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Linear polar molecule in a two-color cw laser field: A symmetry analysis
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A theoretical study of the rotational dynamics of a linear polar molecule in a two-color nonresonant cw laser
field is presented. By systematically considering the interactions of this field with the electric dipole moment,
polarizability, and hyperpolarizability of the molecule, the implications that the symmetries of the Hamiltonian
have on the rotational dynamics are explored in a regime where the time-average approximation does not hold.
It is shown that the alignment and orientation satisfy certain symmetries as functions of the phases and field
strengths, and that they can be expressed as analytic functions in terms of these main parameters of the two-color
laser field.
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I. INTRODUCTION

Biharmonic signals are widely used in many areas of
physics in order to break the time-shift symmetry of the
external forces and of the electromagnetic fields [1–6]. This
symmetry breaking induces a plethora of unexpected phenom-
ena, as, for example, the dissipation-induced net motion, the
current reversals by increasing the amplitudes, and resonances
as a function of the frequency and of the damping coefficient
[7,8]. These phenomena have been observed in seemingly
unrelated systems, such as semiconductors [9], Josephson
junctions [10], optical lattices [11], ferrofluids [12], Brownian
particles [2], Bose-Einstein condensates [13], or solitons in
nonlinear systems [14–16]. Recent studies show that, re-
gardless of the system, the symmetries of the biharmonic
force determine the dependence of the measurements on the
amplitudes and phases of this biharmonic force [17–19].

The spherical symmetry of a thermal sample of molecules
is broken by inducing orientation and alignment [20–25]
with experimental techniques such as brute force orientation
[26–28], combined electrostatic and nonresonant laser fields
[29–35], THz pulses [36–41], or the phase-locked two-color
laser field [42–46]. An aligned molecule is characterized by
the confinement of the molecular fixed axes along the labora-
tory fixed frame, and keeping the head-versus-tail symmetry
[25]. For an oriented molecule, this symmetry is broken
and the dipole moment is pointing towards one hemisphere
rather than the opposite [20,24]. In the spirit of biharmonic
signals, continuous-wave (cw) nonresonant laser fields could
be employed to create directional states of polar molecules,
rather than the laser pulses used in experiments, the time
envelope of which is often given by a Gaussian function.

In this paper, a linear polar molecule in a two-color
continuous-wave nonresonant laser field is considered. Within
the Born-Oppenheimer and the rigid-rotor approximations,
the field-dressed rotational dynamics is analyzed. The laser
frequency is chosen so that the time-average approximation
[47] is not correct. The validity of this approximation is

investigated in Appendix A. Here, it is assumed that no
electronic, vibrational, or rotational transitions are driven
by this field. A systematic and detailed analysis of the im-
plications that the symmetries of the Hamiltonian have in
the field-dressed rotational dynamics is presented. By grad-
ually including the interactions of the field with the electric
dipole moment, polarizability, and hyperpolarizability in the
description, the effect of these symmetries is analyzed, and
the identities that the expectation values describing the field-
dressed rotational dynamics satisfy are derived. Due to these
symmetries, it is shown that for a fixed propagation time
the alignment and orientation can be expressed as analytic
functions that depend on the amplitudes and phases of the
harmonics appearing on the Hamiltonian. Furthermore, only
a few coefficients significantly contribute to the series expan-
sion, and they have been obtained. In addition, it is shown
analytically that it is not possible to orient on average a polar
molecule with a one-color cw laser field being necessary a
two-color one. The sum of the two frequencies of this two-
color laser should be an odd multiple of the main frequency.
Here, the carbonyl sulfide molecule OCS serves as a prototype
system to present and discuss these results.

II. THE HAMILTONIAN AND THE SYMMETRIES

A linear polar molecule exposed to a phase-controlled cw
two-color laser field linearly polarized along the laboratory
fixed frame (LFF) Z axis is considered. The corresponding
electric field E(t ) = E (t )Z is given by the biharmonic func-
tion

E (t ) =
∑
i=1,2

εi cos[qiω(t + t0) + δi], (1)

with qiω, εi, and δi being the laser frequency, electric-field
strength, and phase of the ith harmonic, respectively, and with
qi a positive integer. The time shift between the turning on
of the two-color laser field and the instant when the molecule
starts to interact with it is t0.
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The molecule is described by the Born-Oppenheimer ap-
proximation, and the rotational motion is investigated using
the rigid rotor approach. Within this framework, the field-
dressed rotational Hamiltonian is given by [48,49]

H = H0 + Hμ + Hα + Hβ, (2)

where the first term stands for the field-free Hamiltonian:

H0 = BJ2, (3)

with B being the rotational constant of the molecule, and J the
rotational angular momentum operator. The second, third, and
fourth terms represent the interaction of the electric field with
the electric dipole moment, polarizability, and hyperpolariz-
ability of the molecule, respectively:

Hμ = −μ cos θ E (t ), (4)

Hα = − 1
2�α cos2 θ E2(t ), (5)

Hβ = − 1
6 (�β cos3 θ + 3β⊥ cos θ )E3(t ). (6)

In these expressions, θ is the Euler angle between the internu-
clear molecular axis and the LFF Z axis, μ is the permanent
electric dipole moment, �α = α‖ − α⊥ is the polarizability
anisotropy with α⊥ and α‖ being its perpendicular and parallel
components, and �β = β‖ − 3β⊥ is the hyperpolarizability
anisotropy with β⊥ and β‖ being the perpendicular and paral-
lel components, respectively.

The symmetry operations for polar linear molecules are
those from the C∞v point group. Since the operator J2 is
invariant under arbitrary rotations, the field-free rigid rotor
Hamiltonian (3) belongs to the SO(3) group. The field-dressed
Hamiltonian (2) is invariant under any rotation of an arbitrary
angle χ around the LFF Z axis, CZ (χ ), and reflections in
any plane containing this Z axis. These symmetries imply
that the projection of the rotational angular momentum along
the LFF Z axis, M, is a good quantum number, and that
the rotational dynamics of the states with M and −M shares
many properties, for instance, the energy, orientation, and
alignment.

The time-dependent Schrödinger equation associated to the
Hamiltonian (2) is numerically solved assuming that the time-
average approximation is not correct (see Appendix A). The
computational technique combines the short iterative Lanczos
method [50] for the time variable, and a basis set expansion in
terms of linear combinations of spherical harmonics YJ,M (
),
with 
 = (θ, φ) being the Euler angles. These linear com-
binations are constructed to satisfy the spatial symmetries
of the Hamiltonian. The field-dressed rotational dynamics is
analyzed in terms of the expectation value:

〈cosk θ〉 =
∫

ψ∗(
, t ) cosk θψ (
, t )d
, (7)

with ψ (
, t ) being the time-dependent wave function, and
k ∈ Z+. For the orientation and alignment, k = 1 and 2,
respectively.

The two-color electric field (1) is invariant under the trans-
formation

T : (q1, q2, ω) →
(
κq1, κq2,

ω

κ

)
with κ ∈ Z+, (8)

and, therefore, the Hamiltonian (2) is also invariant under this
transformation. Thus, the analysis can be restricted to q1 and
q2 satisfying gcd(q1, q2) = 1. The symmetries in the phases
δ1 and δ2, and in the amplitudes ε1 and ε2 of the two-color
electric field (1), imply that

〈cosk θ〉(t, t0, ε1, ε2, δ1, δ2)

= 〈cosk θ〉(t, t0, (−1)n1ε1, (−1)n2ε2, δ1 + n1π, δ2+n2π ),
(9)

with n1 and n2 being integers. This expression shows explic-
itly the dependence on t, t0, ε1, ε2, δ1, and δ2 of this expecta-
tion value. The inversion of the electric-field direction gives
rise to the following invariance:

〈cosk θ〉(t, t0, ε1, ε2, δ1, δ2)

= (−1)k〈cosk θ〉(t, t0,−ε1,−ε2, δ1, δ2). (10)

The Hamiltonian (2) is invariant under a shift in t0 by changing
the phases δ1 and δ2, and it holds that

〈cosk θ〉(t, t0, ε1, ε2, δ1, δ2)

= 〈cosk θ〉(t, t0 + τ, ε1, ε2, δ1 − q1ωτ, δ2 − q2ωτ ) ∀τ.

(11)

The invariance of the Hamiltonian (2) under a simultaneous
inversion of t , t0, δ1, and δ2 implies that

〈cosk θ〉(t, t0, ε1, ε2, δ1, δ2)

= 〈cosk θ〉(−t,−t0, ε1, ε2,−δ1,−δ2). (12)

In contrast to other laser field parameters, the value of t0
cannot be easily controlled in an experiment. Therefore, this
expectation value is averaged over t0 [19] as

〈〈cosk θ〉〉 = ω

2π

∫ 2π
ω

0
dt0〈cosk θ〉 with k ∈ Z+, (13)

where the integral is restricted to an electric-field period due
to the t0 periodicity of the electric field (1).

For a one-color electric field, i.e., either ε1 = 0 or ε2 =
0, or q1 = q2, the Hamiltonian (2) fulfills the symmetry in
t0 H (θ, t0) = H (π − θ, t0 + π

qiω
), with i = 1 or 2, and the

expectation value satisfies

〈cosk θ〉
(

t0 + π

qiω

)
= (−1)k〈cosk θ〉(t0) (14)

and, therefore,

〈〈cosk θ〉〉 = [1 + (−1)k]
qiω

2π

∫ π
qiω

0
dt0〈cosk θ〉, (15)

where the dependence on the field parameters is omitted. For
k = 1, relation (15) indicates that on average the molecule
is not oriented by a one-color laser field, regardless of its
frequency, even if the three interactions are taken into account.
For a fixed t0, the molecule is oriented, and at t0 + π

qiω
it

possesses the same orientation but in the opposite direction
[see Eq. (14)]. As a consequence, we obtain 〈〈cosk θ〉〉 = 0.
For k = 2, Eq. (15) implies that the interval of integration in
Eq. (13) can be reduced to 0 � t0 � π

qiω
.
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From the symmetries in Eq. (9), the t0-averaged expecta-
tion value satisfies

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= 〈〈cosk θ〉〉(t, (−1)n1ε1, (−1)n2ε2, δ1 + n1π, δ2 + n2π ),

(16)

with n1 and n2 being integers. The symmetry due to the
inversion of the electric-field direction (10) reads as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= (−1)k〈〈cosk θ〉〉(t,−ε1,−ε2, δ1, δ2). (17)

The invariance on t0 (11) gives rise to the following phase-
shift symmetry:

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= 〈〈cosk θ〉〉(t, ε1, ε2, δ1 + q1�, δ2 + q2�) (18)

with � being an arbitrary phase shift. The symmetry (12) is
transformed as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= 〈〈cosk θ〉〉(−t, ε1, ε2,−δ1,−δ2). (19)

Furthermore, the identities (16), (17), and (18) imply that
Eq. (19) becomes

〈〈cosk θ〉〉(t, ε1, ε2, δ1,n, δ2,n)

= (−1)kn〈〈cosk θ〉〉(−t, ε1, ε2, δ1,n, δ2,n), (20)

which is the time-reversal symmetry for the specific phases
δ1,n = n π

2 + q1� and δ2,n = (n + 1 ± 1)π
2 + q2�, with n an

integer.
The symmetries (16), (17), and (18) imply additional iden-

tities for the t0-averaged expectation value. For q1 and q2 odd
integers, and k odd, it yields

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2) = 0, (21)

which indicates the lack of orientation for k = 1, and for k
even

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= 〈〈cosk θ〉〉
(
t, ε1, ε2, δ1 + n1

π

2
, δ2+

[
2−(−1)

q2−q1
2

]
n1

π

2

)
,

(22)

with n1 being an integer. Thus, in this case the molecule is
aligned but not oriented. For q1 odd and q2 even, it holds that

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= (−1)k( n1q2
2 +n2q1 )〈〈cosk θ〉〉

(
t, ε1, ε2, δ1+ n1

π

2
, δ2+ n2π

)

(23)

with n1 and n2 being integers, k ∈ Z+, and the molecule is
both oriented and aligned.

Most importantly, due to the symmetries of the Hamilto-
nian, for a fixed propagation time t , the t0-averaged expecta-
tion value 〈〈cosk θ〉〉 can be expressed as a series expansion in
terms of the amplitude ε j and phase δ j of the j harmonics of
the two-color electric field (1) [19]. These analytic functions

TABLE I. Relevant data for OCS [53].

B TR μ �α �β β⊥
(cm−1) (ps) (D) (a.u.) (a.u.) (a.u.)

0.2029 82.2 0.71 27.26 132.3 −59.1

are derived in Appendix B [see Eqs. (B6), (B7), (B8), and
(B9)].

III. RESULTS

The carbonyl sulfide molecule OCS serves as a prototype
for this paper; its data are summarized in Table I. The electric-
field strengths are taken as ε1 = (1 − γ )E0 and ε2 = γ E0

with 0 � γ � 1, and E0 =
√

2I
cε0

, with I being the laser field

intensity, c the speed of light, and ε0 the vacuum electric per-
mittivity. The laser intensity is fixed to I = 5 × 1011 W/cm2,
and the electric-field strength is E0 ≈ 1.94 × 107 V/cm.
This intensity is routinely used in nonresonant ac laser pulses,
whereas it is larger than the experimentally available intensi-
ties for cw lasers [51]. The two-color field period is fixed to
T = 2π

ω
= 400 fs, which is two orders of magnitude larger

than the period of the nonresonant lasers used typically in
experiments involving, e.g., the YAG laser and Ti:sapphire
[52]. The electric-field frequencies are ω and 2ω, i.e., q1 = 1
and q2 = 2, which provoke both the orientation and alignment
of the molecule. Due to the phase-shift symmetry (18) of
the t0-averaged expectation values, the first-harmonic phase
is fixed to zero δ1 = 0.

A. Orientation induced by the two-color laser field

In this section, the rotational dynamics of the ground
state, i.e., ψ (
, t = 0) = Y0,0(
), is explored in terms of the
molecular orientation by systematically including in the de-
scription the interactions of the electric field with the electric
dipole moment, polarizability, and hyperpolarizability of the
molecule.

For H = H0 + Hμ, the contour plots Figs. 1(a), 1(b), and
1(c) present the t0-averaged orientation as a function of the
propagation time t and the phase of the second-harmonic δ2

for the strength parameters γ = 0.25, 0.5, and 0.75, respec-
tively. For a fixed time, 〈〈cos θ〉〉 satisfies the symmetry (23)
with k = 1, n1 = 0, and n2 = 1, and approximately fulfills the
relation 〈〈cos θ〉〉(t, δ2) ≈ 〈〈cos θ〉〉(t, π − δ2). Regardless of
the values of γ and t , 〈〈cos θ〉〉 shows the same dependence
on δ2, and |〈〈cos θ〉〉| reaches its maximal value for δ2 ≈ π/2
and 3π/2, and the minimal one for δ2 ≈ 0 and π . For given
γ and δ2, 〈〈cos θ〉〉 oscillates as a function of time, and the
field-dressed wave function has contributions of only a few
field-free states. The amplitude of these oscillations is very
small for δ2 ≈ 0 and π .

By adding the interaction of the electric field with the
molecular polarizability, i.e., H = H0 + Hμ + Hα , the field-
dressed dynamics becomes more complex. The corresponding
t0-averaged orientation is presented in Figs. 1(d), 1(e), and 1(f)
for γ = 0.25, 0.5, and 0.75, respectively. In this case, 〈〈cos θ〉〉
also satisfies the symmetry relation (23) for k = 1, n1 = 0,
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FIG. 1. Orientation averaged over t0 as a function of the time and the second-harmonic phase for the parameters (a), (d), (g) γ = 0.25, (b),
(e), (h) γ = 0.5, and (c), (f), (i) γ = 0.75. The interaction Hamiltonian includes (a)–(c) Hμ, (d)–(f) Hμ + Hα , and (g)–(i) Hμ + Hα + Hβ .

and n2 = 1. In addition, the dependence of 〈〈cos θ〉〉 on the
second-harmonic phase for fixed time t strongly depends on
the parameter γ , i.e., on the relative weight of the electric-
field components. For γ = 0.25, the t0-averaged orientation is
composed of slow oscillations with superimposed fast modu-
lations of the amplitude, and it is lower than 0.12. In contrast,
an orientation up to 0.24 is achieved for γ = 0.5 and 0.75, and
〈〈cos θ〉〉 slowly oscillates with time, whereas the amplitude
also shows small oscillations.

The t0-averaged orientation when the three interactions
are considered, H = H0 + Hμ + Hα + Hβ , is presented in
Figs. 1(g), 1(h), and 1(i) for γ = 0.25, 0.5, and 0.75, respec-
tively. The rotational dynamics shows a qualitatively similar
behavior as when Hβ is neglected [compare panels (d)–(g),
(e)–(h), and (f)–(i)]. The maximal value of the orientation is
slightly larger in this case, and for fixed δ2 the oscillations as
a function of t have smaller periods.

For a fixed configuration of the two-color laser field and a
certain propagation time t , 〈〈cos θ〉〉 is given by the analytic
expression (B8), which is illustrated in Fig. 2. Panels (a) and
(b) in Fig. 2 show the t0-averaged orientation as a function
of δ2 for propagation times t = 200 and 600 ps, respectively,
and the two components of the electric field having the same
weight γ = 0.5. These curves have been numerically fitted
to the expansion (B8) using the δ2-independent constants
C j (t, ε1, ε2) and ϕ j (t, ε1, ε2) as fitting parameters with j being
an odd integer. Figures 2(c) and 2(d) show these fitted coef-
ficients C j (t, ε1, ε2) at t = 200 and 600 ps, respectively; the
fitted phases are presented in Figs. 2(e) and 2(f). If only the in-
teraction with the electric dipole moment is included, the first
coefficient j = 1 is sufficient to reproduce the dependence of
〈〈cos θ〉〉 on δ2 with a fairly good accuracy, and the phase of
this j = 1 coefficient is close to π/2, in agreement with the
observed sinelike behavior 〈〈cos θ〉〉(t, δ2) ≈ 〈〈cos θ〉〉(t, π −
δ2). The next term in the expansion (B8) with j = 3 is smaller
than 5 × 10−5 for these two propagation times. The deviation
of the phases ϕ1(t, ε1, ε2) and ϕ3(t, ε1, ε2) from being exactly
π/2 prevents the t0-averaged orientation from being exactly

zero at δ2 = 0 and π . By adding the interaction with the
molecular polarizability, higher-order terms become more im-
portant in Eq. (B8). However, the j � 7 ( j � 11) coefficients
are smaller than 10−4 for t = 200 ps (t = 600 ps). Finally, for
H = H0 + Hμ + Hα + Hβ , the dependence of 〈〈cos θ〉〉 on δ2

gets more complicated, and the contribution of higher-order
terms increases, gaining importance in the expansion (B8). In
these two cases, the fitted phases take values very close to π

or 2π [see Figs. 2(e) and 2(f)], and again the deviation from
these values prevents 〈〈cos θ〉〉 from being zero at δ2 = π/2
and 3π/2.

This analysis is completed by investigating the dependence
of the t0-averaged orientation on the relative weight of the
two electric-field components γ in Fig. 3. When only the
interaction with the electric dipole moment is taken into
account, the results for δ2 = 0, π/2, and 3π/4 are presented in
Figs. 3(a), 3(b), and 3(c), respectively. As discussed in Sec. II,
the t0-averaged orientation is zero for γ = 0 and 1 because
the electric field (1) becomes one-color. For fixed γ and δ2,
〈〈cos θ〉〉 shows fast oscillation versus t . The dependence of
〈〈cos θ〉〉 on γ changes as the propagation time t increases.
The orientation tends to reach larger values for 0.25 � γ �
0.75. The maximal orientation is 0.16, which is achieved for
δ2 = π/2. The orientation for δ2 = 0 is nonzero but lower
than 10−3.

For H = H0 + Hμ + Hα , Figs. 3(d), 3(e), and 3(f) present
〈〈cos θ〉〉 for δ2 = 0, π/2, and 3π/4, respectively. Compared
to the previous case, the dependence of 〈〈cos θ〉〉 on γ and t
has notably changed. As a function of t , 〈〈cos θ〉〉 shows slow
oscillations, the amplitude of which is modulated. A moderate
orientation of the molecule is attained for several values of γ .
The maximal absolute value of the orientation is reached for
δ2 = 0, π (not shown here), and 3π/4, whereas the minimal
one occurs for δ2 = π/2, when |〈〈cos θ〉〉| is smaller than
0.08. By adding the interaction with the hyperpolarizability,
i.e., H = H0 + Hμ + Hα + Hβ , 〈〈cos θ〉〉 is not significantly
modified, and possesses a qualitatively similar dependence on
t and γ as in the previous case [see Figs. 3(g), 3(h), and 3(i)].
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FIG. 2. For a two-color electric field with γ = 0.5, t0-averaged orientation as a function of the second-harmonic phase at fixed propagation
times (a) t = 200 ps and (b) t = 600 ps. (c), (d) Fitted coefficients C j (t, ε1, ε2) and (e), (f) fitted phases ϕ j (t, ε1, ε2) from the analytic expression
(B8) of 〈〈cos θ〉〉 for t = 200 and 600 ps, respectively. The interaction Hamiltonian includes Hμ (red dot-dashed line, histograms red dashed),
Hμ + Hα (orange solid line), and Hμ + Hα + Hβ (blue dashed line, histograms blue dotted).

B. Alignment induced by the two-color laser field

The t0-averaged alignment of the ground state in a two-
color laser field with period T = 400 fs is presented as a func-
tion of t and δ2 in Fig. 4. For all considered configurations,
〈〈cos2 θ〉〉 satisfies the symmetry relation (23) with k = 2,
n1 = 0, and n2 = 1. For H = H0 + Hμ, 〈〈cos2 θ〉〉 depends
very weakly on δ2, and oscillates as t increases quasiperiodi-
cally between 0.3 and 0.6 [see Fig. 4(a)]. By also taking into
account the interaction with the molecular polarizability and
with the hyperpolarizability, 〈〈cos2 θ〉〉 shows a rather weak
dependence on δ2 for short propagation times, which becomes
stronger for t � 200 ps [see Figs. 4(b) and 4(c)]. In these
cases, the oscillations of 〈〈cos2 θ〉〉 as a function of t are faster,

and the molecule becomes strongly aligned with 〈〈cos2 θ〉〉,
reaching up to 0.9.

The analytic expression (B9) provides the dependence of
〈〈cos2 θ〉〉 on δ2. In Fig. 5(a) and 5(b), 〈〈cos2 θ〉〉 is plotted
as a function of the second-harmonic phase for γ = 0.5
and propagation times t = 200 and 600 ps, respectively. The
numerical results have been fitted to the series (B9), and the
coefficients C j (t, ε1, ε2) and phases ϕ j (t, ε1, ε2), with j an
even integer, are presented in Figs. 5(c)–5(d), and 5(e)–5(f),
respectively. When only the electric-field interaction with the
electric dipole moment is taken into account, the alignment
depends very weakly on δ2, and C0(t, ε1, ε2) is the only fitting
parameter accurately reproducing this result. The next term

FIG. 3. The t0-averaged orientation as a function of the propagation time and of the relative weight of the two electric-field components
γ for the phase of the second-harmonic (a), (d), (g) δ2 = 0, (b), (e), (h) δ2 = π/2, and (c), (f), (i) δ2 = 3π/4. The interaction Hamiltonian
includes (a)–(c) Hμ, (d)–(f) Hμ + Hα , and (g)–(i) Hμ + Hα + Hβ .
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FIG. 4. The t0-averaged alignment as a function of the propaga-
tion time and the second-harmonic phase δ2 for the relative weight
of the electric-field components γ = 0.5, including the interactions
(a) Hμ, (b) Hμ + Hα , and (c) Hμ + Hα + Hβ .

C2(t, ε1, ε2) is smaller than 2 × 10−4. For H = H0 + Hμ +
Hα , higher-order terms are needed in the 〈〈cos2 θ〉〉 analytical
expansion, and the j � 6 and 8 coefficients become smaller
than 10−4 for t = 200 and 600 ps, respectively. For H = H0 +
Hμ + Hα + Hβ , the δ2 dependence of 〈〈cos2 θ〉〉 becomes
more complex, and even higher-order terms are required for
an accurate fitting. In these two cases, a broad range of values
is encountered for ϕ j (t, ε1, ε2) shown in Figs. 5(e) and 5(f).

Figure 6 presents 〈〈cos2 θ〉〉 as a function of γ and t
for δ2 = 3π/4. If only the electric-field interaction with the
electric dipole moment is considered [see Fig. 6(a)], the t0
alignment oscillates between 0.3 and 0.7, and reaches the
largest values for γ < 0.5 when the first-harmonic field is
the strongest. For fixed γ , 〈〈cos2 θ〉〉 shows quite regular
oscillations as a function of time. By taking into account the
electric-field interaction with the polarizability and with both
polarizability and hyperpolarizability [see Figs. 6(b) and 6(c),
respectively], 〈〈cos2 θ〉〉 reaches larger values, up to 0.9, and
the frequency of the oscillations is increased.

C. Rotational dynamics of a thermal sample

The field-dressed rotational dynamics of excited rotational
states shows a similar dependence on the symmetries of the
Hamiltonian and, therefore, on the laser field parameters.
Figure 7 presents the time evolution of the t0-averaged orien-
tation of thermal samples with rotational temperatures Trot =
0.5 and 2 K, as a function of second-harmonic phase and for
γ = 0.5. Due to the contribution of higher excited rotational
states, the extreme values of the t0-average orientation of the
thermal sample 〈〈cos θ〉〉T are significantly reduced as the
temperature increases, but 〈〈cos θ〉〉T still satisfies the symme-
try Eq. (23). For H = H0 + Hμ, 〈〈cos θ〉〉T possesses a sine-
like behavior as a function of δ2. By including the interactions
due to the polarizability and hyperpolarizability, this depen-
dence on δ2 becomes more complex. For a fixed δ2, the time
evolution of 〈〈cos θ〉〉T is similar to the one of the ground state
presented in Fig. 1, which is equivalent to a Trot = 0 K thermal
sample.

The analytic expression (B8) is used to explore the ori-
entation of these thermal samples. For t = 600 ps, the fitted
coefficients C j (t, ε1, ε2) and phases ϕ j (t, ε1, ε2), with j an
odd integer, are presented in Fig. 8. For both temperatures, the
coefficients possess similar values, whereas more differences

FIG. 5. For a two-color electric field with γ = 0.5, t0-averaged alignment as a function of the second-harmonic phase at fixed propagation
times (a) t = 200 ps and (b) t = 600 ps. (c), (d) Fitted coefficients C j (t, ε1, ε2) and (e), (f) fitted phases ϕ j (t, ε1 ε2) from the analytic expression
(B9) of 〈〈cos2 θ〉〉 for t = 200 and 600 ps, respectively. The interaction Hamiltonian includes Hμ (red dot-dashed line, histograms red dashed),
Hμ + Hα (orange solid line), and Hμ + Hα + Hβ (blue dashed line, histograms blue dotted).
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FIG. 6. The t0-averaged alignment as a function of the propaga-
tion time and the relative weight of the electric-field components γ

for the second-harmonic phase δ2 = 3π/4, including the interactions
(a) Hμ, (b) Hμ + Hα , and (c) Hμ + Hα + Hβ .

are encountered on the phases. As for the ground state, the
coefficients with higher values of j increase as the interactions
are progressively included in the description.

The t0-averaged alignment of a thermal sample with ro-
tational temperature Trot = 2 K is plotted in Fig. 9. For
short propagation times, 〈〈cos2 θ〉〉T possesses a constant
behavior as a function of δ2. This behavior is also observed
for larger times when only the interaction with the elec-
tric dipole moment is taken into account. For larger times,
〈〈cos2 θ〉〉T presents oscillations as a function of δ2 with
a rather small amplitude. Overall, the alignment is signif-
icantly reduced due to the contribution of higher excited
states.

IV. CONCLUSIONS

The implications of the symmetries in the field-dressed
rotational dynamics of a linear polar molecule in a two-color
continuous-wave nonresonant laser field have been discussed
and analyzed in detail. The system has been investigated
in the framework of the rigid-rotor approximation and in a
regime where the time-average approximation is not correct.
For the expectation values 〈cosk θ〉 and 〈〈cosk θ〉〉, a collection
of identities is derived based on the Hamiltonian symmetries.
These identities are satisfied independently of the initial state,
i.e., they also hold for a thermal sample, and of the dipole-
expansion terms of the interaction due to the two-color cw
laser field included in the Hamiltonian. By systematically
considering the interactions of this field with the electric
dipole moment, polarizability, and hyperpolarizability, the
field-dressed rotational dynamics becomes gradually more
complex. In particular, this paper shows that the interaction
of a two-color cw laser field with the electric dipole moment
cannot be neglected as is done for two-color laser pulses. Fur-
thermore, the small differences encountered in the dynamics
by including or neglecting the hyperpolarizability interaction
indicate that interactions due to higher hyperpolarizability
terms might be negligible.

Due to these symmetries, the orientation and alignment can
be expressed as analytic functions of the phases and strengths
of the two components of the two-color cw laser field. The
numerical analysis demonstrates that only a few terms have
a significant contribution on the expansion series, and their
weights increase as the interactions with the electric dipole
moment, polarizability, and hyperpolarizability are taken into
account. The effect of symmetries of the two-color electric
field on the orientation and alignment is very different, and
depends on the interactions included in the description. In
addition, it is analytically shown that a one-color cw laser
field does not orient the molecule. To orient the molecule a
cw two-color laser having odd and even multiples of the laser
frequency is required. The largest orientation and alignment
are not necessarily obtained when the two components of the
two-color cw laser field have the same weight. Furthermore,
the rotational dynamics can be computed for fixed values of
the phases, δ1 and δ2, and is the same for any phases sat-
isfying δ̃1 = δ1 + q1� and δ̃2 = δ2 + q2�. The time-reversal

FIG. 7. For a thermal sample, t0-averaged orientation as a function of the propagation time and the second-harmonic phase for γ = 0.5,
including the interactions (a), (b) Hμ, (c), (d) Hμ + Hα , and (e), (f) Hμ + Hα + Hβ and rotational temperatures Trot = 0.5 and 2 K, respectively.
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FIG. 8. For a thermal sample, (a), (b) t0-averaged orientation as a function of the second-harmonic phase at fixed propagation time t = 600
ps, (c), (d) fitted coefficients C j (t, ε1, ε2), and (e), (f) fitted phases ϕ j (t, ε1, ε2) from the analytic expression (B8) of 〈〈cos θ〉〉 for rotational
temperatures Trot = 0.5 and 2 K, respectively. The interaction Hamiltonian includes Hμ (red dot-dashed line, histograms red dashed), Hμ + Hα

(orange solid line), and Hμ + Hα + Hβ (blue dashed line, histograms blue dotted).

symmetry is also satisfied for certain parameters of the applied
field. Finally, the validity of the time-average approximation
has been also investigated assuming that this cw nonresonant
field does not drive any electronic, vibrational, or rotational
transitions.

Although this paper is restricted to the OCS molecule,
the observed physical phenomena occur for any linear polar
molecule. For each specific linear molecule, a detailed nu-
merical analysis is required to determine the importance of

FIG. 9. For a thermal sample with rotational temperature Trot =
2 K, the t0-averaged alignment as a function of the time and
the second-harmonic phase for γ = 0.5, including the interactions
(a) Hμ, (b) Hμ + Hα , and (c) Hμ + Hα + Hβ .

the three interactions in the field-dressed Hamiltonian, and
their impact in the rotational dynamics. A natural extension
to this paper would be to consider a linear polar molecule in
a two-color cw laser field with the two components having
perpendicular polarizations [54]. In this field configuration,
the symmetries of the system are reduced, and the two field
components tend to align and orient the molecule in different
directions. In addition, more complex molecules, such as
symmetric or asymmetric tops, in a two-color cw nonresonant
laser field could be also explored.
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APPENDIX A: VALIDITY OF THE TIME-AVERAGE
APPROXIMATION

This section is devoted to investigate the validity of the
time-average approximation [47]. For a nonresonant two-
color laser field, if the field frequencies, ω and 2ω, are far
from any molecular resonance and higher than the molecular
rotational frequency, the Hamiltonian (2) is averaged over
the rapid oscillations of the nonresonant laser field. Note
that for a laser pulse, it is further assumed that the laser
period is much shorter than the pulse duration. If the time-
average approximation is correct, then the Hamiltonian (2) is
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FIG. 10. For the ground state ψ (
, t = 0) = Y0,0(
) and H =
H0 + Hμ, orientation as a function of time and t0 for a two-color laser
field with periods (a) T = 10 fs and (b) T = 400 fs, and γ = 0.5,
δ1 = 0, and δ2 = π/2.

reduced to

H = BJ2 − 1
2�α cos2 θ f1(ε1, ε2, q1, q2, δ1, δ2)

− 1
6 (�β cos3 θ + 3β⊥ cos θ ) f2(ε1, ε2, q1, q2, δ1, δ2)

(A1)

with

f1(ε1, ε2, q1, q2, δ1, δ2) = ε2
1 + ε2

2

2
+ ε1ε2 cos(δ1 − δ2)δq1,q2 ,

f2(ε1, ε2, q1, q2, δ1, δ2) = 3

4
ε2

1ε2δ2q1,q2 cos(2δ1 − δ2)

+ 3

4
ε1ε

2
2δq1,2q2 cos(δ1 − 2δ2).

For a two-color electric field with q1 = 1 and q2 = 2, the
time-averaged Hamiltonian (A1) reads

H = BJ2 − 1
4�α cos2 θ

(
ε2

1 + ε2
2

)
− 1

8 (�β cos3 θ + 3β⊥ cos θ )ε2
1ε2 cos(2δ1 − δ2). (A2)

Thus, depending on the values of the phases δ1 and δ2, this
time-averaged Hamiltonian might align the molecule, or both
orient and align it.

In particular, a one-color laser field should not orient the
molecules. Considering only the interaction with the electric
dipole moment and ε2 = 0, |〈cos θ〉| � 10−2 for T � 10 fs
and |〈〈cos θ〉〉| ≈ 10−8, whereas for T = 1 fs, |〈cos θ〉| ≈
10−3 and |〈〈cos θ〉〉| ≈ 10−9. In the regime T � 10 fs the
time-average approximation starts to fail. For T = 10 fs, the
maximal deviations of the alignment from its field-free value
are |〈cos2 θ〉 − 1/3| � 10−3 and |〈〈cos2 θ〉〉 − 1/3|| � 10−4.
For H = H0 + Hμ + Hα + Hβ and T � 10 fs, |〈cos θ〉| �
10−2, whereas 〈cos2 θ〉 and 〈〈cos2 θ〉〉 each take values up to
0.85.

For a two-color laser field and H = H0 + Hμ, Figs. 10(a)
and 10(b) show the orientation as a function of t and t0 for
laser field periods 10 and 400 fs, respectively, and the field
parameters γ = 0.5 and δ2 = π/2. The orientation is nonzero

FIG. 11. For the ground state ψ (
, t = 0) = Y0,0(
) and the
Hamiltonian H = H0 + Hμ, (a) orientation and (b) alignment av-
eraged over t0 as a function of time for the electric-field periods
T = 10 fs (blue dashed line), 100 fs (orange solid line), 200 fs (red
dotted line), and 400 fs (green dot-dashed line). The electric-field
parameters are fixed to γ = 0.5, δ1 = 0, and δ2 = π/2.

even for T = 10 fs, and depends on t0. These two features
contradict the validity of the time-average approximation.
Figure 11 presents the t0-averaged orientation and t0-averaged
alignment as a function of t for T = 10, 100, 200, and 400 fs,
and γ = 0.5 and δ2 = π/2. For T = 10 fs, the t0-averaged
orientation is of the order of 10−6. Note that |〈cos θ〉| is four
orders of magnitude larger, but due to the dependence of
〈cos θ〉 on t0 [see Fig. 10(a)] 〈〈cos θ〉〉 becomes very small.
The maximal deviation of the t0-averaged alignment from
its field-free value is 1.8 × 10−4. Thus, for T = 10 fs, on
average the molecule is neither oriented nor aligned. One
could conclude that the time-average approximation can be
applied; however, for a fixed t0, it is not correct as shown in
Fig. 10(a). For T = 100 fs, the deviations of 〈〈cos θ〉〉 and
〈〈cos2 θ〉〉 from the corresponding field-free values are still
small but not negligible. By increasing T , i.e., reducing the
laser frequency ω, 〈〈cos θ〉〉 and 〈〈cos2 θ〉〉 increase; see, for
instance, the results for T = 200 and 400 fs.

For H = H0 + Hμ + Hα + Hβ , Figs. 12(a) and 12(b) show
the orientation as a function of t0 and time for the laser field
periods T = 10 and 400 fs, respectively, and the electric-field
parameters γ = 0.5 and δ2 = π/2. As in the previous case,
〈cos θ〉 is nonzero and depends on t0, which indicates that
even for a T = 10 fs laser the time-average approximation
is not correct. Figure 13 shows 〈〈cos θ〉〉 and 〈〈cos2 θ〉〉 as
a function of t for the electric-field periods T = 10, 100,
200, and 400 fs. Due to the dependence on t0 of 〈cos θ〉, the
t0-averaged orientation is rather small even for the laser period
400 fs. This cancellation does not occur for 〈〈cos2 θ〉〉 because
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FIG. 12. For the ground state ψ (
, t = 0) = Y0,0(
) and H =
H0 + Hμ + Hα + Hβ , orientation as a function of time and t0 for a
two-color laser field with periods (a) T = 10 fs and (b) T = 400 fs,
and γ = 0.5, δ1 = 0, and δ2 = π/2.

〈cos2 θ〉 > 0, and 〈〈cos2 θ〉〉 is very large for all considered
laser field periods.

We have obtained similar results for excited rotational
states. For the initial state ψ (
, t = 0) = Y2,2(
), 〈〈cos θ〉〉
and 〈〈cos2 θ〉〉 are presented as a function of time in Figs. 14(a)
and 14(b), respectively, for the electric-field periods T = 10,
100, 200, and 400 fs. Due to its large rotational kinetic energy,

FIG. 13. For the ground state ψ (
, t = 0) = Y0,0(
) and the
three interactions, (a) orientation and (b) alignment averaged over
t0 as a function of time for the electric-field periods T = 2π/ω = 10
fs (blue dashed line), 100 fs (orange solid line), 200 fs (red dotted
line), and 400 fs (green dot-dashed line). The two-color electric-field
parameters are fixed to γ = 0.5, δ1 = 0, and δ2 = π/2.

FIG. 14. For the excited state ψ (
, t = 0) = Y2,2(
) and includ-
ing the three interactions, t0-averaged (a) orientation and (b) align-
ment as a function of time for the electric-field periods T = 2π/ω =
10 fs (blue dashed line), 100 fs (orange solid line), 200 fs (red dotted
line), and 400 fs (green dot-dashed line). The two-color electric-field
parameters are fixed to γ = 0.5, δ1 = 0, and δ2 = π/2.

this excited state is less aligned than the ground state for
T = 400 fs, and weakly oriented. At this laser period, the
deviations from the time-average approximation values are the
largest.

APPENDIX B: ANALYTIC EXPRESSIONS OF THE
ORIENTATION AND ALIGNMENT

Following the results of Refs. [17–19], the orientation and
the alignment can be expressed in terms of the amplitude
and phase, ε j and δ j , of the j harmonics g j (t, t0, ε j, δ j ) =
ε j cos[q jω(t + t0) + δ j], with j = 1, . . . , s, appearing in the
Hamiltonian (2) due to the interaction of the molecule with the
two-color electric field (1). The frequencies, amplitudes, and
phases of these harmonics are collected in Table II. The first
two rows in Table II with j = 1 and 2 provide the harmonics
of the biharmonic field, which appear due to the interaction
of this field with the permanent electric dipole moment. The
interaction of the biharmonic electric field with the polar-
izability is proportional to E2(t ), and the harmonics with
j = 3, . . . , 6 (see Table II) also contribute to the Hamiltonian.
The cubic term E3(t ) is due to interaction with the molecular
hyperpolarizability, and is responsible for the harmonics with
7 � j � 14 in Table II.

Based on simple symmetry considerations of the s har-
monic functions (see Refs. [18,19]), the orientation and the
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TABLE II. Prefactor of the frequency ω, qj ; amplitude, ε j ; and
phase, δ j , of the j-harmonics appearing in the Hamiltonian (2) due
to the interaction with the two-color electric field (1).

j q j ε j δ j

1 q1 ε1 δ1

2 q2 ε2 δ2

3 2q1 ε2
1/2 2δ1

4 2q2 ε2
2/2 2δ2

5 q1 + q2 ε1ε2 δ1 + δ2

6 q2 − q1 ε1ε2 δ2 − δ1

7 q1 (3/2)ε1ε
2
2 + (3/4)ε3

1 δ1

8 q2 (3/2)ε2
1ε2 + (3/4)ε3

2 δ2

9 3q1 ε3
1/4 3δ1

10 3q2 ε3
2/4 3δ2

11 q2 + 2q1 (3/4)ε2
1ε2 δ2 + 2δ1

12 q2 − 2q1 (3/4)ε2
1ε2 δ2 − 2δ1

13 2q2 + q1 (3/4)ε1ε
2
2 2δ2 + δ1

14 2q2 − q1 (3/4)ε1ε
2
2 2δ2 − δ1

alignment can be expressed as

〈cosk θ〉(t, t0, ε, δ)

=
∑
n∈Zs

Cn(t, ε)
s∏

j=1

ε
|n j |
j cos[n · δ+ωt0n · q+�n(t, ε)],

(B1)

where q = {q1, · · · , qs}, ε = {ε1, · · · , εs}, δ = {δ1, · · · , δs},
and Cn(t, ε) and �n(t, ε) are both even functions of each ε j .
The t0-averaged expectation value satisfies [19]

〈〈cosk θ〉〉(t, ε, δ)

= C0(t, ε) +
∑
n∈S

Cn(t, ε)
s∏

j=1

ε
|n j |
j cos[n · δ+�n(t, ε)], (B2)

where

S = {n ∈ Zs : n · q = 0} (B3)

denotes the set of nonzero solutions of the Diophantine equa-
tion n · q = 0, the leftmost nonzero component of which is
positive [18].

For H = H0 + Hμ, s = 2, and q = {q1, q2}, ε = {ε1, ε2},
and δ = {δ1, δ2} [17,18]. The Diophantine equation is n1q1 +
n2q2 = 0. The t0-averaged expectation value (13) can be writ-
ten as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

=
+∞∑
j=0

|Cj (t, ε1, ε2)|(εq2
1 ε

q1
2

) j
cos[ jξ12 + � j (t, ε1, ε2)],

(B4)

where ξ12 = (q1δ2 − q2δ1) and �0(t, ε1, ε2) = 0 [19]. Due to
the inversion of the electric-field direction symmetry (17), it
holds that (i) the series (B4) includes only even terms for k

even if q1 + q2 is odd, otherwise all the terms contribute; (ii)
Eq. (B4) includes only odd ones for k odd if q1 + q2 is odd;
and (iii) if q1 + q2 is even, 〈〈cosk θ〉〉 = 0 with k odd, and for
k = 1 the molecule is not oriented.

For H = H0 + Hμ + Hα , six harmonics appear in the
Hamiltonian, s = 6, and the nonzero solution of the Diophan-
tine equation reads

(n1 + 2n3 + n5 − n6)q1 + (n2 + 2n4 + n5 + n6)q2 = 0, (B5)

and S = {n1 = −2n3 − n5+n6 − mq2, n1 > 0, n2 = −2n4 −
n5 − n6 + mq1, (m, n3, n4, n5, n6) ∈ Z5}. As a consequence,
n · δ = mξ12. Using this result, Eq. (B2) can be rewritten as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

= C0(t, ε1, ε2) +
∑

(n,m)∈S
Cn(t, ε1, ε2)ε|xn|

1 ε
|yn|
2

× cos[mξ12+�n(t, ε1, ε2)], (B6)

where xn, yn, and m are integers determined not only by the
solutions of the Diophantine equation, but also by the sym-
metries. Indeed, the symmetry (17) implies that |xn| + |yn|
has the same parity as k. Thus, the expectation value (B6) is
rewritten as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2)

=
+∞∑
j=0

C j (t, ε1, ε2) cos[ jξ12+ϕ j (t, ε1, ε2)], (B7)

with C j (t,−ε1,−ε2) = (−1)kC j (t, ε1, ε2). Furthermore, due
to the symmetry on the phases (16) two cases can be distin-
guished according to the parity of q1 + q2.

(i) If q1 + q2 is an even integer, q1 and q2 are both odd in-
teger numbers because gcd(q1, q2) = 1. As a consequence of
the symmetry (16), it holds that 〈〈cosk θ〉〉 = (−1)k 〈〈cosk θ〉〉,
and 〈〈cosk θ〉〉 = 0 for k odd, and 〈〈cosk θ〉〉 satisfies (B7) for
k even.

(ii) If q1 + q2 is an odd integer, q1 and q2 have different
parity. Due to the symmetry (16), for odd or even values of k in
(B7), only odd or even terms contribute to the corresponding
expansion, respectively, i.e.,

〈〈cos2k+1 θ〉〉(t, ε1, ε2, δ1, δ2)

=
+∞∑
j = 1

( j odd)

C j (t, ε1, ε2) cos[ jξ12+ϕ j (t, ε1, ε2)] (B8)

and

〈〈cos2k θ〉〉(t, ε1, ε2, δ1, δ2)

=
+∞∑
j = 0

( j even)

C j (t, ε1, ε2) cos[ jξ12+ϕ j (t, ε1, ε2)]. (B9)

For H = H0 + Hμ + Hα + Hβ , s = 14 in the set of
nonzero solutions (B3) of the Diophantine equation, which
reads [n1 + 2(n3 + n11 − n12) + n5 − n6 + n7 + 3n9 + n13 −
n14]q1 + [n2 + 2(n4 + n13 + n14)+n5+n6+n8 + 3n10+n11 +
n12]q2 = 0. Therefore, S = {n1 = −2(n3 + n11 − n12) −
n5 + n6 − n7 − 3n9 − n13 + n14− mq2, n1 > 0, n2= − 2(n4+
n13 + n14) − n5 − n6 − n8 − 3n10 − n11 − n12 + mq1, (m, n3,
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n4, · · · , n14) ∈ Z13}. As a consequence, n · δ = mξ12 is also
satisfied. In this case, expression (B6) is also obtained, and
a similar symmetry analysis transforms it into the formula

(B7) if q1 + q2 is an even integer, and if q1 + q2 is odd into
Eqs. (B8) and (B9). Finally, note that Eq. (B4) can also be
rewritten as Eqs. (B8) and (B9) if q1 + q2 is an odd integer.
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