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Based on the strong-field approximation, we report results for high-order harmonic generation by bi-elliptical
orthogonally polarized two-color (BEOTC) fields with frequency ratios of 2:1 and 3:1 and fundamental
wavelengths of 800 and 1800 nm. A BEOTC field denotes the superposition of two copropagating counter-
rotating elliptically polarized fields with different wavelengths and orthogonal semimajor axes. Its two limiting
cases are the bicircular field and the linearly polarized orthogonal two-color field [D. B. Milošević and W.
Becker, Phys. Rev. A 100, 031401(R) (2019)]. A detailed analysis of the high-order harmonic intensities and
ellipticities as functions of the harmonic order, the ellipticity, and the relative phase between the two driving-field
components is presented. Regions of the parameter space are identified where the harmonic ellipticities are very
high. Surprisingly, this can be the case already for very small ellipticity (as small as ε = 0.01) of the driving
field. This can be important for practical applications. In the opposite limit where the BEOTC field is close to
bicircular, the selection rules that govern the latter case can also be very quickly invalidated. For the 2:1 case,
this can result in an apparent shift of the selection rules by one harmonic order.

DOI: 10.1103/PhysRevA.102.023107

I. INTRODUCTION

High-order harmonic generation (HHG) is in a position
to bridge the gap in intensity and frequency between x rays
provided by free-electron-laser (FEL)-based sources and more
traditional nonlinear-optics sources. HHG proceeds via ion-
ization of an atom (or molecule) by an intense laser pulse.
The liberated electron collects energy from the laser field,
which it emits in the form of a single photon when it is
driven into a recollision with its parent atom. In the past,
linearly polarized monochromatic laser pulses have been used
for this purpose, which generate linearly polarized harmonics
with a frequency spectrum that is almost flat up to a certain
cutoff frequency where it terminates rather abruptly. How-
ever, for many applications, x rays with circular or elliptical
polarizations are desirable. In particular, the case of circular
polarization is important since using such harmonics it is pos-
sible to analyze and, possibly, discriminate the enantiomers
of a chiral molecule. Many biomolecules exhibit circular
dichroism [1–10]. In addition, such harmonics can be used
to analyze the magnetic structure of materials (so-called x-ray
magnetic circular dichroism [11–19]).

Initially, the process of HHG did not seem to lend itself
to producing circularly polarized harmonics. Namely, a circu-
larly polarized laser pulse does not generate any harmonics
while a field with elliptical polarization does produce ellipti-
cally polarized harmonics, but with rather low yield as soon as
the driving ellipticity is substantially different from zero. The
limitations inherent in a linearly polarized driving pulse can be
overcome by using “tailored” fields, which are custom made
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according to the experimenters’ requirements and subject to
their technical capabilities. Especially, superpositions of two
fields with different frequencies and polarizations (and, some-
times, propagation directions) have been employed. Bicircular
fields, viz., superpositions of two copropagating fields with
counter-rotating circular polarization and a frequency ratio of
typically, though not necessarily, 2:1, have become popular
because they generate circularly polarized harmonics with
helicities alternating between 1 and −1 from one harmonic
to the next. More information about bicircular fields can
be found in Refs. [20–30]. Two copropagating orthogonal
linearly polarized fields with different frequencies [an orthog-
onal two-color (OTC) field] generate very interesting harmon-
ics: for a frequency ratio of 2:1, the harmonics are linearly
polarized in the direction of either driving component while
for a frequency ratio of 3:1, they are elliptically polarized.
The frequency spectrum can also be very different from the
standard shape of a plateau with a well-defined cutoff, as it
is familiar from linear polarization. Depending on the various
parameters (component intensities, frequencies, and relative
phase), there may be a very pronounced cutoff or no cutoff
at all, and the spectrum can have just about any shape in
place of the plateau. In Ref. [31] we have shown that with the
ω-3ω OTC field it is possible to generate elliptically polarized
harmonics with energies much higher than can be generated
by a bicircular field for the same driving-pulse intensities.

OTC fields have attracted interest and have been theo-
retically investigated and experimentally utilized for vari-
ous purposes for a long time already [20,21,32–65]. In one
of the earlier applications, HHG was very efficiently en-
hanced by the addition to the fundamental driving field of a
stronger [33,34] or weaker [35] orthogonally polarized second
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A 102, 023107 (2020)

harmonic. A very general motivation to superimpose a second
harmonic is the following: The two half cycles of a linearly
polarized driving field are equivalent insomuch as HHG is
concerned. This symmetry prohibits one from extracting sub-
cycle information from a harmonic spectrum. The symmetry
is broken by the presence of a second-order (or higher)
harmonic which, moreover, introduces the relative phase as an
additional control parameter. If the harmonic is perpendicular
to the fundamental, i.e., for an OTC field, the dynamics unfold
in a plane, which can be exploited to yield additional informa-
tion. This is the basic reason why OTC fields have become
important. For example, it becomes possible to select and/or
to affect a specific quantum trajectory [36–42], to enhance
individual harmonics [43–45], to extract the ionization time
[46], or to explore atomic wave functions or cross sections
or molecular orbitals [38,47–54], the pertinent selection rules
for the emitted harmonics [55], or the molecular-orientation
dependence [56]. Polarization control of the harmonics is
about to be explored [57–59].

In the present paper we analyze HHG by a “bi-elliptical”
orthogonal two-color (BEOTC) field, viz., two copropagating
elliptically polarized fields with their major polarization axes
at right angles to each other. BEOTC fields have so far
only received little attention [54,66–68]. For the component
ellipticities ε1 = ε2 = 1 this field reduces to the bicircular
field, while for ε1 = ε2 = 0 it becomes the OTC field. Our
formalism allows for an arbitrary integer frequency ratio of
s:r, but in the specific examples we restrict ourselves to ratios
of 2:1 or 3:1. For the OTC fields, these two configurations
generate very different harmonics as mentioned above.

In Sec. II we define our BEOTC field, introduce the observ-
ables which we calculate, such as the harmonic intensities and
polarizations, and derive the selection rules. Our numerical
results are presented in Sec. III and the conclusions are given
in Sec. IV. Atomic units are used throughout.

II. THEORY

A. Definition of the BEOTC field

We consider the BEOTC field, which consists of an ellipti-
cal field of frequency rω, amplitude E1, and ellipticity ε1 with
the x axis as the major axis and a second coplanar elliptical
field of frequency sω, amplitude E2, and ellipticity ε2 with
the y axis as the major axis. The period of the fundamental
frequency is T = 2π/ω. The electric-field vector of this field
is E(t ) = E1(t ) + E2(t ) with

E1(t ) = E1√
1 + ε2

1

[êx sin(rωt ) − ε1êy cos(rωt )]

= i

2
E1

êx + iε1êy√
1 + ε2

1

e−irωt + c.c., (1)

E2(t ) = E2√
1 + ε2

2

[êy sin(sωt + φ) − ε2êx cos(sωt + φ)]

= i

2
E2

êy + iε2êx√
1 + ε2

2

e−i(sωt+φ) + c.c., (2)

-0.05 0 0.05

-0.05

0

0.05

E(t)

E
2
(t)

E
1
(t)

38

40

39

41

-0.1 0 0.1

-0.1

0

0.1

FIG. 1. Left: BEOTC field E(t ) (upper) and its components E1(t )
and E2(t ) (lower) for the ω-2ω field with ellipticities ε1 = ε2 = 0.84,
the relative phase φ = 0.92π , and the field component intensities
I1 = I2 = 4 × 1014 W/cm2. Middle and right: Fields of the harmon-
ics n = 38, 39, 40, and 41, generated by He atoms exposed to the
BEOTC field.

where êx and êy are real unit vectors, which span the xy plane,
and φ is the relative phase between the two components. For
ε1 = ε2 = ε, the field components are counter-rotating in the
xy plane. For ε1 = ε2 = 0, this field reduces to the OTC field
(see Ref. [31] and references therein), while for ε1 = ε2 = 1
it becomes the bicircular field [23,24,26,29]. An example
of the ω-2ω BEOTC field is shown in the upper left panel
of Fig. 1. The electric-field vectors of the two components
are shown in the lower left panel. In the remaining panels
we show the harmonic fields for n = 38, 39, 40, and 41 (see
Sec. III C for explanations; these examples do not obey the
known selection rule for HHG by bicircular field, according
to which the harmonic n = 39 is forbidden).

The BEOTC field can be rewritten as a sum of two bicircu-
lar fields, E(t ) = Ebc

1 (t ) + Ebc
2 (t ), where

Ebc
1 (t ) = i

2

⎡
⎣ E1(1 + ε1)√

2(1 + ε2
1 )

ê+e−irωt

+ E2(1 + ε2)√
2(1 + ε2

2 )
ê−e−i(sωt+φ−π/2)

⎤
⎦ + c.c., (3)

Ebc
2 (t ) = i

2

⎡
⎣ E2(ε2 − 1)√

2(1 + ε2
2 )

ê+e−i(sωt+φ−π/2)

+ E1(1 − ε1)√
2(1 + ε2

1 )
ê−e−irωt

⎤
⎦ + c.c., (4)

with ê± = (êx ± iêy)/
√

2 [69]. Therefore, the BEOTC field
is a sum of two pairs of counter-rotating circularly polarized
fields, and high-order harmonic generation by this field can be
analyzed similarly as in Ref. [26].
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B. Harmonic intensity and ellipticity

The nth-harmonic intensity (power) Pn and ellipticity εn for
the laser field given by Eqs. (1)–(4) are defined by (in atomic
units; see Ref. [26] and references therein)

Pn = (nω)4

2πc3
|Tn|2, (5)

εn = sgn(ξn)

(
1 − √

1 − ξ 2
n

1 + √
1 − ξ 2

n

)1/2

, (6)

with the degree of circular polarization ξn =
Im (2T ∗

nxTny)/|Tn|2. The vector Tn = ∫ T
0 dtd(t )einωt/T is

defined as the Fourier component of the time-dependent
dipole d(t ) = ∑

a da(t ), where the sum is over all possible
values a of the atomic ground-state quantum number
(the quantum-mechanical method of the calculation
of da(t ), based on the strong-field approximation, is
described in Ref. [29]). The vector Tn can be written as
Tn = |Tn|en = Tnx êx + Tnyêy = Tn+ê+ + Tn−ê−, with en

the complex unit polarization vector of the nth harmonic,
|Tn| = e∗

n · Tn, and ξn = 2εn/(1 + ε2
n ) = ik̂ · (ên × ê∗

n ) =
(|Tn+|2 − |Tn−|2)/(|Tn+|2 + |Tn−|2) (−1 � ξn � 1), with
k̂ = k/|k| (k being the wave vector) the unit vector along the
z axis. The components with helicities +1 and −1, Tn+ and
Tn−, respectively, contribute coherently to the HHG process
and, in general, elliptically polarized harmonics are emitted.
The nth-harmonic polarization ellipse is rotated by an offset
angle θn with respect to the polarization ellipse defined by êx

and êy [23]. The offset angle is determined by the relation

θn = Im
{

ln
[√

1 + ε2
n (Re Tnx + iRe Tny)/|Tn|

]}
. (7)

This is different from the formulas in Refs. [23,70] where
inverse trigonometric functions were used to express 2θn.

The complex time-dependent nth-harmonic electric-field
vector is [24,29] En(t ) = n2|Tn|ene−inωt , with

en = 1 + εn√
2
(
1 + ε2

n

)e−iθn ê+ + 1 − εn√
2
(
1 + ε2

n

)eiθn ê−. (8)

The nth-harmonic polarization vector can be written as en =
(ênx + iεnêny)/

√
1 + ε2

n , where the harmonic ellipticity εn and
the real orthogonal unit vectors ênx and êny determine the
orientation of the harmonic-field polarization ellipse, which
is rotated by the angle θn with respect to the laser-field
polarization ellipse (i.e., with respect to the x axis). The unit
vectors ên± = (ênx ± iêny)/

√
2 in the rotated coordinate sys-

tem, which are connected with the nth-harmonic polarization
ellipse, satisfy the relation ên± = exp(∓iθn)ê±.

C. Selection rules

In the HHG process integer numbers p± (q±) of photons
are exchanged with the field component having frequency rω
(sω) and helicity ±1, so that the energy-conserving condition
for the nth harmonic is

nω = (p+ + p−)rω + (q+ + q−)sω. (9)

The projection of the total angular momentum on the z axis is
conserved. Having in mind that each absorbed photon from

the field component proportional to ê± in Eqs. (3) and (4)
changes the angular momentum projection by ±1 and that the
emitted nth-harmonic component proportional to ê± in Eq. (8)
changes this projection by ∓1, the condition that the angular
momentum projection be conserved takes the form

p+ − p− + q+ − q− ∓ 1 = 0, (10)

where ∓1 stands for the emission of a circularly polarized
nth harmonic with helicity ∓1. This implies that the total
number p+ + p− + q+ + q− of photons exchanged with the
field is odd as required by parity conservation. Introducing
p+ = p− − q+ + q− ± 1 into Eq. (9) we obtain the following
selection rule for the Tn± component of the T -matrix element:

n± = (2p− + q− − q+ ± 1)r + (q− + q+)s. (11)

The nth harmonic has contributions of Tn=n+ and Tn=n− com-
ponents which add coherently and, therefore, produce an el-
liptically polarized nth harmonic. For the ω-3ω field, Eq. (11)
reduces to

r = 1, s = 3, n± = 2(p− + 2q− + q+) ± 1, (12)

so that only odd elliptically polarized high-order harmon-
ics are emitted. This can also be shown taking into ac-
count that for r and s odd we have E(t + T/2) = −E(t )
and d(t + T/2) = −d(t ) so that Tn = ∫ T/2

0 dtd(t )einωt (1 −
einπ )/T , which is different from zero only for n odd.

III. NUMERICAL RESULTS

A. Results for the ω-3ω BEOTC field and 1800 nm

Let us now present numerical results for HHG by a He
atom exposed to a BEOTC field. We choose the fundamental
wavelength of 1800 nm, while the field component ellipticities
and intensities are equal: ε1 = ε2 = ε and E2

1 = E2
2 = 5 ×

1014 W/cm2.
We first present results for the ω-3ω BEOTC field in

Figs. 2–4. As mentioned above, only odd harmonics are
emitted. In addition, for (ε, φ) → (−ε, φ + π ) from Eqs. (1)
and (2) it follows that Ex(t ) → Ex(t ) and Ey(t ) → −Ey(t ).
Taking into account the explicit form of the matrix elements
for the He atom, we obtain that in this case Tnx → Tnx and
Tny → −Tny so that Pn → Pn and εn → −εn. Therefore, a
simultaneous change of the sign of the ellipticity and a shift of
the relative phase by π does not change the harmonic inten-
sity, while the harmonic ellipticity changes its sign. Hence, it
is enough to calculate Pn and εn for positive ε and φ ∈ [0, 2π ],
as presented in Figs. 2–4. Then the results for −ε and phase φ

are obtained from the results calculated for ε and φ + π .
The upper panels of Fig. 2 confirm that for ε = 0, which

corresponds to the OTC field considered in Ref. [31], upon
φ → φ + π the harmonic intensity is invariant while the
harmonic ellipticity changes its sign. The results obtained
are qualitatively similar to those presented in Ref. [31]. In
addition to the conclusions drawn in Ref. [31], we see that for
low harmonic order (n < 200) the ellipticity of the harmonics
can be very high for suitable relative phases. This result was
not discussed in Ref. [31] and we analyze it in more detail
in the next section where a similar effect is observed for
the ω-2ω BEOTC field for very low ellipticities. We should
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FIG. 2. Logarithm of the harmonic intensity Pn (left) and ellip-
ticity εn (right) for HHG by He atoms, presented in false colors
as functions of the relative phase between the ω-3ω BEOTC field
components φ (abscissa) and the harmonic order n (ordinate). The
BEOTC field component ellipticities are equal ε1 = ε2 = ε, compo-
nent intensities are E 2

1 = E 2
2 = 5 × 1014 W/cm2, and the fundamen-

tal wavelength is 1800 nm. Top: ε = 0 (OTC field). Bottom: ε = 1
(bicircular field).

also emphasize the extremely strong dependence of the shape
of the harmonic spectrum on the relative phase φ (note the
logarithmic color code).

In the lower panels of Fig. 2 we present the same results for
the opposite limit, namely, the bicircular field [ε = 1, E2(t ) =
0]. The cutoff is much lower than in the OTC field case and
the results do not depend on the relative phase. Since q+ =
p− = 0 in Eq. (12), only the harmonics n± = 4q− ± 1 having
helicity ±1 are emitted.

Figure 3 illustrates how the harmonic intensity and elliptic-
ity change when the BEOTC ellipticity increases from ε = 0.1
to ε = 0.6. The first observation is that the invariance upon
φ → φ + π is lost. For a broad interval of relative phases
the cutoff of the spectrum remains very high (near n = 800),

even for ellipticities as high as ε = 0.5, but the yield Pn falls
off quickly as soon as ε � 0.4. We also notice regions in
which the harmonic ellipticity is high, in particular for low
harmonic orders. The corresponding results for the BEOTC
field ellipticities ε = 0.7, 0.8, 0.9 are presented in Fig. 4. The
cutoff is lower. Interesting sickle-like regions occur in the
(n, φ) plane in which the harmonic ellipticity changes quickly
from εn = 1 to εn = −1. In these regions, the alternating
helicities for the bicircular field are already anticipated (lower
right panel of Fig. 2).

B. Results for the ω-2ω BEOTC field and 1800 nm

In Figs. 5–11 we present numerical results for the ω-2ω

BEOTC field. In this case, both even and odd harmonics of the
fundamental frequency are emitted. The results are invariant
with respect to a shift of the relative phase by π , φ → φ + π .
The reason is that the field component E1(t ) does not depend
on φ, while the component E2(t ) changes sign for the shift of
φ by π . On the other hand, the field component E1(t ) changes
sign for t → t + T/2, while the component E2(t ) remains
unchanged. Therefore, for φ → φ + π and t → t + T/2 both
E1(t ) and E2(t ) change sign, which means that both Tnx

and Tny change sign so that Pn and εn remain unchanged.
For ε → −ε the x component of E1(t ) remains unchanged,
while the y component changes sign. The opposite is valid
for the E2(t ) component. Therefore, the harmonic intensity is
invariant with respect to a change of sign of the ellipticity,
while the harmonic ellipticity εn changes sign for ε → −ε,
since sgn(εn) = sgn[Im (2T ∗

nxTny)] according to Eq. (6).
For the ω-2ω OTC field (ε = 0) the harmonic ellipticity

is εn = 0, while for the ω-2ω bicircular field (ε = 1) the
harmonic ellipticities are εn± = ±1 for the harmonic order
n± = 3q− ± 1. Therefore, in Fig. 5 we present only the har-
monic intensities. For the bicircular field (right panel), the
harmonic intensity does not depend on the relative phase and
the cutoff is much lower than for the OTC field (left panel).
For the OTC field (left panel), remarkably, there is a region
of the relative phase around φ = 2.2 rad with practically no
harmonic emission at all.

In Fig. 6 we present both the harmonic intensity and the
harmonic ellipticity for ellipticities ε = 0.1, . . . , 0.6. The cut-
off for the ω-2ω BEOTC field is higher than that of the ω-3ω

case and remains above n = 800 for all ellipticities ε � 0.5.
As in the ω-3ω case, there are regions in which the harmonic
ellipticity is high. This is particularly pronounced for low
harmonic orders. As mentioned, the harmonic ellipticity is
zero for ε = 0. Therefore, it is surprising that upon the small
change from ε = 0.0 to ε = 0.1 the harmonic ellipticity can
be high; consider, for example, the region near φ = 0 and
n < 500 or the region below n = 100 for a wide interval of
φ (this case is analyzed in more detail below) in the right
subpanel of the upper left panel. Finally, in Fig. 7 we present
the corresponding results for the ellipticities ε = 0.7, 0.8, 0.9.
The high-harmonic cutoff is below n = 700 and regions of
high harmonic ellipticity can be noticed, similarly as in the
ω-3ω case.

Figure 6 demonstrates that the magnitude of the harmonic
ellipticity can be very high for low harmonic orders (around
n = 50) even though the BEOTC field ellipticity is very low
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FIG. 3. Same as in Fig. 2 but for the ellipticities ε = 0.1, . . . , 0.6, as indicated in the upper left corner of each panel.

(ε = 0.1). To further explore this, in Fig. 8 we present results
for the ellipticity ε = 0.01 (for most practical purposes, this
would be a linearly polarized field). In the lower panel of
Fig. 8 we show the same results but enlarged for low harmonic

orders. The harmonic ellipticities have large positive values
for harmonic orders close to the ionization potential of He
(the value of Ip/ω is represented by horizontal lines in the
right panels) and for particular values of the relative phase.
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FIG. 4. Same as in Fig. 2 but for the ellipticities ε =
0.7, 0.8, 0.9, as indicated in the upper left corner of each panel.

FIG. 5. Logarithm of the harmonic intensity Pn for HHG by He
atoms, presented in false colors as functions of the relative phase
φ (abscissa) between the ω-2ω BEOTC field components and the
harmonic order n (ordinate). The component intensities are E 2

1 =
E 2

2 = 5 × 1014 W/cm2 and the fundamental wavelength is 1800 nm.
The BEOTC field component ellipticities are equal: ε = 0 (left,
OTC), ε = 1 (right, bicircular).

Unfortunately, the corresponding harmonic intensity is rather
low for these values. Surprisingly large harmonic ellipticities
for very low BEOTC field ellipticity were also reported in a
recent paper [66].

The question is why it is that the harmonic ellipticity can
be so large for small values of the BEOTC field ellipticity.
For ε = 0 the former field reduces to the OTC field and the
time-dependent dipole satisfies the relations dx(t + T/2) =
−dx(t ), dy(t + T/2) = dy(t ), from which it follows that the
emitted odd harmonics are polarized in the x direction, while
the even harmonics are polarized in the y direction. Using the
relation Tn± = (Tnx ∓ iTny)/

√
2 it follows that for the OTC

field we have Tn+ = (−1)n+1Tn− so that |Tn+|2 = |Tn−|2, ξn =
(|Tn+|2 − |Tn−|2)/(|Tn+|2 + |Tn−|2) = 0, and εn = 0. For ε �=
0 the above relations no longer hold and the harmonics are
elliptically polarized. In the strong-field approximation the
time-dependent dipole can be represented as an integral over
the travel time τ [29]:

d(t ) =
∫ ∞

0
dτ

(
2π

iτ

)3/2
∂ψ0(q)

∂q
|q=ks+A(t )

×〈ks + A(t0)|r · E(t0)|ψ0〉eiS(t,τ ), (13)

where A(t ) = − ∫ t dt ′E(t ′), ks = − ∫ t
t0

dt ′A(t ′)/τ is the sta-
tionary momentum, t0 = t − τ, S is the action, and ψ0 is the
atomic ground-state wave function. For the He atom we have
∂ψ0(q)/∂q = êq∂ψ0(q)/∂q, where, in spherical coordinates,
êq = q/|q| = (cos φq, sin φq, 0). Taking into account that
ê± · ê± = 0, ê± · ê∓ = 1, we obtain

Tn± = Tn · ê∓ ∝
∫

dt
∫

dτ f (t, τ )e∓iφq (t,τ ), (14)
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FIG. 6. Same as in Fig. 3 but for the the ω-2ω BEOTC field and the relative phase φ ∈ [0, π ]. The ellipticities ε = 0.1, . . . , 0.6 are
indicated in the upper left corner of each panel.

where f (t, τ ) is the same function both for Tn+ and Tn−. Since
in the exponent we have ∓iφq(t, τ ) and since we integrate

over t and τ , even a small ellipticity ε can lead to a large dif-
ference between the Tn+ and Tn− matrix elements, which gives
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A 102, 023107 (2020)

FIG. 7. Same as in Fig. 6 but for the ellipticities ε =
0.7, 0.8, 0.9, as indicated in the upper left corner of each panel.

a large value of ξn = (|Tn+|2 − |Tn−|2)/(|Tn+|2 + |Tn−|2). In
Fig. 9 we display the degree of circular polarization ξn as a
function of the harmonic order for various small values of the
ellipticity ε. Even for ε as small as 10−5 (magenta line), ξn

can be different from zero. This is especially pronounced for

FIG. 8. Logarithm of the harmonic intensities Pn (left) and the
ellipticities εn (right). The laser and atomic parameters are the same
as in Fig. 6 except for the ellipticity, which is ε = 0.01.

harmonics close to the cutoff. With increasing ε, ξn becomes
larger. It oscillates between large positive values (for n odd)
and large negative values (for n even), forming two curves
in the n-ξn plane. These two curves are not symmetric with
respect to the n axis. For practical applications, it is important
that for a wide range of harmonic orders the value of |ξn| is
very close to 1, i.e., the corresponding harmonics are nearly
circularly polarized.

In Fig. 10 we show, in false-color presentation, how the
parameter ξn changes with the laser field ellipticity 0 � ε �
0.5 (abscissa) and the harmonic order (ordinate). We see that,
for fixed ellipticity larger than those presented in Fig. 9, the
parameter ξn has an oscillatory structure. The period of oscil-
lations decreases with increasing ε. We also see that for ellip-
ticities between 0.36 and 0.49 and low harmonic order (close
to the value Ip/ω = 35.7) there is a region in which the pa-
rameter ξn is close to 1. We observed a similar effect in Fig. 8.
The explanation why the harmonic ellipticity can be large for
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FIG. 9. Degree of circular polarization ξn as a function of the
harmonic order n for values of the laser field ellipticity denoted in
the legend. For given ellipticity, there are two curves: odd (even)
harmonics correspond to (for n � 640) a positive (negative) de-
gree of polarization. The component intensities are E 2

1 = E 2
2 = 5 ×

1014 W/cm2, the fundamental wavelength is 1800 nm, the relative
phase is φ = 0, and the atom is He.

low harmonic order follows from the formula which expresses
the degree of circular polarization via the T -matrix element
of the HHG process: ξn = Im (2T ∗

nxTny)/|Tn|2 = 2εn/(1 + ε2
n ).

The imaginary part of the T -matrix element can be large for
low harmonic order when the harmonic photon energy is close
to the ionization potential, which implies that the value of ξn

can also be large as shown in Figs. 8 and 10.
Our paper is a follow-up of Ref. [31], where we consid-

ered harmonic generation by OTC fields (both fields being
linearly polarized). This paper also exhibited surprising re-
sults regarding the shape of the harmonic spectra and their
polarization (for the frequency ratio 1:3). We were able to
explain the spectral shape in terms of the simple-man model

FIG. 10. Degree of circular polarization ξn presented in false
colors as a function of the laser ellipticity and harmonic order. Other
parameters are the same as in Fig. 9.

ε=0.01

n=51, φ=0 n=60, φ=0.6π

n=69, φ=0 n=78, φ=0.6π

FIG. 11. Examples of the harmonic field calculated using the
results of Fig. 8. The corresponding values of the harmonic order
and the relative phase are denoted in each panel.

and quantum orbits. However, we made no attempt to explain
the polarization in terms of models. In the current paper,
we consider BEOTC fields. Again, the results are surprising,
especially the fact that very small ellipticities of the driving
fields are sufficient, in some cases, to generate harmonics with
large ellipticity. We provide some arguments that explain how
this can formally come about. But again we are unable to
provide an intuitive explanation of the harmonic polarization.
The quantum-orbit model appears to be not capable of dealing
with the polarization of the harmonics; at least, it has to our
knowledge never been employed for this purpose.

Finally, in Fig. 11 we present a few examples of the
harmonic field, defined as Re En, for various values of the
harmonic order and relative phase. Obviously, the harmonic
field is close to circular in all examples presented.

C. Results for the ω-2ω BEOTC field and 800 nm

Finally, we analyze the harmonic intensity and the har-
monic ellipticity as functions of the relative phase and ellip-
ticity of the ω-2ω BEOTC field, for HHG by a He atom, equal
component intensities E2

1 = E2
2 = 4 × 1014 W/cm2 and the

fundamental wavelength of 800 nm. The corresponding re-
sults are presented in Figs. 12, 13, and 14. Figure 12 illustrates
a “shift” of the selection rules. For Figs. 13 and 14 the
harmonic orders are fixed to the values n = 38, 39, 40, and
41, as indicated in each panel.

According to the selection rules for the bicircular field
(ε = 1), the harmonics n = 3q, q = 1, 2, . . ., should be miss-
ing. Indeed, this is clearly visible in the top panel of Fig. 12,
where the results for the bicircular field (ε = 1) are presented.
For example, the harmonic intensity P39 is zero, with the
harmonic n = 39 indicated by a dotted blue line. In addition,
the polar diagram of the corresponding electric-field vector is
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FIG. 12. Harmonic intensity Pn as a function of the harmonic
order n for HHG by He atoms exposed to the ω-2ω BEOTC field
with equal component intensities E 2

1 = E 2
2 = 4 × 1014 W/cm2 and

the fundamental wavelength of 800 nm. The values of the ellipticity ε

and the relative phase φ between the field components are denoted in
each panel. The top panel corresponds to a bicircular field, for which
the harmonic intensity is independent of φ. The middle and bottom
panels correspond to two different cases of the BEOTC field. In each
panel a polar diagram of the electric-field vector of the corresponding
field is presented. The harmonic n = 39 (for which the harmonic
intensity is zero for bicircular field, according to the selection rules)
is denoted by a vertical dotted blue line.

presented. The arrow indicates how the field develops with
increasing time. For the bicircular field the harmonic intensity
does not depend on the value of the relative phase φ. We
have chosen the value φ = −π for which the electric-field
vector resembles the one of the BEOTC field with ε = 0.84

and φ = 0.95π . The results for this BEOTC field are shown
in the middle panel. One can see that in this case the intensity
of the “forbidden” harmonic n = 39 has a maximum, while
the intensity of the next harmonic n = 40 now exhibits a
minimum. Comparing the spectra for ε = 1 and ε = 0.84 it
looks like they are shifted by one harmonic order. However,
this is only approximate so that the “shifted selection rules”
are rather propensity rules. Moreover, they depend on the
value of the relative phase. In the bottom panel of Fig. 12
corresponding spectra are presented for the relative phase
φ = 0.5π . We observe a shift of the selection rules by one
more unit; i.e., the minimum now occurs at the harmonic
n = 41. Alternatively, we can say that the spectrum has shifted
by one unit to the left, compared with the bicircular case.
It is interesting that our results are in agreement with the
experiment [67] (see also Ref. [68]).

For a closer illustration of this phenomenon, in Fig. 13
we present the harmonic intensities (upper panels) and el-
lipticities (lower panels) for fixed harmonic orders n = 38,
39, 40, and 41, presented in false colors as functions of the
relative phase and the ellipticity. In the upper row, second
panel from the left, we see that for ε = 1 the harmonic
intensity P39 is zero. Also in accordance with the selection
rules, the ellipticities of the harmonics n = 38 and n = 41 are
−1, while for n = 40 we have ε40 = +1. This is visible in the
lower row of Fig. 13 for ε = 1. However, depending on the
value of the relative phase φ, already a very small decrease of
the ellipticity can completely change this picture: for n = 39
and for ε between 0.8 and 0.9, the harmonic intensity can
be high and the ellipticity can be close to −1. In addition,
the n = 38 harmonic intensity is high and the ellipticity goes
from −1 for ε = 1 to +1 for ε close to 0.8. On the other
hand, the (n = 40)-harmonic intensity decreases, while the
(n = 41)-harmonic ellipticity goes from −1 to +1 when the
ellipticity decreases from ε = 1 to ε = 0.8. All in all, when
the driving ellipticity decreases to values between 0.9 to 0.8
so that the driving field just barely starts to deviate from
the bicircular shape, the properties of the harmonics change

FIG. 13. Harmonic intensities Pn (upper panels) and ellipticities εn (lower panels) for n = 38, 39, 40, and 41, presented in false colors as
functions of the relative phase φ (abscissa) between the ω-2ω BEOTC field components and the ellipticity ε (ordinate). Other parameters are
as in Fig. 12.
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FIG. 14. Harmonic intensities Pn (upper panel) and ellipticities
εn (lower panel), for the harmonic orders n = 38, 39, 40, and 41, as
denoted in the legend. The BEOTC field ellipticity is ε = 0.84 and
other parameters are as in Fig. 12.

drastically. High-harmonic intensities become low and the
harmonic helicities change sign.

For a still closer look, in Fig. 14 we present results for
fixed value of the ellipticity: ε = 0.84. We see that for n = 38
(black solid lines) and the phase φ = 0.915π the harmonic
intensity has a maximum and the harmonic ellipticity is ε38 =
0.918, almost opposite to the one for the bicircular field (ε38 =
−1 for ε = 1). For the 39th harmonic the harmonic ellipticity
is maximal (ε39 = 0.623) for the phase φ = 0.449π . For n =
40 (n = 41) the harmonic ellipticity is close to −1 (+1) for
two values of the relative phase: φ = 0.465π and 0.915π

(0.324π and 0.886π ).
In Fig. 1 we have displayed the electric-field vec-

tors of the high-harmonic fields defined as Re En(t ) for
n = 38, 39, 40, and 41, corresponding to the parameters
ε = 0.84 and φ = 0.92π of Fig. 14. For the harmonics
n = {38, 39, 40, 41} the corresponding ellipticities are εn =
{0.92,−0.39,−0.93, 0.92}. This is an almost complete rever-
sal from the case of the bicircular field (ε = 1), where the
corresponding ellipticities are εn = {−1, undefined,+1,−1}.

IV. CONCLUSIONS

Having in mind that it is nowadays possible to generate
strong bi-elliptical orthogonally polarized driving laser pulses,
we explored in detail how the HHG process depends on the
parameters of these fields. We considered the ω-2ω and ω-3ω

field combinations and varied the relative phase φ between the
two driving-field components as well as their ellipticity from
ε = 0 to ε = 1. The results for the ω-3ω field for −ε and φ can
be obtained from those for ε and φ + π . For the ω-2ω field
the results are invariant with respect to φ → φ + π , while
for ε → −ε the harmonic intensity remains the same and
the harmonic ellipticity changes sign. These results exhibit
various interesting and unexpected features.

Most importantly, we identified the regions of the driving
laser field parameters in which the harmonic ellipticity can be
very high. For the ω-3ω field, in addition to results previously
obtained for the OTC field [31], we found regions of low
harmonic order for which the harmonic ellipticity is high.
For the ω-2ω field having very low ellipticity (ε = 0.01), we
observed that the harmonic ellipticity can be very high. This
is very unexpected, since for ε = 0 the emitted harmonics are
strictly linearly polarized, owing to rigorous selection rules.
Similar observations were very recently reported in Ref. [66].
We explained this by the magnitudes of the nth T -matrix-
element components with helicities +1 and −1, Tn+ and Tn−,
which can become very different even for small driving-
field ellipticities (recall that Tn+ = Tn− for the OTC field). In
addition, the imaginary part of the T -matrix element becomes
large for low harmonic order [close to the atomic ionization
potential; the degree of circular polarization is proportional to
Im (2T ∗

nxTny)].
Another interesting result is a shift of the known selection

rules that hold for a bicircular field (i.e., for the ω-2ω bicircu-
lar field the emitted harmonics n± = 3q− ± 1 have the helicity
εn± = ±1). We have found a shift of the corresponding har-
monic order by one for particular values of the relative phase
and for large ellipticities of the BEOTC ω-2ω field. These are
not new selection rules but rather propensity rules. They are
only approximate (the harmonic ellipticity is not exactly ±1)
and dependent on the relative phase.

The BEOTC field as a function of its ellipticity interpolates
between the limiting cases of the linearly polarized two-color
(OTC) field for ε = 0 and the bicircular field for ε = 1. Sur-
prisingly, we found that the departure from these two limiting
cases occurs very fast. Already a very small ellipticity of, say,
ε = 0.01 can generate harmonics with substantial nonzero
ellipticity, and a rather small deviation from the bicircular
field of, say, ε = 0.84 can completely invalidate the bicircular
selection rules. All this depends very strongly on the relative
phase between the two driving-field components.

The rapid departure of the harmonic spectrum and elliptic-
ities from the respective limiting case can be experimentally
relevant. For example, in Ref. [58] the authors reported high
degrees of ellipticity (up to 75%) of the emitted harmonics
for an ω-2ω OTC field, in complete violation of the selection
rules for this field, which predict linearly polarized harmonics.
In light of the above, a possible explanation is that, instead
of a pure linearly polarized field they actually had a small
nonzero ellipticity. Then, according to our results it is possible
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to have a large ellipticity of the harmonics. They utilized these
harmonics to measure the x-ray magnetic circular dichroism
effect of nickel at the M2,3 absorption edge around 67 eV. In
Ref. [14] a bicircular field combination was used to generate
almost circularly polarized harmonics and to measure the
x-ray magnetic circular dichroism at the Fe M2,3 absorption
edge (54 eV) and the Gd N4,5 edge (145 eV) [14]. Gd is
a technologically important rare earth metal. Such materi-
als are of wide interest because they are potentially impor-
tant for next-generation data-storage media using all-optical
switching.

In our case, the harmonic order can be much higher than
800, which corresponds to a photon energy of 551 eV (for an
1800-nm laser the photon energy is 0.6888 eV). In Ref. [31]
using a 2200-nm midinfrared laser and an ω-3ω OTC field

we achieved photon energies above 1200 eV. With the present
BEOTC field and for the ω-2ω field combination these ener-
gies can be higher. In any case, they can be used to explore,
for example, the L edges of manganese (640 eV) and copper
(930 eV). Another important result of our investigation is
that the relative phase between the two driving-field com-
ponents affords enormous control of the spectral shape and
polarization.
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H. Kuroda, Resonance enhancement of harmonics in metal
plasmas using tunable mid-infrared pulses, Laser Phys. 26,
075401 (2016).

[46] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S.
Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich,
Resolving the time when an electron exits a tunnelling barrier,
Nature (London) 485, 343 (2012).

[47] D. Shafir, Y. Mairesse, D. Villeneuve, P. B. Corkum, and N.
Dudovich, Atomic wavefunctions probed through strong-field
light-matter interaction, Nat. Phys. 5, 412 (2009).

[48] D. Shafir, Y. Mairesse, H. J. Wörner, K. Rupnik, D. M.
Villeneuve, P. B. Corkum, and N. Dudovich, Probing the sym-
metry of atomic wavefunctions from the point of view of strong
field-driven electrons, New J. Phys. 12, 073032 (2010).

[49] H. Niikura, N. Dudovich, D. M. Villeneuve, and P. B.
Corkum, Mapping Molecular Orbital Symmetry on High-Order

023107-13

https://doi.org/10.1103/PhysRevLett.75.152
https://doi.org/10.1103/PhysRevB.62.12216
https://doi.org/10.1088/1367-2630/8/10/254
https://doi.org/10.1103/PhysRevA.51.R3414
https://doi.org/10.1103/PhysRevA.52.2262
https://doi.org/10.1142/S0218863595000227
https://doi.org/10.1103/PhysRevA.61.063403
https://doi.org/10.1103/PhysRevA.62.011403
https://doi.org/10.1038/nphoton.2014.108
https://doi.org/10.1088/0953-4075/48/17/171001
https://doi.org/10.1364/OL.40.002381
https://doi.org/10.1103/PhysRevLett.115.153001
https://doi.org/10.1103/PhysRevA.92.043827
https://doi.org/10.1126/sciadv.1501333
https://doi.org/10.1103/PhysRevA.100.031401
https://doi.org/10.1103/PhysRevA.48.R4051
https://doi.org/10.1103/PhysRevLett.94.243901
https://doi.org/10.1103/PhysRevA.72.033817
https://doi.org/10.1103/PhysRevLett.107.153902
https://doi.org/10.1088/0953-4075/39/16/005
https://doi.org/10.1364/OL.35.003994
https://doi.org/10.1103/PhysRevLett.107.093004
https://doi.org/10.1103/PhysRevA.88.063419
https://doi.org/10.1103/PhysRevA.95.059909
https://doi.org/10.1103/PhysRevA.89.023423
https://doi.org/10.1103/PhysRevA.92.033417
https://doi.org/10.1364/OE.24.018685
https://doi.org/10.1103/PhysRevLett.110.233903
https://doi.org/10.1364/OE.24.013971
https://doi.org/10.1088/1054-660X/26/7/075401
https://doi.org/10.1038/nature11025
https://doi.org/10.1038/nphys1251
https://doi.org/10.1088/1367-2630/12/7/073032
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