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Time-dependent coupled-cluster theory for ultrafast transient-absorption spectroscopy
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We present a spin-adapted time-dependent coupled-cluster singles and doubles model for the molecular
response to a sequence of ultrashort laser pulses. The implementation is used to calculate the electronic response
to a valence-exciting pump pulse, and a subsequent core-exciting probe pulse. We assess the accuracy of the
integration procedures used in solving the dynamic coupled-cluster equations, in order to find a compromise
between computational cost and accuracy. The transient absorption spectrum of lithium fluoride is calculated for
various delays of the probe pulse with respect to the pump pulse. We observe that the transient probe absorption
oscillates with the pump-probe delay, an effect that is attributed to the interference of states in the pump-induced
superposition.
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I. INTRODUCTION

Recent advances in the field of ultrafast pulse shaping have
enabled the generation of broadband few- to subfemtosecond
laser pulses in the near-infrared to vacuum ultraviolet spectral
ranges [1–3]. These ultrashort pulses open the possibility to
study valence electron dynamics of molecules, on time scales
shorter than times characteristic for nuclear dynamics. Also,
the generation of intense isolated soft-x-ray free-electron laser
pulses with subfemtosecond temporal widths has recently
been achieved [4]. This paves the way for attosecond-resolved
core-level spectroscopy at high intensities and repetition rates.

Core excitations are typically local to specific atoms,
and are sensitive to their electronic environment [5]. The
associated attosecond-resolved transient absorption can thus
be used to observe superpositions of valence-excited states
from the point of view of a specific atomic site, provided that
the superposition is of a certain degree of coherence [6]. In
the short-pulse limit, the energy-integrated absorption of a
core-exciting pulse is indicative of the electronic hole density
in the valence region around the nucleus of the specific
atom [7,8]. For subfemtosecond pulses outside this limit,
the relationship between the pump-induced charge migration
and the resultant transient absorption of the probe pulse is
more complex. Thus more complete theoretical models are
necessary for guiding the pump-probe experiments and for
interpreting ensuing results.

Provided that the transient absorption of a probe pulse
can be modeled and understood, the valence-level pump and
subsequent core-level probe by ultrafast pulses can then be
used to investigate the valence electron response of molecules
[7,8]. A refined conceptual understanding of this response
will shed light on processes occurring in nature, such as
photosynthesis and eyesight, and be used for the advance-
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ment of technological applications, such as photovoltaics and
photocatalysis.

Nonperturbative modeling of electron dynamics for ultra-
fast laser-matter interactions offers certain advantages: the
models are applicable for a large range of field intensities [9],
and the interaction between a molecule and ultrashort pulses
resembles experimental setups in a more natural way.

Electron correlation is often important for a qualitative
and quantitative description of many-electron systems. The
full configuration interaction (FCI) model is computationally
impracticable in most situations [10], and thus we advocate
the use of coupled-cluster theory in this paper. Other meth-
ods have been used to describe electron dynamics, such as
real-time density-functional theory (DFT) [11,12]. However,
DFT methods are limited by the accuracy of the exchange-
correlation functionals, and thus could lead to misinterpre-
tations [13]. Several implementations of real-time coupled-
cluster models have been developed in the past, includ-
ing approaches based on the time-dependent coupled-cluster
(TDCC) equations derived by Koch and Jørgensen [14–17],
and approaches based on equation of motion (EOM) theory
[9,18–24]. These models offer an accurate description of
dynamic correlation, and static correlation in excited states.
Needless to say, the coupled-cluster models are also inherently
size extensive and intensive [25]. This while keeping the
polynomial scaling of the computational costs with respect to
system size.

A spin-unrestricted time-dependent coupled-cluster singles
and doubles (TDCCSD) model was recently implemented by
Pedersen and Kvaal, and used to calculate the absorption
spectra of helium and beryllium irradiated by ultrashort pulses
at various intensities [26]. Even above the perturbative limit,
the TDCCSD spectra show promising correspondence with
spectra calculated with time-dependent FCI. The authors also
noted that the Lagrangian time-dependent equations have a
Hamiltonian structure, well suited for the use of symplectic
integrators.

In this work, we will continue the discussion of TDCC
models, by presenting a spin-adapted TDCC model of
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ultrafast transient absorption spectroscopy. Applied to closed-
shell molecules interacting with laser pulses within the dipole
approximation, this model offers equivalent results as its spin-
unrestricted counterparts, with lower computational costs.
The reduced cost implies that larger molecules can be studied
within this model, making progress towards the accurate
modeling of correlated dynamics in interesting photoactive
molecules.

This paper is organized as follows. In Sec. II we present
the theory underlying the TDCC model and discuss a gener-
alization of the Ehrenfest theorem in this framework. We also
describe how absorption spectra are calculated. In Sec. III, we
optimize the different parameters used in TDCC calculations,
and illustrate this for the LiH molecule. The model is applied
to transient absorption of the LiF molecule. Final remarks are
given in Sec. IV.

II. THEORY

A. Spin-adapted coupled-cluster method

An accurate account of the electron correlation in
molecules is offered by coupled-cluster models, in which the
time-independent wave function can be written as

|CC〉 = eT |HF〉, (1)

where |HF〉 is the closed-shell Hartree-Fock reference de-
terminant and T is the spin-adapted cluster operator. The
cluster operator is defined as a linear combination of singlet
excitation operators τμ,

T =
∑
μ>0

tμτμ. (2)

The expansion coefficients tμ are referred to as the ampli-
tudes. The operator T is usually truncated at a given level
of excitation, for instance, after single excitations gives the
coupled-cluster singles (CCS) model, after double excitations
gives the coupled-cluster singles and doubles model (CCSD),
and so on.

In the Lagrangian formulation of coupled-cluster theory,
which satisfies the Hellman-Feynman theorem, the dual state
corresponding to the |CC〉 state is [27]

〈�| =
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)

e−T , (3)

where the linear expansion coefficients t̄ν will be referred
to as the (Lagrange) multipliers. The level of excitations is
truncated at the same level as the excitations in the cluster
operator. We note that the |CC〉 state and its dual state 〈�| are
biorthonormal, 〈�|CC〉 = 1.

In this formulation, the expectation values of operators are
given as

〈A〉 = 〈�|A|CC〉

=
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)

Ā|HF〉, (4)

where the similarity transformed operator is defined as

Ā = e−T A eT . (5)

The amplitudes and multipliers that parametrize the ground
state are determined from [28]

〈μ|H̄ |HF〉 = 0, (6)

〈�|[H, τμ]|CC〉 = 0, (7)

and the corresponding ground-state energy ECC is given by

ECC = 〈�|H |CC〉
= 〈HF|H |CC〉, (8)

where we have used Eq. (6) to eliminate the multiplier
contribution.

B. Time-dependent coupled-cluster methods

In order to allow for time dependence in the description,
the coupled-cluster state is parametrized as [14]

|CC(t )〉 = eT (t )|HF〉eiε(t ), (9)

and the corresponding dual state as

〈�(t )| =
(
〈HF| +

∑
ν>0

t̄ν (t )〈ν|
)

e−T (t )e−iε(t ). (10)

The amplitudes tμ and multipliers t̄μ now explicitly depend
on time, while the excitation operators τμ are still time inde-
pendent. An overall time-dependent phase ε(t ) has also been
introduced.

The equation describing the time evolution of the ampli-
tudes tμ(t ) is obtained from the time-dependent Schrödinger
equation for the |CC〉 state, by projecting onto the corre-
sponding excited determinant 〈μ|. This gives the differential
equation

dtμ(t )

dt
= −i〈μ|H̄ (t )|HF〉. (11)

The equation describing the time evolution of the multi-
pliers t̄μ(t ) is obtained by projecting the time-dependent
Schrödinger equation for the dual state 〈�(t )| onto the excited
determinants |ν〉, giving the differential equation

dt̄ν (t )

dt
= i

(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)

[H̄ (t ), τν]|HF〉. (12)

The equation for the phase ε(t ) is determined by projection
onto the |HF〉 state

dε(t )

dt
= −〈HF|H̄ (t )|HF〉. (13)

Detailed derivations can be found in Ref. [14]. In this frame-
work, the time-dependent expectation value of a generic oper-
ator A(t ) is defined as

〈A(t )〉 = 〈�(t )|A(t )|CC(t )〉, (14)

where 〈�(t )|CC(t )〉 = 1.

C. Generalized Ehrenfest theorem and conserved
quantities in TDCC

For ease of notation, we suppress the explicit time de-
pendence in this section. Ideally, observables calculated in
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truncated TDCC should have the same properties as in the
untruncated case, in order to give a faithful representation of
the physical system. In this context, we derive a generalized
Ehrenfest theorem for truncated TDCC (the detailed deriva-
tion is given in Appendix A). We obtain the equation

d

dt
〈�′|A|CC〉 = i〈�′|H eT ′

Pne−T ′
A|CC〉

− i〈�′|A eT Pne−T H |CC〉 + 〈�′|∂A

∂t
|CC〉,

(15)

where the left 〈�′| state and the right |CC〉 state are indepen-
dent solutions to the projected time-dependent Schrödinger
equation. The projection operator Pn of maximum excitation
level n is defined as

Pn = |HF〉〈HF| +
n∑

μ>0

|μ〉〈μ|, (16)

and in untruncated TDCC, Pn = 1. From Eq. (15) we can see
that, in untruncated TDCC,

d

dt
〈�′|A|CC〉 = i〈�′|[H, A]|CC〉 + 〈�′|∂A

∂t
|CC〉, (17)

regardless of the initial values of the amplitudes, multipliers,
and phases.

In truncated TDCC, the projection operator cannot in gen-
eral be replaced by the identity operator, and hence Eq. (15)
cannot be simplified further. Still, some conservation laws
from untruncated TDCC apply under certain constraints: we
see from (15) that the Hamiltonian matrix element 〈�′|H |CC〉
is conserved for a time-independent Hamiltonian operator as
long as T ′ = T , regardless of the initial values of the multi-
pliers and phases. The overlap matrix element 〈�′|1|CC〉 is
also conserved for T ′ = T , since exp(T )Pn exp(−T )1|CC〉 =
|CC〉 and 〈�′|T ′=T 1 exp(T )Pn exp(−T ) = 〈�′|T ′=T . In con-
clusion, we note the energy and overlap conservation for a
time-independent Hamiltonian in untruncated TDCC, and in
truncated TDCC for T ′ = T .

D. Interaction with an external electromagnetic field

In the semiclassical approximation, the electronic Hamil-
tonian for a molecule interacting with an external electromag-
netic field can be written as

H (t ) = H0 + V (t ), (18)

where H0 is the time-independent electronic Hamiltonian
and V (t ) is the operator describing the interaction with
the external field. We choose to express the interaction in
the length gauge and dipole approximation, meaning that the
electromagnetic field is represented by an electric field,

V (t ) = −d · E (t ), (19)

where d is the electric dipole moment operator. Since this
operator is a one-electron operator, it can also be expressed in
terms of the molecular-orbital (MO) dipole moment integrals
dpq and one-electron singlet excitation operators Epq,

d =
∑

pq

dpqEpq. (20)

Since electric fields are additive, the external electric field
E (t ) can be written as a linear combination of individual laser
pulses,

E (t ) =
∑

n

E0n cos[ω0n(t − t0n)] fn(t ), (21)

where E0n is the peak electric field of pulse n in its polariza-
tion direction, ω0n the carrier (angular) frequency and t0n the
central time of the pulse, and fn(t ) an envelope function that
determines its shape. A commonly used family of envelopes
fn(t ), that resemble physical laser intensity profiles, are the
Gaussian functions. Since Gaussian functions have infinite
support, we choose to set them to zero at a finite number N
of root-mean-square (rms) widths σn outside the central time,
i.e.,

fn(t ) =
{

e−(t−t0n )2/(2σ 2
n ), an � t � bn,

0, otherwise,
(22)

where an = t0n − Nσn and bn = t0n + Nσn. In addition to
resembling physical intensity profiles, a useful feature of
Gaussian envelopes is that they give pulses with Gaussian
frequency distributions. Hence these pulses can offer a good
compromise between temporal precision and spectral nar-
rowness. This is useful for producing temporally precise
electronic transitions within the molecule, while keeping the
probability of ionization low.

E. Frequency-resolved transient absorption

Following the procedure of [29], the energy absorbed
during the interaction with the external electromagnetic field
can be given by

	E =
∫ ∞

−∞

dE (t )

dt
dt . (23)

The time derivative of the expectation value of the Hamilto-
nian in Eq. (18) can be found through Eq. (15):

dE (t )

dt
= d

dt
〈�(t )|H (t )|CC(t )〉

= 〈�(t )|∂H (t )

∂t
|CC(t ) = −d(t ) · ∂E (t )

∂t
, (24)

where the TDCC dipole moment expectation value is given by

d(t ) = 〈�(t )|d|CC(t )〉. (25)

The energy exchanged between the electromagnetic field and
the molecule is thus given by

	E = −
∫ ∞

−∞
d(t ) · ∂E (t )

∂t
dt . (26)

Equation (26) can be frequency resolved by inserting the
relations between the components di(t ) and Ei(t ) and their
Fourier transforms, d̃i(ω) and Ẽi(ω). We use the following
convention:

f (t ) = 1√
2π

∫ ∞

−∞
f̃ (ω)eiωt dω, (27)

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t )e−iωt dt . (28)
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After inserting the relations, the expression

	E =
∫ ∞

0
ωS(ω)dω (29)

is obtained, where

S(ω) = −2 Im[̃d(ω) · Ẽ∗
(ω)], ω > 0. (30)

The response function S(ω) has the opposite sign as in [29],
due to different Fourier transform conventions. It represents
the absorption per unit frequency at a given frequency, so that
positive (negative) ωS(ω) equals the amount of energy gained
(lost) by the molecule per unit frequency at ω [29].

The TDCC dipole moment d(t ) can be found from Eq. (14)

d(t ) =
∑

pq

〈�(t )|Epq|CC(t )〉dpq

=
(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)

Ēpq(t )|HF〉dpq

=
∑

pq

Dpq(t )dpq,

(31)

where Dpq(t ) is an element of the standard coupled-cluster
one-electron density matrix, which can be calculated given the
time-dependent amplitudes and multipliers.

F. Initial value problem

In order to calculate the time-dependent amplitudes and
multipliers for the system represented by the Hamiltonian in
Eq. (18), the system is prepared in the ground state at t = −T
(before the interaction). The time-dependent amplitudes and
multipliers are then propagated by integration of Eqs. (11)
and (12), until t = T (after the interaction). This is done
using Runge-Kutta methods (a general introduction to these
methods is given in Appendix B). Once the time-dependent
amplitudes and multipliers are calculated, they can be used to
calculate evenly sampled values of the TDCC dipole moment
with Eq. (31).

The main Runge-Kutta method used for integration is the
explicit Runge-Kutta (ERK) method known as RK4, and
referred to as “the best-known fourth-order four-stage ERK
method” in [30]. In many cases, this method gives a good
compromise between accuracy and the number of evaluations
for each time step.

The performance of two methods in the family of ν-
stage 2νth-order implicit Runge-Kutta (IRK) methods, known
as Gauss-Legendre methods, is also assessed. An interest-
ing property of these methods is that they are symplec-
tic, meaning that they often perform well with regards to
preserving the energy expectation value of noninteracting
Hamiltonian systems. The application of these methods to
TDCC methods was discussed in greater detail in the work
by Pedersen and Kvaal [26]. The Gauss-Legendre methods
that will be considered here are the two-stage fourth-order
Gauss-Legendre method (GL4) and the three-stage sixth-
order Gauss-Legendre method (GL6).

G. Discrete Fourier transformation of TDCC dipole moment
and electric field

After the dipole moment and electric field have been calcu-
lated in [−T, T ], a discrete approximation of d̃i(ω) and Ẽi(ω)
can be found from doing the discrete Fourier transform of the
time series.

Assuming that the finite and discrete time series are sam-
pled from infinitely extending analytic dipole moment and
electric-field functions, the time series can equally be repre-
sented as the analytic functions modulated by the rectangular
window function,

fwR (t ) = f (t )wR(t ), (32)

sampled in [−T, T ], where the rectangular window function

wR(t ) =
{

1, |t | � T,

0, otherwise. (33)

Since the Fourier transform of a windowed function is equal to
the convolution of the Fourier transform of the function with
the Fourier transform of the window function [31],

f̃w(ω) = f̃ (ω) ∗ w̃(ω), (34)

the spectral leakage of the peaks in the finite Fourier spectrum
will be related to the Fourier transform of the rectangular
window function. In order to reduce the intensity of sidelobes
of peaks in the Fourier spectrum [31], the rectangular window
can be replaced with a Hann window, by multiplying the
sampled values with the Hann function,

wH (t ) = cos2

(
πt

T

)
, (35)

before doing the discrete Fourier transform.

III. RESULTS AND DISCUSSION

A. Convergence of LiH pump-probe absorption spectra

In the following, we investigate the convergence properties
of the spin-adapted TDCC model of molecular ultrafast pump-
probe absorption. The convergence will be assessed with
respect to the individual variation of several parameters: the
basis set, the size of the time steps, and the integration method.
The TDCC method was implemented in the recently released
eT program [32]. This program is used for all reported com-
putations. Unit conversions are done from Hartree atomic
units using the 2018 CODATA recommended values [33]. All
reported calculations are run on a two-socked node equipped
with Intel Xeon-Gold 615 22.1 GHz processors and 1.5 TB of
memory.

The higher level coupled-cluster methods scale rapidly
with the size of the system, and quickly reach the limits
of practicability. Therefore, we have chosen lithium hydride
(LiH) for the convergence studies. This serves as an ele-
mentary example of a closed-shell molecule with atoms of
different core excitation energies. The electronic charge can
migrate between the two atoms, making it an interesting case
for examination by pump-probe spectroscopy.

The lithium atom is placed at the origin, and the hydrogen
atom at −1.594 913 18 Å along the z axis, corresponding to
the experimentally measured equilibrium bond length of LiH
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TABLE I. LiH and LiF pump and probe pulse parameters. Gaus-
sian rms width σ , carrier frequency ω0, peak electric-field strength
|E0|, and the nonperturbative intensity parameter z0 = |E0|2/(4ω3

0 )
[34] for the carrier waves. A Gaussian rms width of 20 a.u. corre-
sponds to a field strength (intensity) full width at half maximum
of 1.139 fs (805.5 as) and 10 a.u to a full width at half maximum
of 569.6 as (402.8 as). From the relation S0 = |E0|2/Z0 (SI units),
where Z0 is the impedance of free space, a peak electric-field strength
of 0.01 a.u. corresponds to a peak intensity S0 of 7.019 × 1012

W/cm2, and 0.1 a.u. to a peak intensity of 7.019 × 1014 W/cm2. The
perturbation limit can be taken to be the intensity where z0 = 1 for
a given carrier frequency [34]. Note that z0 � 1 for all pulses, indi-
cating that the interactions also could be described with perturbative
approaches.

σ (a.u.) ω0 (eV) |E0| (a.u.) z0

LiH pump 20 3.552 47 0.01 1.12 × 10−2

LiH probe 10 57.6527 0.1 2.63 × 10−4

LiF pump 20 6.448 01 0.01 1.88 × 10−3

LiF probe 10 688.018 0.1 1.55 × 10−7

[35]. Gaussian envelopes are used for the pump and probe
pulses, which are polarized in the z direction. The electric
fields of each pulse are temporally truncated at eight rms
widths σ from the central time, and thus nonzero only inside
this interval [see Eq. (22)]. The carrier frequency of the pump
pulse corresponds to the first LiH valence excitation energy
and the carrier frequency of the probe pulse to the first LiH
K-edge excitation energy. These excitation energies are cal-
culated using EOM-CCSD. The core excitations are obtained
within the core-valence separation (CVS) approximation [36].
The parameters of the pulses are shown in Table I. As the
Gaussian envelopes give the pulses a frequency content dis-
tributed around the central frequencies, the pump and probe
pulses will induce excitations in the valence and core regions,
respectively.

The pump pulse is given a central time of t = −40 a.u.

and the probe a central time of t = 0 a.u. The time-dependent
dipole moment and electric field are calculated every 0.1 a.u.

in the [−5000 a.u., 5000 a.u.] interval. Since the system re-
mains in the ground state until the onset of the truncated
pump pulse—with the ground-state dipole moment—the in-
teraction with the pulses only needs to be calculated in
[−200 a.u., 5000 a.u.]. Subsequently, the Hann windowed
components of the dipole moment and electric field are
discrete Fourier transformed, and the transient absorption is
calculated using Eq. (30).

We use the correlation-consistent basis sets of Dunning
et al. (cc-pVXZ, X = D, T) [37] that are suitable for de-
scribing valence correlation effects in molecules. In some
of the calculations, the basis sets are augmented by diffuse
functions (denoted by aug-) and/or functions describing core
correlation (denoted by C) [38]. From now on, we will use a
C in round brackets to indicate that core correlation functions
are added to the basis set of the heaviest atom in the molecule.

The individual variation of the calculation parameters
is done with respect to a common reference: TDCCSD/

aug-cc-p(C)VDZ, and integrated with RK4 with 0.005 a.u.
time steps. This basis set gives two occupied and 34 virtual

FIG. 1. Normalized reference LiH pump-probe absorption,
S′(ω), as a function of energy. The time-dependent dipole moment
is calculated using TDCCSD/aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

MOs, and hence 4828 time-dependent parameters. The re-
ported calculation uses around 1 GB of memory and 0.12 s
wall time per time step on eight cores, and 0.15 s per time step
on four cores. The unnormalized reference absorption Sref(ω)
is used to calculate the normalization factor

Nref = 1

maxω |Sref(ω)| . (36)

This factor is used to normalize all the absorption spectra of
the following LiH calculations, by means of

S′(ω) = NrefS(ω), (37)

where S(ω) is calculated with the parameters in question. The
normalized deviation of S′(ω) from a more accurate result
S′

acc(ω) is calculated as

D′(ω) = |S′(ω) − S′
acc(ω)|. (38)

The reference absorption spectrum, normalized according
to Eq. (37), is shown in Fig. 1. We observe absorption in
two energy regions: one corresponding to the valence-exciting
pump pulse and the other to the core-exciting probe pulse.

1. TDCCS and TDCCSD

In Fig. 2, the normalized reference TDCCSD spectrum
is shown together with the normalized time-dependent CCS
(TDCCS) spectrum. The two spectra display substantial dif-
ferences in intensities and positions of the peaks in both
the pump and the probe absorption regions. Since TDCCSD
includes double excitations, while TDCCS does not, this
demonstrates that higher-order excitations are needed to ob-
tain qualitatively correct results for the LiH model system.

2. Basis set

In Fig. 3, the normalized reference spectrum is shown
together with normalized spectra calculated using cc-pVDZ,
cc-p(C)VDZ, and aug-cc-pVDZ. The inclusion of diffuse
functions in the basis sets seems important for representing the
dynamics properly. Increasing the basis set from cc-pVDZ to
aug-cc-pVDZ shifts the peaks in both the pump and the probe
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FIG. 2. Normalized TDCCSD and TDCCS LiH pump and probe
absorption, S′(ω), as a function of energy. Time-dependent dipole
moments are calculated using aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

absorption regions. This is consistent with the concept of the
pump pulse forcing electrons to the outer valence regions
of the molecule, which is better represented with diffuse
functions.

Furthermore, comparing cc-p(C)VDZ and cc-pVDZ spec-
tra in Fig. 3, we see the importance of the added core corre-
lation functions. As expected, they cause a substantial shift in
the probe absorption peaks, while they are not important for
the pump absorption.

We also performed calculations with cc-pVTZ, cc-
p(C)VTZ, aug-cc-pVTZ, and aug-cc-p(C)VTZ basis sets.
Note that, for the aug-cc-pVTZ and aug-cc-p(C)VTZ spectra,
the time-dependent dipole moments are only calculated in
the [−2500 a.u., 2500 a.u.] interval, in order to reduce com-
putational time. Thus these spectra have a lower resolution
than the others. The normalized spectra are shown together
with the normalized reference spectrum in Fig. 4. Here we
observe that triple zeta functions change the position of the
peaks in the probe absorption region. This indicates that basis
sets larger than aug-cc-p(C)VDZ should be used if precise
peak positions are required, bringing about a substantial in-
crease in the computational costs. The aug-cc-p(C)VDZ basis
set is used as the reference for the other LiH calculations,
as the larger basis sets are too computationally expensive for
practical purposes.

Note that the pulses are not strong enough to induce con-
siderable multiphoton absorption (see Table I). The electrons
should thus primarily be confined to low angular momen-
tum bound states, which are fairly well described with the
aforementioned basis sets. At higher intensities, the results
obtained with these basis sets should deviate further from
the complete basis set limit, as the representation of Rydberg

FIG. 3. Normalized aug-cc-p(C)VDZ, aug-cc-pVDZ,
cc-p(C)VDZ, and cc-pVDZ LiH pump and probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

states and the continuum will be more important [39]. The
results can then be improved by adding suitable functions
to the basis set, for instance, Gaussians optimized for the
representation of the continuum [39,40].

3. Integration

We calculated normalized spectra for 0.125 a.u., 0.025 a.u.,
and 0.001 a.u. time steps. The deviations from the 0.001 a.u.
time step are calculated according to Eq. (38). The results are
shown in Fig. 5. The deviations decrease with the time step
size, indicating that the spectra approach a time step limit.

We further calculated normalized spectra with GL4 and
GL6. The deviations of the RK4 (reference) and GL4 spectra
from the GL6 spectrum are shown in Fig. 6. Although the
TDCC equations have a Hamiltonian structure, the use of
symplectic integrators does not seem to be necessary to cal-
culate accurate spectra for this system, with the applied field
strength. As the three integration methods give comparable
results, we will use RK4 for the other calculations, as this
generally requires fewer evaluations of the TDCC equations
per time step.

B. LiF transient absorption

In this section, variations in molecular absorption caused
by ultrafast charge migration are modeled in the described
pump-probe framework. We consider the lithium fluoride
(LiF) molecule, where the fluorine atom is placed at the origin
and the lithium atom at −1.563 864 13 Å along the z axis. This
corresponds to the experimentally measured equilibrium bond
length of LiF [35]. In order to classify some of the transitions

023115-6



TIME-DEPENDENT COUPLED-CLUSTER THEORY FOR … PHYSICAL REVIEW A 102, 023115 (2020)

FIG. 4. Normalized aug-cc-p(C)VDZ, cc-pVTZ, cc-p(C)VTZ,
aug-cc-pVTZ, and aug-cc-p(C)VTZ LiH pump-probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

involved in the molecular absorption, the first eight valence-
excited and the first eight core-excited states are calculated
using EOM-CCSD/aug-cc-p(C)VDZ. The core excitations
are obtained within the CVS approximation. The molecular
term symbols and excitation energies are given in Table II.

In the TDCC calculations, all probe pulses are z polarized,
and have carrier frequencies corresponding to the first LiF
core excitation energy (see Table II). Central times are chosen
to be 0 a.u., to minimize the effect of the windowing on

FIG. 5. LiH pump-probe absorption. Normalized deviation of the
0.100 a.u., 0.025 a.u., and 0.005 a.u. time step spectra from the
0.001 a.u. time step spectrum, D′(ω), as a function of energy. Time-
dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ, and integrated with RK4.

FIG. 6. LiH pump-probe absorption. Normalized deviation of
the RK4 and GL4 spectra from the GL6 spectrum, D′(ω), as a
function of energy. Time-dependent dipole moments are calculated
using TDCCSD/aug-cc-p(C)VDZ, and integrated with 0.005 a.u.
time steps.

the probe absorption. The pump pulses are also z polarized,
and have carrier frequencies corresponding to the first LiF
valence excitation energy (see Table II). The pump pulses
have different central times with respect to the probe pulses,
corresponding to probe delays from 0 a.u. to 240 a.u., in
increments of 5 a.u. Other parameters of the pump and probe
pulses are given in Table I. As for the LiH calculations, the
electric fields of each pulse are temporally truncated at eight
rms widths σ from the central time, and thus nonzero only
inside this interval [see Eq. (22)].

The parameters used for the LiH reference calculation
offered a compromise between computational cost and accu-
racy. For pragmatic reasons, we also use the parameters for all
LiF calculations. The calculations in this section are thus done
using TDCCSD/aug-cc-p(C)VDZ, and integrated with RK4
with 0.005 a.u. time steps. The basis set gives six occupied and
44 virtual MOs, and hence 70488 time-dependent parameters.
The time-dependent dipole moments and electric fields are
calculated every 0.1 a.u. in the [−5000 a.u., 5000 a.u.] inter-
val, where the external field interactions are only calculated
after the onset of the temporally truncated pump pulses. The

TABLE II. Molecular term symbols and ground-state excitation
energies 	E of some excited states of LiF, calculated with the EOM-
CCSD method. Valence-excited states are denoted by a subscript v.
Core-excited states, calculated within the CVS approximation, are
denoted by a subscript c.

State 	E (eV) State 	E (eV)

Av
1� 6.448 01 Ac

1�+ 688.018
Bv

1�+ 6.899 82 Bc
1� 689.462

Cv
1	 8.104 63 Cc

1�+ 690.159
Dv

1�− 8.140 74 Dc
1�+ 691.039

Ev
1�+ 8.511 16 Ec

1� 691.435
Fv

1� 8.589 43 Fc
1�+ 691.625

Gv
1� 8.625 89 Gc

1� 692.917
Hv

1�+ 9.106 55 Hc
1�+ 693.154
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FIG. 7. Normalized LiF pump and probe absorption, S′
pump(ω)

(top) and S′
probe(ω) (bottom), as a function of energy. The most

dominant peaks are identified with ground-state transitions to EOM-
CCSD valence- and core-excited states. Time-dependent dipole mo-
ments are calculated with TDCCSD/aug-cc-p(C)VDZ, integrated
with RK4 with 0.005 a.u. time steps.

reported calculations use around 2 GB of memory and 0.41 s
wall time per time step on 16 cores, and 0.50 s per time step
on eight cores.

In order to assess the relative occupation of the states in the
pump-induced superposition [see Eq. (29)], the normalized
absorption of the pump pulse, centered at 0 a.u., is calculated
using

S′
pump(ω) = NpumpSpump(ω), (39)

where

Npump = 1

maxω |Spump(ω)| . (40)

An analogous procedure is used to obtain the normalized
probe spectrum S′

probe(ω).
The normalized absorption of the pump pulse and of the

probe pulse are plotted in Fig. 7, where the most dominant ab-
sorption peaks are identified using the calculated EOM-CCSD
states (see Table II). The small pump absorption peaks that
lie below the ground-state valence excitation energy gap are
presumably caused by two-photon absorption. The positions
of the other visible peaks in the two spectra fit well with
single-photon EOM-CCSD transitions allowed by symmetry.

The pump-probe absorption S(ω, τ ) is calculated as a
function of the energy, ω, and the delay of the probe pulse
with respect to the pump pulse, τ . In order to directly assess
the change in absorption caused by the interaction with the
pump pulse, the normalized transient absorption

	S′(ω, τ ) = Nprobe	S(ω, τ )

= Nprobe[S(ω, τ ) − Sprobe(ω)] (41)

is calculated for all delays, where Nprobe is the normalization
factor for the probe spectrum. The normalized transient ab-
sorption in the probe absorption region is shown in Fig. 8. The
spectrum features several constant energy peaks that oscillate
with the pump-probe delay. The five peaks that oscillate the

FIG. 8. Normalized LiF transient absorption 	S′(ω, τ ), as a function of energy and pump-probe delay. The five peaks oscillating with
the largest amplitude are identified with EOM-CCSD transitions. Time-dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ basis set, integrated with RK4 with 0.005 a.u. time steps.
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FIG. 9. Normalized LiF transient absorption 	S′(ω, τ ) (black
crosses) as a function of pump-probe delay, given at the dis-
crete Fourier transform energies closest to the energies of the
transitions shown to the right. The colored functions in the four
topmost panels are found from least-squares fitting A sin(ωAt +
φA) + C, with fixed values of ωA, to the absorption, in the do-
main [40 a.u., 240 a.u.]. The values of ωA are 6.899 82 eV (red)
8.511 16 eV (blue), 6.899 82 eV (green), and 6.899 82 eV (purple).
The orange function in the bottom panel is found from least-
squares fitting A sin(ωAt + φA) + B sin(ωBt + φB ) + C, with ωA =
6.899 82 eV and ωB = 8.511 16 eV, to the absorption, in the domain
[40 a.u., 240 a.u.].

most with respect to the pump-probe delay are identified using
the states in Table II. Note that, for pump-probe delays shorter
than about 40 a.u., the oscillations of some of the peaks are
rapidly damped as a function of increasing delays. This effect
can be attributed to the decreasing overlap between the pump
and probe pulses. For pump-probe delays longer than about
40 a.u., where the overlap of the pulses can be neglected, the
damping of the oscillations is also negligible.

We note that the excitation by the pump pulse enables
new transitions in the probe absorption region. An illustrative
example is the oscillating peak at around 681.1 eV in Fig. 8.
The energy corresponding to this peak is lower than the lowest
ground-state core excitation energy of 688.018 eV. This peak
is identified as the Ac

1�+–Bv
1�+ transition. Its occurrence

indicates that the pump has generated an electronic hole in
a previously occupied region of the molecule, allowing a
lower-energy core excitation to take place.

In Fig. 9, the normalized transient absorption of the five
peaks identified in Fig. 8 are plotted at the nearest discrete
Fourier-transform energies. Two of these peaks describe tran-
sitions involving the Ac

1�+ state. Beyond the pump-probe
overlap region, the oscillations of these peaks correlate with
the quantum interference of the two probed states, as expected
for the ultrafast high-energy probing of two states in a co-
herent superposition [6]. This since both oscillations can be
fitted with sinusoids with the frequency corresponding to the
Bv

1�+ and X 1�+ energy difference.
Three peaks in Fig. 9 correspond to transitions involving

the Hc
1�+ state. The oscillation of the Hc

1�+–Bv
1�+ peak

correlates well with the quantum interference of the Bv
1�+

and X 1�+ states, as the oscillations are well fitted with
a sinusoid with the frequency corresponding to the energy

difference of these two states. Similarly, the oscillation of the
Hc

1�+–Ev
1�+ peak correlates with the quantum interfer-

ence of the Ev
1�+ and X 1�+ states. Note that the oscilla-

tions of the two peaks are slightly phase shifted with respect
to each other, an effect that may be caused by the difference
in spectral phase of the two corresponding frequencies in the
probe pulse.

The linear combination of two sinusoids is needed to give
a good fit with the oscillation of the Hc

1�+–X 1�+ peak: one
corresponding to the Bv

1�+ and X 1�+ energy difference and
the other corresponding to the Ev

1�+ and X 1�+ energy dif-
ference. Hence the ground state X 1�+ seems to have a similar
probability of interfering with the Bv

1�+ and Ev
1�+ states.

This is reasonable, considering that most of the population
will be left in the ground state after the interaction with the
pump pulse.

IV. CONCLUSION

In this work, a time-dependent coupled-cluster model of
ultrafast pump-probe absorption spectroscopy has been pre-
sented. First, we investigated the convergence of LiH pump-
probe absorption spectra with respect to different calculation
parameters. The deviations related to the integration param-
eters (integration method and time step size) were small in
comparison to other parameter-dependent deviations. As the
computational costs scaled linearly with the time step size, we
chose a time step size that gave a small deviation, 0.005 a.u. In
future works, calculations on larger systems can be facilitated
by the use of larger and adaptive time steps, as the maxi-
mum normalized deviation of the absorption calculated with
0.025 a.u. time steps was only on the order of 1 × 10−4. The
use of symplectic integrators did not seem to be necessary;
hence RK4 was used. Changes in the basis set had a big
impact on the results. As the computational cost scales steeply
with respect to the basis set, TDCCSD/aug-cc-p(C)VDZ was
chosen as a compromise between accuracy and computational
cost.

After using the time-dependent coupled-cluster model to
assess the convergence of LiH spectra, we used the model to
calculate the ultrafast transient absorption in LiF, using the
same parameters. The transient absorption displayed peaks
that oscillate with respect to pump-probe delay, and the os-
cillation frequencies were correlated with the quantum inter-
ference of different states in the pump-induced superposition.

Note that nuclear motion, which has been neglected in the
model, will cause broadening of the spectral peaks [41]. A
natural next step would be to include the nuclear motion to
the model, which for instance can be done using the approach
in [42].
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APPENDIX A: DERIVATION OF GENERALIZED
EHRENFEST THEOREM IN TRUNCATED TDCC

For ease of notation, the time dependence is not written ex-
plicitly in this section. The derivation of Eq. (15) in truncated
TDCC is given here. It makes use of the identity resolution

1 = |HF〉〈HF| +
∑
μ>0

|μ〉〈μ|, (A1)

where the summation is over all the excited determinants.
Sums that are restricted to the excited determinants in the
projection space will be denoted by the upper summation
limit n.

Consider a generic operator A with no parametric time
dependence and two independent solutions to the projected
time-dependent Schrödinger equation, |CC〉 and 〈�′|. The
time derivative of the matrix element 〈�′|A|CC〉 is

d

dt
〈�′|A|CC〉 =

(
d

dt
〈�′|

)
A|CC〉 + 〈�′|∂A

∂t
|CC〉

+ 〈�′|A
(

d

dt
|CC〉

)
. (A2)

Equations (11) and (13) can be used to rewrite the term
containing the time derivative of the |CC〉 state,

〈�′|A
(

d

dt
|CC〉

)
=

n∑
μ>0

〈�′|Aτμ|CC〉dtμ
dt

+ i〈�′|A|CC〉dε

dt

= −i〈�′|A eT Pne−T H |CC〉. (A3)

Equations (11), (12), and (13) can be used to rewrite the
term containing the time derivative of the 〈�′| state,

(
d

dt
〈�′|

)
A|CC〉 =

n∑
μ>0

dt̄ ′
μ

dt
〈μ|e−T ′

e−iε′
A|CC〉

−
n∑

μ>0

〈�′|τμA|CC〉dt ′
μ

dt
− i〈�′|A|CC〉dε′

dt

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

i〈�′|eT ′
τμH̄ ′|HF〉〈μ|e−T ′

A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A4)

The right-hand side of Eq. (A1) is inserted between τμ and H̄ ′
in the second term, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

i〈�′|eT ′ |μ〉〈HF|H̄ ′|HF〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

∑
ν>0

i〈�′|eT ′
τμ|ν〉〈ν|H̄ ′|HF〉〈μ|e−T ′

A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

−
∑
μ>0

i〈�′|eT ′ |μ〉〈μ|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

−
n∑

ν>0

∑
μ>0

i〈�′|eT ′
τν |μ〉〈μ|e−T ′

A|CC〉〈ν|H̄ ′|HF〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A5)

The factors
∑

μ>0 |μ〉〈μ| in the second and third terms are
replaced by using Eq. (A1), with |HF〉〈HF| subtracted from
both sides of the equation, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|HeT ′ |μ〉〈μ|e−T ′
A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

+
n∑

ν>0

i〈�′|eT ′ |ν〉〈HF|e−T ′
A|CC〉〈ν|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT ′ |μ〉〈μ|e−T ′
A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

+
∑
ν>0

i〈�′|eT ′ |ν〉〈ν|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

= i〈�′|H eT ′
Pne−T ′

A|CC〉, (A6)
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where the definition of Pn is given in Eq. (16). Equations (A3)
and (A6) are inserted into Eq. (A2), giving the desired result:

d

dt
〈�′|A|CC〉 = i〈�′|H eT ′

Pne−T ′
A|CC〉

− i〈�′|A eT Pne−T H |CC〉

+ 〈�′|∂A

∂t
|CC〉. (A7)

APPENDIX B: RUNGE-KUTTA METHODS

The commonly used one-step integration methods known
as Runge-Kutta methods are introduced below in the notation
of [30].

Given the following Cauchy problem:

dy(t )

dt
= f (t, y(t )), t � t0, y(t0) = y0, (B1)

we can find a numerical approximation of the solution y(t )
by the use of a ν-stage Runge-Kutta method, which can be
written in the form

yn+1 = yn + h
ν∑

j=1

b jf (tn + c jh, ξ j ), (B2)

where

ξ j = yn + h
ν∑

i=1

a jif (tn + cih, ξi ), j = 1, . . . , ν. (B3)

Here, a ji, b j , and c j are method specific coefficients, where
a ji and c j need to satisfy the condition

ν∑
j=1

a ji = c j, j = 1, . . . , ν (B4)

to obtain nontrivial orders of integration. In explicit Runge-
Kutta (ERK) methods, the matrix A = (aji ) j,i=1,...,ν is strictly
lower triangular. In these methods, ξ j are explicitly given as a
function of ξ j−1, . . . , ξ1.

In the cases where the matrix A is not strictly lower
triangular, ξ j may also depend on ξ j, . . . , ξν , which in practice
means that a system of equations have to be solved at each
time step. These methods are known as implicit Runge-Kutta
(IRK) methods, and in many cases offer greater stability than
their explicit counterparts. Since IRK methods involve the
solution of a set of equations at each time step, it is hard to
give an a priori estimate of the number of function evaluations
needed at each time step. This number is usually higher than
for ERK methods, leading in general to higher computational
costs.
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