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Atomic ionization driven by the quantized electromagnetic field in a Fock state
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We consider ionization of an atom by the electromagnetic field in a Fock state |N〉: An eigenvector of the
operator N̂k,λ = â†

k,λ
âk,λ of the number of photons in the mode k, λ. We treat the electromagnetic field in a

quantized way, which allows us to obtain the photon picture of the strong field ionization. We obtain, in particular,
probability distributions for the number of absorbed photons in the process of strong field ionization for atomic
systems governed by short-range and Coulomb potentials.
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I. INTRODUCTION

It has been realized since the pioneering work by Reiss [1]
that even for mundane field intensities of the order of 1014

W/cm2, the description of atomic or molecular photoioniza-
tion based on the nonrelativistic time dependent Schrödinger
equation (TDSE) may have its limitations. It was shown in
[1] that relativistic effects may play significant role in the
process of atomic or molecular photoionization. Of particular
interest is the so-called tunneling regime of ionization. Even
for infrared (IR) laser fields with intensity of the order of
1014 W/cm2, the relativistic nondipole effects are visible in
the experimentally observed photoelectron spectra [2]. An IR
photon possesses a small momentum, but a large number of
photons participating in the process of tunneling ionization
[3] deliver appreciable momentum to the ionized electron.
Nondipole effects accompanying multiphoton processes in
this regime of ionization have been studied extensively ex-
perimentally [2,4] and theoretically [5–12]. Relativity also
introduces effects related to the electron spin into the the
theory of strong field ionization. A strong spin asymmetry can
be observed in the above-threshold ionization (ATI) process
[10,13]. Development of free-electron lasers (FELs) [14–16]
opens up a possibility of the experimental study of the rel-
ativistic effects for multiphoton processes in the domain of
high photon energies, where the nondipole effects due to
finite photon momentum can be expected to be particularly
important. That this is indeed the case was shown in [17,18].

Development of laser techniques [14–16,19,20] has al-
lowed reaching superhigh intensities (of the order of
1023 W/cm2) of laser radiation, and there are projects en-
visaging reaching yet higher intensities of the order of 1026

W/cm2 [21]. Such intensities are still below the so-called
Schwinger limit (intensity of the order of 1029 W/cm2)
when effects such as photon-photon interaction and electron-
positron pair production become important. There are ways,
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however, to effectively enhance the pair production [21–23],
making it possible to observe this effect at lower intensities.
Theoretical description of such phenomena is provided by
quantum electrodynamics (QED). QED enjoys the status of
an extremely accurate physical theory which has made numer-
ous spectacular predictions of the experimentally measured
quantities such as the anomalous magnetic moment of the
electron or the Lamb shift of the hydrogen energy levels,
agreeing with experiment with an unprecedented accuracy.
These achievements have been attained by summing the con-
tributions of several leading orders of the QED perturbation
theory expansion. The perturbation theory, while providing
spectacularly accurate results in many cases is, however, not
always applicable. It fails, in particular in strong electromag-
netic fields, where a a nonperturbative theoretical framework
is required.

Comparing to the more traditional treatment of the strong
field ionization based either on a numerical solution of the
TDSE or other methods such as the well-known strong field
approximation (SFA) [24–27] or Floquet theory [28], QED
brings into consideration the effects due to the fact that in
QED both electrons and photons are described as quantum
fields [29]. We will consider in this work the effects due
to the quantum nature of the electromagnetic field (i.e., its
photon character). In other words, we will consider below
quantum evolution of an atomic system in the presence of a
quantized electromagnetic field with an intensity of the order
of 1014 W/cm2. As far as the atomic system is concerned, we
will treat it quantum mechanically, using a suitably modified
TDSE as described below. Such an approach implies that we
neglect the quantum field character of the electronic part of the
problem, in particular the essentially many-body character of
the quantum field describing electrons. In the present context
this means that we neglect completely the processes such as
pair creation, which is, of course, quite legitimate for the field
intensities we use below.

The paper is organized as follows. In Sec. II we
describe theoretical and numerical techniques we will use.
Our results and conclusions are presented in the Secs. III
and IV, respectively. Atomic units with h̄ = 1, e = 1, m =
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1, and c ≈ 137.036 (here e and m are charge and mass of
the electron, c the speed of light) are used throughout the
paper.

II. THEORY

We recapitulate briefly, following the work [30], the
method we employ in the present work to account for the
quantum field character of the electromagnetic field. We will
apply this method below to analyze distribution of the ab-
sorbed photons in the strong field ionization process.

The quantized vector potential can be written as [30,31]

Â(r, t ) =
∑
k,λ

√
2πc2

wV
(ek,λâk,λe−iwt+ik·r + H.c.). (1)

It is assumed in Eq. (1) that the electromagnetic field is
quantized in a finite volume V , so summation in Eq. (1) runs
through the discrete set of modes characterized by wave vector
k and polarization direction ek,λ; âk,λ and â†

k,λ
are annihilation

and creation operators with usual bosonic commutation rela-
tions. The combined Hilbert space of the system atom + field
is the tensor product Hatom ⊗ Hfield, where Hatom and Hfield

are atomic and photon Hilbert spaces. A convenient basis in
the photon subspace Hfield is provided by the Fock states |N〉:
eigenvectors of the operator N̂k,λ = â†

k,λ
âk,λ of the number of

photons in the mode k, λ. We will consider below only one
mode of the field, corresponding to linear polarization in the
z direction and a particular photon frequency; we will omit
henceforth, therefore, subscripts k, λ in the formulas.

Let us choose some Fock state |N〉 with large N . The
representation described in [30] consists of mapping of the
Fock states |N + m〉 (m � −N ) on the set of exponential
functions of angle θ :

|N + m〉 = eimθ . (2)

Using this mapping, the photon part of the Hilbert space Hfield

can be realized as a space of the functions f (θ ), defined on the
interval θ ∈ (0, 2π ), with the scalar product

〈 f |g〉 = 1

2π

∫ 2π

0
f ∗(θ )g(θ ) dθ. (3)

Correspondingly, to preserve the usual properties a|N〉 =√
N |N − 1〉, a†|N〉 = √

N + 1|N + 1〉 of the creation and
annihilation operators, they should be realized as operators
acting on the functions depending on θ in the following ways:

a = e−iθ

(
N − i

∂

∂θ

) 1
2

,

a† =
(

N − i
∂

∂θ

) 1
2

eiθ . (4)

Other representations of annihilation and creation operators as
differential operators are also possible [32]; Eq. (4) is particu-
larly convenient in the strong field limit N → ∞. In this limit,
which will interest us, one may write limN→∞ a = e−iθ

√
N ,

limN→∞ a† = eiθ
√

N . Using these asymptotic relations the
quantized vector potential (1) can be written in the limit

N → ∞ as

Â(r, t ) =
√

2Nπc2

ωV
(eze

−iωt+ik·r−iθ + H.c.). (5)

We note that under the asymptotic large-N approximation
made above we lose the ability to describe certain processes,
such as spontaneous emission of photons. The amplitudes
of the processes of the spontaneous emission of photons
acquire an additional factor of 1/N compared to the stimulated
emission or absorption processes, and are, therefore, beyond
the accuracy of this asymptotic approximation. It is, however,
the processes of stimulated emission and absorption which are
of interest to us in the present work, and which can considered
in the leading order of 1/N expansion.

Though the expression in (5) looks like the classical ex-
pression for the vector potential, it is still an operator in
the photon part of the Hilbert space Hfield because of the
dependence on the angle θ . To complete the description we
need an atom-field interaction Hamiltonian:

ĤI (t ) = 1

2c
p̂Â + 1

2c
Âp̂ + 1

c2
Â

2
. (6)

The QED time-evolution propagator Û (t, 0) driving evolu-
tion of the system atom + field in the combined Hilbert space
Hatom ⊗ Hfield can then be written in a formally closed form
using the Dyson time-ordering operator T̂ [33]:

Û (t, 0) = T̂ exp

(
−i

∫ t

0
Ĥ (t ′) dt ′

)
, (7)

where Ĥ (t ) = Ĥatom + ĤI (t ) and Ĥatom = p̂2

2 + V (r) is atomic
Hamiltonian taken in the nonrelativistic approximation. Note
that we do not need to include the field Hamiltonian in
Eq. (7) because the evolution under the field Hamiltonian
is already included in the expression (1) for the vector po-
tential. In other words, the representation we use here is
obtained from the Schrödinger representation of the quan-
tum equations of motion (in which both atomic and field
operators do not depend on time) by means of the uni-
tary transformation exp ( − iĤfieldt ) generated by the field
Hamiltonian Ĥfield.

Using the representation (2), expression (5), and the def-
inition (3) of the scalar product in Hfield, it is easy to see
that in the limit of large N the matrix elements of the QED
time-evolution propagator Û (t, 0) taken between the Fock
states can be written as [30]

〈N + m|Û (t, 0)|N〉 = 1

2π

∫ 2π

0
Û (t, 0; θ )e−imθ dθ. (8)

Here, Û (t, 0; φ) is an operator acting in the atomic Hilbert
space Hatom only. This operator satisfies the familiar atomic
time-dependent Schrödinger equation [30]

i
∂Û (t, 0; θ )

∂t
=

(
Ĥatom + 1

2c
p̂A(θ ) + 1

2c
A(θ )p̂

+ 1

2c2
A(θ )2

)
Û (t, 0; θ ), (9)
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where A(θ ) is now a classical field,

A(r, t, θ ) =
√

2Nπc2

wV
(eze

−iωt+ik·r−iθ + H.c.)

= A0 cos (ωt + θ − k · r), (10)

with the amplitude A0 =
√

8Nπc2

ωV . All we have to do, there-
fore, to find the matrix elements of the complete QED propa-
gator between the different Fock states is to find the atomic
propagator Û (t, 0; θ ) in Eq. (9) as a function of the phase
θ , and to perform the θ integration as prescribed by Eq. (8).
We will apply the formula (8) for the QED propagator for the
case when an atom, initially (in the distant past) in the ground
state, interacts with the quantized electromagnetic field. More
specifically, we will be interested in the photon distribution
in the distant future. To describe such a situation we will, as
is customarily done [34], supply the interaction Hamiltonian
with a cutoff function, making the interaction Hamiltonian
vanish both in the distant past and the distant future. We will
discuss the question of the proper choice of the cutoff function
in more detail below.

Using Fock states (2) centered around a given (and large N)
the wave function of the complete system atom + field can be
represented as

�(t ) =
∞∑

m=−N

φm(t ) ⊗ |N + m〉, (11)

where φm(t ) are vectors from the atomic Hilbert space Hatom.
Assuming that initial state of the system atom + field is
φ0 ⊗ |N〉 (where φ0 is the ground atomic state), and using the
representation (8) for the QED propagator, one obtains

φm = 1

2π

∫ 2π

0
Û (t, 0; θ )e−imθφ0 dθ, (12)

with P(n, t ) = ||φ−n(t )||2 giving the probability of detecting
the field in a state |N − n〉 at the moment t . Note that, for the
sake of convenience, we chose the signs in the definition of
P(n, t ) in such a way that positive argument n corresponds to
the absorption of n photons from the field, while negative val-
ues of n correspond to the stimulated emission of n photons.
Another useful formula one can derive from the Eqs. (11) and
(12) is the representation of the atomic density matrix at time
t , which can be obtained by taking a partial trace with respect
to photon degrees of freedom, with the result [30]

ρ̂atom(t ) =
∑

m

〈N + m|�(t )〉〈�(t )|N + m〉

= 1

2π

∫ 2π

0
Û (t, 0; θ )ρ̂atom(0)Û †(t, 0; θ ) dθ, (13)

where ρ̂atom(0) = |φ0〉〈φ0 is the initial atomic density matrix.
Equation (13) shows concisely that, to take into account the
fact that the phase of the field is completely undermined in
the Fock state of the field, one must perform a certain “phase
average” as prescribed by the equation.

To compute P(n, t ) in Eq. (12) we proceed as follows. As
we noted above, with respect to action on the vectors from the
atomic Hilbert space Hatom, Û (t, 0; θ ) behaves like an ordi-
nary quantum mechanical propagator, satisfying the quantum-

mechanical TDSE (9) with the classical field A(r, t, θ ) in
Eq. (10). To find the vector φm in (12) we should, therefore,
first find a set of atomic wave functions φ(t, θ ) describing
evolution of the atom in the presence of the classical field with
different phases (10),

i
∂φ(t, θ )

∂t
=

(
Ĥatom + 1

2c
p̂A(θ ) + 1

2c
A(θ )p̂

+ 1

2c2
A(θ )2

)
φ(t, θ ) (14)

with the initial condition that φ(t, θ ) is the ground atomic state
in the distant past, and then compute φm in Eq. (12) as

φm = 1

2π

∫ 2π

0
φ(t, θ )e−imθ dθ. (15)

In the following we will neglect in Eq. (14) the spatial
dependence of the vector potential, using thus the dipole
approximation, which is legitimate for the the field param-
eters we will be considering below. The solution of the
TDSE equations (14) is quite straightforward (albeit some-
what computationally demanding since we have to solve a
large number of evolution equations for different phases θ ).
The actual number of phases θ to consider depends on the
ionization regime, which can be conveniently characterized by
two dimensionless parameters [27,35]: The multiquantumness
parameter K = I/ω and the Keldysh parameter [3,24] γ =
ω

√
2I/E0 (where ω and E0 are frequency and strength of the

laser field and I is the ionization potential of the target system
in atomic units). Below we will consider regimes with K � 1
and different values of the Keldysh parameter, ranging from
γ > 1 (multiphoton ionization) to γ � 1 (tunneling regime
of ionization). In both cases the atom undergoing ionization
absorbs a considerable number of photons from the field.
According to the definition of the Fock states (2), absorption
of the photons from the field corresponds to negative m values.
It is clear from Eq. (15) that, to compute accurately the inte-
gral in this formula for large negative values of m for which
integrand rapidly oscillates, we need to use an adequately ac-
curate quadrature rule. In our calculations we used the Gauss
quadrature rule with up to the total of Mg = 141 points (for
the largest field strength we consider below), with θ values
distributed in the interval (0, 2π ). The TDSE was solved for
these θ values using the numerical procedure for solving the
TDSE for an atom driven by a strong classical electromagnetic
field, which we employed previously in calculations of atomic
and molecular ionization processes [36–39] and which we
described in detail elsewhere [40].

Having obtained solutions of the TDSE for the θ values at
the Gauss quadrature grid points, we can compute the integral
in Eq. (15) and hence the probability P(n). Because of the
unitarity of the evolution driven by the QED Hamiltonian (6)
we have, of course,

∑n=+∞
n=−∞ P(n, t ) = 1 at all times. We will

be primarily interested below in the process of absorption
of photons; i.e., with the sign convention we adopted, we
will consider P(n) with positive n. We will also be interested
below in the normalized probability distribution Q(n, t ) of
the absorbed photons. This distribution is just a conditional
probability of absorbing n photons from the field provided
at least one photon has been absorbed, and it coincides with
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FIG. 1. Expectation value and variance of the distribution of the absorbed photons for different envelope functions in the expression (16)
for the vector potential.

P(n, t ) for n � 1 up to a normalization factor which ensures
that

∑n=+∞
n=1 Q(n, t ) = 1 at all times.

III. RESULTS

Before presenting the results we will discuss the possible
effect of the cutoff envelope function which we used in the
calculations. As we noted above, when solving the TDSE
we have to introduce a cutoff envelope function f (t ), so that
the actual expression for the vector potential in the classical
interaction Hamiltonian differs from the right-hand side of
Eq. (10) by the presence of the envelope f (t ):

A(t ) = A0 f (t ) cos (ωt + θ ). (16)

Introducing the envelope function is necessary both for com-
putational reasons (we cannot propagate the TDSE on very
long time intervals, and we wish to avoid the effects of the
sudden switch on of the interaction) and for the more fun-
damental reason of gauge invariance. The minimal coupling
we use in the expression for the interaction QED Hamiltonian
(6) is not the only possible gauge which can be used for
the description of the atom-field interaction. A QED analog
[32,41] of the quantum mechanical length gauge can also be
used for this purpose. The results obtained become gauge
independent after the interaction is switched off. We must
ensure, of course, that the choice of the envelope function we
use in calculations is adequate in the sense that its particular
shape does not affect appreciably the conclusions we will
draw from the results we present below. We begin this section,
therefore with a detailed study of this question.

A. Choice of the envelope function

We show below the results obtained for two specific enve-
lope functions in the expression (16) for the vector potential.
Both envelope functions assume nonzero values in the interval
(0, MT ) [here M is an integer and T is the optical cycle
corresponding to the base frequency of the pulse (16)]. We

will report below results of the the calculations using base fre-
quencies of ω = 0.057 a.u. (corresponding to the wavelength
of 800 nm) and ω = 0.172 (wavelength of 265 nm). The first
envelope function (we will call it the S type) is the familiar
sin2 envelope often employed in the calculations of atomic
ionization processes:

f (t ) = sin2

(
πt

MT

)
, t ∈ (0, MT ), (17)

and the second, the “trapezoidal” envelope (we will call it the
T type) is defined on the interval (0, MT ) by the equations

f (t ) =
⎧⎨
⎩

α(t ), t ∈ (0, PT ),
1, t ∈ (PT, MT − PT ),
α(MT − t ), t ∈ (MT − PT, MT ),

(18)

where PT is the switching interval, and the switching func-
tion α(t ) is a third-order polynomial α(t ) = 3t2/(PT )2 −
2t3/(T P)3, monotonically growing on the switching interval,
which ensures continuity of the vector potential and its first
derivative at t = PT and t = MT − PT . We can vary switch-
ing interval PT by changing parameter P.

In Fig. 1 we show two important characteristics of the
normalized probability distribution Q(n, t ) of the absorbed
photons: Its expectation value 〈n(t )〉 = ∑∞

n=1 nQ(n, t ) and
variance Var(n, t ) = ∑∞

n=1 Q(n, t )(n − 〈n〉)2. We choose a
particular value E0 = 0.0534 a.u. of the effective field strength
E0 which, by Eq. (10), is related to the number of photons
in the initial Fock state |N〉 of the radiation field as E0 =√

8Nωπc2/V . The atom in this calculation was a model one-
electron system with a short-range potential

W (r) = −1.903
e−r

r
. (19)

This potential supports only one bound state of s symmetry,
with the ionization potential equal to that of the hydrogen
atom. This choice was made to make a sensible comparison
with the case when Coulomb interaction is present, which we
will consider later.
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FIG. 2. Distribution P(n) and the normalized probability distribution Q(n) of the absorbed photons for the same field parameters as in
Fig. 1, obtained at the end of the pulse (17) with the pulse durations of M = 10, M = 12, and M = 16 optical cycles.

In Fig. 1 we show results obtained for the different choices
of the envelope functions. We employ the system of notation
we introduced in Eqs. (17) and (18). Thus, for instance,
the calculation in Fig. 1 marked as M = 16; S uses the sin2

envelope (17) with the total pulse duration 16T (here, we
remind, T = 2π/ω is an optical cycle corresponding to the
base frequency w = 0.057 a.u. we use in this work). The cal-
culation marked as M = 18, P = 1; T employs the envelope
function (18), with the total pulse duration of 18T , and the
pulse being switched on and off on the intervals (0, T ) and
(17T, 18T ). One can see that despite the completely different
shapes and durations, the values of the expectation values and
variances agree quite well at the end of the pulse, which is the
physically interesting region. This transition to the asymptotic
values (marked in black dots in Fig. 1) occurs somewhat
smother and faster for the sin2 envelope function, probably
because of its more “adiabatic” character, as compared to the
trapezoidal envelope. As one can see, for the sin2 envelope
(17) the expectation value and the variance reach their asymp-
totic (infinite future) values rather early in the course of the
evolution. Comparison of the calculations with M = 12; S and
M = 16; S in Fig. 1 show that they give practically identical
predictions for the asymptotic infinite future values for both
the expectation value and the variance of the distribution of
the absorbed photons. Further confirmation of the statement
that using the calculation with M = 12; S we obtain at the
end of the pulse distributions which practically coincide with
the distributions in the “infinite future” is provided by the
results shown in Fig. 2. The figure shows the results for the
probability distribution P(n) and the normalized probability
distribution Q(n) of the absorbed photons for the same field
parameters as in Fig. 1, obtained at the end of the pulse (17)
with different durations. Figure 2(a) shows that the probabil-
ities P(n) expectedly grow with the duration of the pulse.
More important for our purposes are the results presented
in Fig. 2(b), where the normalized probability distributions
Q(n) are shown for different durations of the sin2 envelope
pulse. One can see that the distributions obtained for M = 10,

M = 12, and M = 16 are practically identical, thus justifying
the conclusion we have made above that the absorbed pho-
ton distribution obtained at the end of the pulse (17), with
the total pulse duration of M = 12 optical cycles can, with
good accuracy, be considered as the distribution obtained in
the distant future for the atom-field interaction switched off
adiabatically. We have used, therefore, the envelope (17) with
M = 12 in all the calculations reported below. This choice
appears to give accurate enough results for the asymptotic
large time distributions of the absorbed photons, on one hand,
and it can be treated with relative ease numerically, as we do
not have to integrate the TDSE on very long time intervals.

Following this strategy, which we outlined above and illus-
trated for the field strength of E0 = 0.0534 a.u., we performed
a series of calculations for the base frequency ω = 0.057
a.u., varying the effective field strength E0. These results are
reported below.

B. Distributions of absorbed photons in the multiquantum
multiphoton and tunneling regimes.

In Fig. 3 we show distribution Pn for different effec-
tive field strengths for the model atom with the short-range
potential (19).

We can compare the results we obtain with the results
following from the well-known formula for the differential
ionization probability of the SFA theory [27]:

dP

d� dεp
=

∑
n>n0

R(p)δ(εp + Ip + Up − nω), (20)

where n0 � Nmin = (Ip + Up)/ω + 1, the factor R(p) can be
computed analytically [27], Ip is ionization potential of the
target system, and ponderomotive energy Up = E2

0 /4/ω2 for
the linearly polarized pulse. The sum on the right-hand side
of Eq. (20) often receives interpretation in terms of the ab-
sorbed photons, with integral

∫
R(p) d�, εp = nω − Ip − Up

giving the probability of absorbing n photons form the field.
Analogous expressions involving sums of the energy delta
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FIG. 3. Distribution P(n) (red) and the SFA estimate (green dots) for different effective field strengths for the model atom with the short-
range potential (19), obtained at the end of the pulse (17) with M = 12 optical cycles.

functions centered at a discrete set of energy values arise
in other analytic approaches to the strong field ionization
problem, such as the Perelomov-Popov-Terentiev [42] method
or an approach developed in [25,26].

This interpretation is, however, partly misleading. Quoting
[27], the discreteness of the electron spectrum in Eq. (20) is
a consequence of the laser field periodicity only [Eq. (20) has
been obtained for the monochromatic laser field], and does
not rely, in any way, on the concept of photons. To express
it differently, and perhaps more generally, let us note that
in the SFA and related approaches, Eq. (20) and it analogs
are obtained using an approximation for the electron’s wave
function [27,35], i.e., only the wave function of an atom is
considered. For the description of the system atoms + photons
in terms of a wave function, we must, of course, take the
photon part of the Hilbert space into consideration, as the
method we use in the present work allows us to do. The atom
in the complete picture including photons cannot be described
by a wave function, but only by a reduced density matrix
[30,32].

Nevertheless, the comparison between the photon absorp-
tion probabilities obtained in our calculation and given by
the SFA estimate might be instructive. We present such a
comparison in Fig. 3 by showing the SFA predictions for
the distribution of the absorbed photons. We normalized the
SFA curve so that both our results and the SFA distribution
had maxima of equal magnitude. Figure 3 shows that the
most probable number of absorbed photons is larger for the
SFA distributions. This feature is most prominent for lower
field strengths, the difference in positions of the maxima of
the two distributions becoming smaller with increasing field
strength. The SFA distribution is also typically wider than
the distribution Pn we obtain, the difference in widths also
becoming less pronounced for higher field strengths.

One might be tempted to relate the distributions of the
number of absorbed photons to the Poisson distribution. In-
deed, this distribution, which describes the probability distri-
bution for a number of events occurring with constant rate on
a given interval of time [32], seems to be a good candidate
for the model of ionization driven by the field in a Fock state
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FIG. 4. Expectation value and variance of the distribution of the absorbed photons Q(n, t ) as functions of time for the atomic system
governed by the short-range interaction (19).

|N〉. Since the phase of the field is completely undetermined
in the Fock state |N〉, which is an eigenstate of the photon
number operator, ionization in this case can be pictured as
a suitable average over all possible phases of the field [30],
as encapsulated by Eq. (15). One might try to represent the
effects of such a phase average as ionization with a constant
rate, which would lead to the Poisson distribution. That,
however, is not the case. That the SFA distribution for the
number of absorbed photons derived from Eq. (20) is dis-
tinctly non-Poissonic is known [35,43]. Our results also show
the non-Poissonic character of this distribution. That can be
clearly seen from Fig. 4, where we show characteristics (ex-
pectation values and variances) of the normalized probability
distribution Q(n, t ) of the absorbed photons for different field
strengths as functions of time for the atomic system governed
by the short-range interaction (19). We observe essentially the
same behavior as shown in Fig. 1: Both expectation value
and variance tend to the limiting values, which we interpret
as the values of these quantities in the infinite future when
the interaction is off. Figure 4 clearly shows non-Poissonic
character of Q(n, t ) for any interval (0, t ). Variance for the
Poisson distribution should be equal to the expectation value
[32], an equality which is clearly not satisfied by the curves in
Fig. 4.

More detailed information about development of the pho-
ton number distributions for different effective field strengths
is provided by Fig. 5, which shows how the distributions
P(n, t ) develop in time before reaching their asymptotic form
for different field strengths.

The results we presented so far were obtained for a model
atom governed by the short-range potential (19). This was
done to obtain a more clear photon picture of the ionization
process, which is not influenced by the photon absorption
due to the excitation processes [the short-range potential (19)
supports only one bound state]. Comparison with the SFA
photon distribution derived from the Eq. (20) is also more
appropriate in the case of the short-range interaction.

We performed, using the same strategy we employed for
the model atom governed by the short-range interaction (19),
calculations of the absorbed photons probability distribution
P(n) for the hydrogen atom with Coulomb potential. Results
are shown in Fig. 6. While the most probable numbers of the
absorbed photons in the cases of the short-range and Coulomb
potentials are approximately equal, an obvious difference
between the distributions in Figs. 6 and 3 is the far longer
tail of the distribution in the Coulomb case. Two mechanisms
can be responsible for the formation of this tail. In the case
of the finite-range interaction, such as (19), when an ionized
electron escapes the range of the action of the atomic potential
its motion is practically free. A free electron, as is well
known, cannot absorb a photon. In the case of the short-range
interaction, therefore, the process of the photon absorption
is effectively confined to the time interval when electron is
inside the range of the atomic potential. In the infinite-range
Coulomb case this restriction is lifted, and electron can absorb
a larger number of photons, which leads to a longer distri-
bution tail. Another process which may lead to absorption
of a larger number of photons in the case of the Coulomb
potential is the photoexcitation process, which is absent in
the case of the potential (19) supporting only one bound
state.

IV. REMARKS AND PROSPECTS

A. Mapping onto the Floquet representation

The present approach can be connected to the well-known
Floquet formalism. Let us assume that the total wave function
of the system of interacting atom and field at time t is
represented as an expansion (11) over the complete set of the
Fock states. In the following it will be more convenient to use
the Schrödinger representation, so evolution of the system is
given by

i
∂�(t )

∂t
= (Ĥatom + ĤI + Ĥfield )�(t ). (21)
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FIG. 5. Photon number distributions P(n, t ) (scaled by a factor 104 for convenience) as functions of time for the atomic system governed
by the short-range interaction (19).

Since we use Schrödinger representation, we added the
field Hamiltonian Ĥfield on the right-hand side of Eq. (21). The
interaction Hamiltonian ĤI in Eq. (21) has the same form as
in Eq. (6) with the quantized vector potential given by Eq. (1),
where, in the Schrödinger representation, we should put t = 0
so that this operator is time independent. It is not difficult
to see that, substituting expansion (11) into Eq. (21), using
the asymptotic large-N forms of the creation and annihilation
operators, and projecting the result on a Fock state |m〉, we
obtain a system of coupled equations (we use the dipole
approximation again, neglecting spatial dependence of the
vector potential):

i
∂φm(t )

∂t
=

(
Ĥatom + mω + 1

4c2
A0

2

)
φm + 1

2c
A0 · p̂(φm+1

+φm−1) + 1

8c2
A0

2(φm+2 + φm−2), (22)

where A0 = ez

√
8Nπc2

ωV . It is easy to see that if set {φm(t )}
solves Eq. (22) then the function �̃(t ) = ∑

φm(t )eimωt solves

the TDSE equation for an atom in a monochromatic field:

i
∂�̃(t )

∂t
=

(
Ĥatom + 1

c
A0 · p̂ cos ωt + 1

2c2
A0

2 cos2 ωt

)
�̃(t ),

(23)

We have therefore a map:

�(t ) =
∑

m

φm(t ) ⊗ |N + m〉 → �̃(t ) =
∑

φm(t )eimωt ,

(24)

which maps solutions �(t ) of the TDSE (21) which belongs
to the Hilbert space Hatom ⊗ Hfield of the system atom +
quantized field, on solutions of the atomic TDSE (23) which
belongs to the Hilbert space Hatom. This is not a one-to-one
mapping, since if we know an arbitrary solution of the atomic
TDSE �̃(t ), it cannot be uniquely represented as an expansion
�̃(t ) = ∑

φm(t )eimωt to reconstruct preimage �(t ) uniquely.
Rather, for a given solution of the atomic TDSE we can find
many sets {φn(t )} such that �̃(t ) = ∑

φm(t )eimωt , therefore
the mapping (24) is many to one, i.e., many solutions of the
TDSE (21) can generally be mapped on a given solution of the

023117-8



ATOMIC IONIZATION DRIVEN BY THE QUANTIZED … PHYSICAL REVIEW A 102, 023117 (2020)

FIG. 6. Distribution P(n) for different effective field strengths for the hydrogen atom with the Coulomb potential obtained at the end of the
pulse (17) with M = 12 optical cycles.

atomic TDSE �̃(t ). We can make this map a one-to-one map
if we impose some additional requirements. If, for instance,
we impose the requirement that dependence of all {φn(t )} on
time is particularly simple, φn(t ) = une−iεt , where un are time
independent, and use outgoing waves boundary condition for
{un}, the set of equations (22) reduces to the set of equations
used in the Floquet method [28,44] for an eigenvector with
the Floquet components {un} and quasienergy ε. The usual
procedure employed to arrive at the set of Floquet equations
is based on the Floquet theorem [28], which states that for
a Hamiltonian periodic in time with period T , TDSE allows
a special set of solutions �s(t ) which can be represented as
�s(t ) = e−iεst u(t ), where u(t ) is time periodic with period
T and εs is the complex quasienergy. The method is par-
ticularly well suited for the calculations of the total ioniza-
tion rates, which are directly related to the imaginary parts
of the quasienergies; it can also be applied to calculations
of partial ionization rates, electron spectra for the process
of the multiphoton ionization, or photon spectra for the high
harmonic generation [44–52].

The present approach and the Floquet methods are there-
fore linked, though not equivalent. Once the outgoing wave
boundary conditions are imposed on the Floquet components
{un}, the mapping we described above is no longer from
Hatom ⊗ Hfield to the atomic Hilbert space Hatom. The out-
going wave boundary conditions make the Floquet compo-
nents {un} exponentially grow at spatial infinity. The integrals
defining partial ionization rates therefore diverge and must
be suitably regularized. Various techniques allowing one to
overcome this difficulty have been described in the literature.
One can use an analytic continuation procedure [44,45]. Al-
ternatively, the complex scaling transformation restoring the
square integrabilty of the Floquet components can be applied
[53,54]. This transformation makes the Hamiltonian non-
Hermitian and leads to the complex symmetric non-Hermitian
eigenvalue problem which can be solved using either matrix
methods employing suitable basis sets or perturbatively [55].
A conceptually similar approach relies on the use of the com-
plex absorbing potential (CAP) [52], which dampens outgoing
waves at large distances and makes the Floquet eigenvectors
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FIG. 7. K index of nonlinearity as a function of intensity for
three- and four-photon absorption for a hydrogen atom (driving pulse
wavelength of 265 nm).

square integrable. The presence of the CAP, of course, makes
the Hamiltonian non-Hermitian. In the procedure we employ
presently, we do not leave the Hilbert space Hatom ⊗ Hfield and
the ordinary mathematical framework of quantum mechanics
which presupposes use of Hermitian operators. We can apply,
therefore, the standard quantum-mechanical prescriptions for
calculation of the transition amplitudes.

Figure 7 shows a comparison of the calculations based on
the present approach with the results of the Floquet calculation
[45] for the multiphoton ionization of the hydrogen atom
driven by the field with the wavelength of 265 nm. We
compare results for the so-called K index of nonlinearity for
different field intensities I and different numbers of absorbed
photons n. In terms of the distribution function P(I, n) of
absorbed photons (here we add explicit intensity dependence),
which we compute, this index can be defined as K (I, n) =
∂ log P(I,n)

∂ log I . To obtain P(I, n) we employed the procedure we
described above (using the same envelope and pulse duration
as for the results presented in Figs. 3–6). Figure 7 shows rather
close agreement between the results of the two calculations.

B. Initial coherent state

The formalism proposed in [30], which we used in the
present work, can also be applied in the case when initial
state of the field is different from the Fock state. Suppose we
have a system atom + field prepared initially (in the distant
past) in the state �(0) = φ0 ⊗ ∑

CN |N〉, where φ0 is the
initial atomic state, and absolute values of the coefficients CN

are peaked around some value N0. We can use again the θ

representation of the photon Hilbert space, i.e., the mapping
(2), which we can now write as |N0 + m〉 = eimθ . Under this
mapping the initial state of the system atom + field becomes
φ0 f (θ ), where f (θ ) = ∑

CN0+meimθ is a known function of
the angle θ . In the limit of large N0 the QED propagator
in this representation is known. It is given by the solution
of Eq. (9), i.e., it is an atomic propagator depending on
the angle θ parametrically. We can, therefore, obtain the
wave function of the atom + field system at the moment t
as �(t ) = Û (t, 0, θ )φ0 f (θ ). Using the definition (3) of the

scalar product in the θ representation, and going back to the
more familiar representation of the Fock states, we can write
�(t ) = ∑

m φm(t )|N0 + m〉, where the vector (belonging to
the atomic Hilbert space) φm(t ) is

φm(t ) = 1

2π

∫ 2π

0
e−imθÛ (t, 0, θ )φ0 f (θ ) dθ. (25)

In the case of the Fock initial state |N〉 of the field we
considered above, f (θ ) = 1 and we recover Eq. (12). Another
case of interest is ionization driven by the field in the coherent
state. Such states are known to be the closest analogs of the
classical electromagnetic waves. and can be represented as a
superposition of the Fock states [32]:

|v〉 = exp− |v|2
2

∞∑
N=0

cN |N〉, (26)

where cN = vN√
N

, v = |v|e−iφ is an arbitrary complex number.
Unlike the Fock states we considered above, the coherent
states have nonzero expectation values of the field operators.
In particular, from Eqs. (1) and (26) one obtains for the
vector potential for the one-mode case we consider presently:

〈v|Â(r, t )|v〉 =
√

8π |v|2c2

wV ez cos (wt − k · r + φ). To consider
ionization driven by the coherent state (26) we could proceed
as follows. We note, first that the absolute values of the coef-
ficients CN in (26) peak at the value N = N̄ = |v|2 [N̄ is the
expectation value of the number of photons N in the coherent
state (26)]. Simple calculation shows that in the vicinity of this

maximum coefficients |cN | can be represented as |cN̄ |e− (N−N̄ )2

4N̄ ,
and the coherent state (26) can then be approximately
written as

|v〉 ≈ (2π N̄ )−
1
4

+∞∑
m=−∞

e−i(N̄+m)φ− m2

4N̄ |N̄ + m〉, (27)

where, of course, only the terms with small m actually con-
tribute to the sum. Under the mapping (2), which we can
now write as |N̄ + m〉 = eimθ , the state vector (27) becomes
a known function f (θ ). Evolution of the system atom + field
with the field in this initial state and the probabilities ||φm(t )||2
of finding the field in a particular Fock state at time t can now
be found using Eq. (25). There is, however, a difference in
the interpretations of the probabilities obtained in this way
between the cases of the Fock and coherent initial states
of the field. In the case of the initial Fock state |N〉, with
fixed number of photons, projection of the time-evolved wave
function on another Fock state |N1〉 with a different number
of photons can be interpreted naturally as the probability of
absorption or emission of N1 − N photons. On the other hand,
in the case of the initial coherent state with the expectation
value N̄ of the number of photons, the number of photons is
not fixed, with the dispersion proportional to N̄

1
2 [32]. The

absolute fluctuations of the number of photons are, therefore,
much larger for large N̄ than the average number of photons
absorbed in the process of ionization; the latter number is
defined essentially by the mean kinetic energy of the ionized
electron and is of the order of 20–30 for the field parameters
we consider. This makes the probabilities ||φm(t )||2 of finding
the field in a particular Fock state less informative. On the
other hand, the atomic characteristics, e.g., spectra of the
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FIG. 8. Electron spectra obtained for the ionization driven by the
field in the Fock state and the classical wave for the atomic system
governed by the short-range potential (19).

ionized electrons, are pretty much identical in the calculations
using Fock or coherent initial states. Indeed, as Eq. (13)
shows, the effect of the undefined phase in the Fock state
on the atomic density matrix is described by a procedure
which amounts to averaging atomic density matrices obtained
for coherent states with different phases of the field. For
the long pulses we consider the effects due to the different
carrier envelope phases (CEPs) can be safely neglected. To
illustrate this statement, we show in Fig. 8 photoelectron en-
ergy spectrum obtained using expression (13) for the density
matrix for the case of ionization driven by the field in a Fock
state. The spectrum was calculated as dP

dE = Tr [ρatomQ̂(E )] =
〈�E |ρatom|�E 〉, where Q̂(E ) = |�E 〉〈�E | is a projector on a
positive energy state �E , which as one can see from Eq. (13),
reduces to a θ average of the spectra obtained using a classical
pulse with the same field strength and CEP of θ . Results are
compared to the spectrum obtained using a classical pulse
and the particular CEP value of π/2. The pulse duration and
envelope were the same we used above [envelope (17) with
M = 12 optical cycles].

A similar procedure, with only minor modifications, could
be applied to the case when several modes of the field
are present. This might be the case, for instance, when we
consider an initial field state corresponding to a short pulse,
such that envelope effects are important. Such an initial state
might be represented as a superposition of several coherent
states corresponding to different photon frequencies. The only
difference that the inclusion of the several modes of the field
would entail is additional computational effort: we would
have to introduce a set of angle variables θ , one for each mode
of the field. We plan to report results of such a calculation
elsewhere. It is, perhaps, the problem of the ionization driven
by a short pulse, when the envelope and CEP effects are
important, which most clearly demonstrates the difference of
the present approach and the Floquet method. The Floquet
method is very well suited for calculations of the atomic

ionization driven by a continuous wave (CW) radiation. The
procedure we employ, on the other hand is, in essence, a
solution of the evolution equations and can, therefore, be
applied for the description of the short pulse duration effects,
e.g., the CEP and pulse envelope effects on the electron and
photon spectra.

C. Perturbation theory approach

Equatoion (13) explains why results for the atomic char-
acteristics obtained using the QED approach with the field in
the Fock state and results based on the TDSE treating the field
as a classical wave should agree. This fact can also be simply
illustrated using the lowest order perturbation theory (LOPT).
Consider, for instance, the process of one-photon absorption
for the case of an atom initially in the ground state φ0 with
energy ε0, which at the moment t = 0 starts interacting with
the one-mode field in the Fock state |N〉. We assume the
photons in the mode are polarized in the z direction. Let
the quantized field be described by the vector potential (1).
The probability of detecting the system atom + field at time
t in a state φ1 ⊗ |N − 1〉 with electron energy ε1 is |a(t )|2,
where the amplitude a(t ) is given by the QED LOPT formula
(we use for simplicity a dipole approximation neglecting
spatial dependence of the vector potential) [32]:

a(t ) = −i
∫ t

0

√
2πNc2

wV
ei(ε1−ω−ε0 )τ 〈φ1| p̂z|φ0〉 dτ. (28)

On the other hand, we could describe the field classically,
using vector potential A(t ) = A0 cos (ωt + φ), where φ is
the CEP of the field. The quantum-mechanical LOPT based
on the TDSE for an atom initially in the state φ0 interacting
with the classical field A(t ) would give us for the amplitude of
finding an electron at time t in the state φ1 [56]

ac(t ) = −i
A0

2

∫ t

0
(ei(ε1−ω−ε0 )τ+iφ + ei(ε1+ω−ε0 )τ−iφ )

×〈φ1| p̂z|φ0〉 dτ. (29)

The second term inside the parentheses in Eq. (29) describes
processes violating energy conservation; it is suppressed if we
observe the system at a large enough moment of time t [56].

If we neglect this term and put A0 =
√

8πNc2

wV to ensure the
same effective field strength, amplitudes (28) and (29) will
be practically identical. The only difference is the appearance
of the phase factor φ in Eq. (29) which is absent in the
amplitude (28) (phase is undefined in a Fock state). This
phase factor, however, plays no role as long as we can neglect
the second term inside the parentheses in Eq. (29) so that the
two terms do not interfere, i.e., if we use a long enough pulse.

V. CONCLUSIONS

We presented results of calculations of the probability
distributions of the number of absorbed photons for atomic
ionization driven by a field in the Fock state |N〉 with a
large number of photons N in the mode. We employed the
method [30] which allowed us to consider the photon field and
the field-atom interaction in a way following from the QED
prescriptions in the limit N → ∞.
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We found probability distributions of absorbed photons for
different field parameters, ranging from multiphoton to tun-
neling regimes of ionization. A comparison with the photon
distributions following from the SFA formula (20) (as we
mentioned, the interpretation of the distribution based on the
SFA formula as a distribution of photons can be regarded with
certain reservations) shows that the distributions we obtain
are generally more narrow, with the expectation value 〈n〉 of
absorbed photons shifted towards smaller values of n. These
differences are most pronounced for smaller field strengths.
We performed calculations for both a model atom with the
electron dynamics governed by the short-range interaction
(19) and for a hydrogen atom with the Coulomb potential.
Absorbed photons distribution in the Coulomb case exhibit
a longer tail than the distribution obtained for the model
atom with the short-range interaction. We attributed above
the presence of this tail to the infinite-range character of
the Coulomb forces. For the hydrogen atom the results we
obtain agree well with the results of the calculations using the
Floquet method.

In the calculations we performed an atom was described
using the nonrelativistic quantum mechanical TDSE, which

means that we neglect both relativistic effects for the atomic
electron and the processes due to the essentially many-body
character of the electron field in QED (such as the pair
creation processes). Neglect of all these effects is certainly
justified for not too high field strengths and the photon
frequency we considered in the paper. In fact we can, with
relatively minor additional computational effort, lift the first
of these restrictions and include the relativistic effects for the
atomic electron as well. To this end we would need to solve the
time-dependent Dirac equation (TDDE) instead of the TDSE
in Eq. (14). A calculation based on such a strategy would
bring us one step closer to the solution of a very complicated
problem of a complete QED description of an atom in a strong
field. Technically, such a calculation is certainly feasible given
that various algorithms allowing one to solve the TDDE
numerically have been described in the literature [57–59], and
we plan to perform it in the future.
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