by the self-energy matrices in RDM equa-
tions, with the only difference lying in the spatial extension of
the electronic orbitals [23].

The single-particle mean-field approach as adopted in this
work describes core-hole formation and decay in a proba-
bilistic way by fractional occupation numbers. Validity of
such a mean-field description is not trivial and should be
checked for a low-density atomic gas, for instance, by di-
agonalizing the atomic Hamiltonian exactly and representing
the density matrix in terms of the exact atomic eigenstates.
In such a representation, a quantum-mechanical expression
for the third-order susceptibility is formally available [1,2],
but it contains cumbersome summations over virtual transi-
tions to intermediate states whose treatment requires extra
care; simplified models such as two- or three-level atoms
are frequently used [1]. We speculate that, if density-matrix
equations analogous to (5) can be formulated for multilevel
“atoms” containing core holes and ionization continuum, they
might give a clue to the origin of third-order x-ray nonlinearity
from the viewpoint beyond the mean-field approximation. The
resultant equations will not contain Coulomb matrix elements
(9) since the electron-electron interactions in each atom are all
incorporated into the eigenenergies and eigenfunctions of the
atom itself. Elucidation of mutual correspondence between
the single-particle and multilevel-atom formalisms should
await for further studies in the future. It also remains to be
seen whether the conventional anharmonic oscillator models
in nonlinear optics [4] can be extended to x-ray regime so as
to put physical interpretations on the nonlinear susceptibilities
obtained numerically in this work.

V. CONCLUDING REMARKS

In conclusion, we have presented RDM equations for reso-
nant core-valence electron excitation by an intense femtosec-
ond x-ray pulse. Through numerical solutions to the RDM
equations in the cluster model, intensity dependence of K-
shell absorption spectra for metallic copper has been studied.
We have thereby shown that third-order nonlinearity stems
from a negative renormalization of the core orbital energy
due to strong attractive electron-hole interaction in a localized
core orbital. Such a Coulomb-induced nonlinearity surpasses
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the hitherto considered mechanisms based on the population
inversion factors. As the intensity increases, the renormalized
core orbital energies are lowered and spread into a band,
leading to a blueshift and edge broadening of the absorption
spectra. These features agree qualitatively with experimental
results for copper obtained by SACLA XFEL. Broadening of
the absorption edge in turn causes saturation of absorption,
which can be expected even if the degree of electron excitation
is only a few percent. In order for extension of Eqs. (5)
beyond the third-order nonlinear regime, we would have to

consider additional effects such as hot-electron relaxation,
orbital deformation, and interference effects due to core-hole
decay [27].
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