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Breakdown of conventional rovibrational selection rules for field- or collision-induced absorption in
symmetric linear molecules
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The objective of this work is to derive approximate rovibrational selection rules for the interaction-induced
molecular absorption in dipole-less polyatomic molecules. Taking a combination ν2+ν3 band in the CO2

molecule as an example, we show that selection rules �J = ±1 are allowed in collision-induced absorption
(CIA) along with conventional selection rules �J = 0, ±2 characteristic for CIA in homonuclear diatomics.
The basis of that condition relates to the combined effect of the anisotropy of an external electric perturbation
and the anharmonicity of the vibrations.
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I. INTRODUCTION

Collision-induced absorption (CIA) in symmetric
molecules lacking an electric dipole moment arises when
a weak intermolecular interaction perturbs the electronic
cloud of a molecule in such a way that a slight dipole moment
becomes induced (see, e.g., [1]). The first experiments on such
interaction-induced infrared absorption in the fundamental
bands of pressurized dioxygen and dinitrogen were reported
by Crawford et al. [2]. The possibility to observe absorption
within nominally forbidden absorption bands was discussed,
however, much earlier by Condon [3], who suggested a theory
of induced molecular absorption in an external static electric
field. These theoretical predictions were confirmed then [4]
in experiments with compressed hydrogen.

The basic theory of collision-induced absorption (CIA) in
diatomic molecules was developed largely by Kranendonk
et al. in a series of works (see [1,5,6], and references therein).
It was established that to a first approximation, the observed
induced spectra can be understood in terms of a nearly freely
rotating homonuclear diatomic molecule that is polarized in
the quadrupole field of the neighboring molecule. This simpli-
fied view relies on a reasonable idea of the small anisotropy
of potential energy, which is characteristic at least of the most
popular prototypical molecules such as dihydrogen, dinitro-
gen, and dioxygen, mainly considered at that time. Colpa and
Ketelaar [7] showed that the selection rules for rovibrational
CIA restrict the variation of the total angular momentum
quantum number J in a rovibrational transition to values either
zero or ±2. The observation of distinct branches O, Q, S in the
infrared CIA bands (see, e.g., Fig. 1) apparently supports this
conclusion.

Moreover, the appearance of selection rule ±2 for induced
absorption instead of ±1 for permitted dipole absorption is
easily understandable on a qualitative level. When a diatomic

*Corresponding author: vigasin@ifaran.ru

molecule that possesses an electric dipole moment rotates
180◦, its dipole vector orients oppositely to the initial direc-
tion; a rotation by 360◦ is required to make the permanent
dipole vector coincide with its initial direction. In contrast, a
rotation by 180◦ suffices for an induced dipole in a homonu-
clear diatomic molecule to return to its initial position. Os-
cillations of a dipole in the course of molecular rotation are
hence twice as frequent in the case of induced absorption as
in the case of permitted dipole absorption. Apparently, similar
qualitative consideration has to yield valid selection rules in
the case of a linear dipole-less molecule as well. In what
follows, it is shown, however, that somewhat more elaborated
consideration is in fact required in this case. Note that our
consideration below is restricted by only one example of the
electric dipole forbidden ν2 + ν3 combination band in the
CO2. This band falls in the 3.3 μm spectral range, in which
weak magnetic dipole CO2 absorption lines were recently
identified [9] in the spectra taken in situ in the atmosphere
of Mars. We are focused on how the unconventional shape of
this CIA band can be understood starting from a simplified
assumption of a linear molecule nearly freely rotating in an
external electric field. To our belief, the theory suggested here
may be useful in consideration of a much broader variety
of problems concerning dipole-forbidden absorption bands
which become slightly permitted under the action of a per-
turbing field.

In contrast to simple diatomic molecules, the intermolec-
ular interaction between carbon dioxide molecules is charac-
terized by a notable anisotropy. Moreover, as dipole-permitted
vibrational transitions are allowed for a CO2 molecule, the
manifestations of induced bands can be expected to be at
variance with the diatomic case. No clear evidence of any
O, Q, S branch was ever reported for the CO2 collision-
induced spectra. Note that distinct fingerprints sitting atop
a nearly structureless background, e.g., in the region of the
Fermi doublet, definitely belong to truly bound CO2–CO2

dimers [10], but no true dimer features were ever observed
in the range of combination CIA band ν2 + ν3, in which
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FIG. 1. Example of a pure N2 infrared spectrum recorded by
McKellar [8] at temperature 77 K. The light curve is a simulated
collision-induced profile calculated on the basis of a stick spectrum
for O(J ), Q(J ), and S(J ) transitions.

the maximum of absorption is notably shifted from the band
origin (see Fig. 2). In the most recent study of this CIA
band [11], Baranov questioned whether selection rules other
than those established for symmetric diatomic molecules are
applicable in the case of CO2. Baranov’s idea was based on
a pictorial resemblance of the stick structure adjusted so that
it can roughly fit the observed band shape of band ν2 + ν3, as
shown in Fig. 2.

Our theoretical examination below largely supports the
principal idea that Baranov proposed, although we are not in a
position to entirely share that explanatory point of view [11].

Before proceeding to details of our theoretical considera-
tion, we clearly state that we treat the problem in question
assuming the induced spectrum arises from nearly freely rotat-
ing molecules in interaction either with each other pairwise or
with an external field. In the real world, any CIA spectra result
from an average absorption of molecular or intermolecular
states over a broad statistical ensemble, not all of which
are characterized by nearly free rotation of the individual
monomers. A consistent method to simulate collision-induced
spectrum in a gas should be based either on a pure quantum
(see, e.g., [12]) or a semiclassical (e.g., [13]) consideration.
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FIG. 2. A solid line shows the binary absorption coefficient Baa

for the collision-induced band ν2 + ν3 recorded by Baranov [11] at
295 K. Vertical lines show a calculated stick spectrum of various
branches, the intensities of which are intentionally adjusted visually
to fit the observed band shape.

For this reason, the theory suggested below must be consid-
ered to have been developed with a simplified approach that
permits one, however, to reveal the important physical details
of the induced absorption mechanism.

II. CONVENTIONAL ROTATIONAL SELECTION RULES
FOR PERMITTED DIPOLE AND INDUCED ABSORPTION

IN LINEAR MOLECULES

The rotation of a linear molecule is characterized with
quantum number J that specifies the total angular momentum
J in the molecule. Quantum numbers K and M can also be
introduced, specifying the projections of J along the molec-
ular axis C∞ and some laboratory-fixed z axis, respectively.
Let us start from an assumption that the rovibrational wave
function of a linear molecule can be factorized as the product
of rotational and vibrational wave functions � = �rot�vib,
where �vib can be taken in the form of anharmonically
coupled oscillator wave functions. The rotational wave func-
tion �rot can be represented following various prerequisites,
for instance in the form suggested by Hougen [14], which
assumes a specific choice of the reference frame. The choice
of the isomorphic Hamiltonian and relevant wave functions
[14] means that the vibrational angular momentum is taken
into account. The rotational wave function can be represented
as [15]

�rot
iso =

√
2J + 1

8π2
D(J )∗

M,K+l (φ, θ, κ ), (1)

where l is the vibrational angular momentum quantum num-
ber, D(J )∗

M,K+l (φ, θ, κ ) denotes a complex conjugate rotational
Wigner function, the arguments of which, Euler angles θ , φ

and κ , determine the orientation of a linear molecule as if
it were a nonlinear one. The vibrational wave function �vib

iso
contains exponential factor eilε , with the angle ε introduced in
[14], which refers to the ω2 degenerate bending vibration. As
shown in the next section, the choice of the rotational wave
function has no effect on the matrix elements that we intend
to examine.

A. An illustrative example of permitted transitions

In this section, we consider a somewhat model example
of rotational selection rules for a symmetric linear molecule
that possesses a permanent electric dipole moment μ. We
disregard here the degeneracy of bending vibration as if this
mode is frozen or the relevant degeneracy is lifted. We also
admit that the total angular momentum J of a molecule is
composed of rotational angular momentum Jrot of the nuclei
and electronic orbital momentum L: J = Jrot + L. Indeed,
under the Born-Oppenheimer approximation, the electronic
state is capable of significantly affecting the rotational state.

To derive rotational selection rules, we have to take into
account the relation

μLF
� =

∑
�′=0,±1

D(1)∗
�,�′ (φ, θ, 0)μBF

�′ (2)

between dipole moment components μLF
� in the laboratory-

fixed (LF) frame of reference and that body fixed (BF)
(called also molecule fixed), in which the dipole moment has
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components

μBF
0 = μz and μBF

±1 = 1√
2

(∓μx − iμy),

expressed via Cartesian BF coordinates x, y, z of the dipole
vector. In (2), � = 0,±1. Axis z of the BF frame is assumed
to lie along symmetry axis C∞ of a molecule.

For an isolated linear molecule having moment I = IB = IC
of inertia, the rotational part of a Hamiltonian has the form

Hrot = (J − L)2

2I
,

in which J and L are the total angular momentum and the
electronic orbital momentum, respectively. The wave equation
with Hrot produces eigenfunctions [15,16]

�rot = |J, K, M〉 =
√

2J + 1

4π
D(J )∗

M,K (φ, θ, 0). (3)

Rotational matrix elements are expressed as

〈�rot (J, K, M )|D(1)∗
�,�′ |�rot (J ′, K ′, M ′)〉

= (−1)M−K
√

(2J + 1)(2J ′ + 1)

×
(

J ′ 1 J
M ′ � −M

)(
J ′ 1 J
K ′ �′ −K

)
. (4)

Note that under assumption l = 0, the result of calculation of
the matrix elements (4) does not depend on whether the wave
functions (3) or

�rot
iso =

√
2J + 1

8π2
D(J )∗

M,K (φ, θ, κ )

are taken in terms of basis rotational wave functions. In fact,
the combination of eilε and eilκ results in eil (ε+κ ), which is
appropriate to degenerate vibrations in conventional polar
coordinates prior to transition to isomorphic Hamiltonian
coordinates introduced by Hougen [14]. This means that we
can interpret �vib

iso eilκ in terms of �vib. Provided there is no
degeneracy, i.e., the l quantum number is not applicable, the
wave functions which relate to the isomorphic Hamiltonian
can be factorized as the product of rotational and vibrational
ones,

�iso = �rot
iso�

vib
iso =

√
2J + 1

8π2
D(J )∗

M,K (φ, θ, κ )�vib
iso . (5)

The use of isomorphic wave functions thus results in the
change of the normalizing factor, which, in the case of �iso,
is entirely conditioned by introduction of the angle of rotation
against the molecular C∞ axis. The only difference consists
in the ad hoc chosen κ = 0 in wave function (3), whereas
in [14] the angle κ is introduced in terms of an independent
variable, and neither in the Wigner function in (2) nor in
the �rot

iso (J, K, M ) can it be assumed zero. This difference
does not, however, affect the calculated matrix elements from
the Wigner functions. Bearing in mind our intention here
to establish approximate selection rules for the J quantum
number only, we conclude from Eq. (4) that an absorption line
does not vanish if and only if condition

J ′ − J = 0,±1

(J ≡ J ′′; a transition with J = J ′ = 0 is forbidden) is fulfilled.

B. External field- or interaction-induced transitions

External field F induces a dipole moment in a previously
dipole-less symmetric molecule,

(μLF
k )ind =

∑
l

αLF
kl Fl , (6)

in which αLF
kl are the components of the polarizability matrix.

Rotational selection rules can be determined in this case from
the relations in [3] bearing in mind that

αLF
kl =

∑
j,r

k j (0, φ, θ )lr (0, φ, θ )αBF
jr , (7)

in which ab(0, φ, θ ) (a, b = k, j or l, r) is the direction
cosine matrix. This formula is also expressible using spherical
tensor operators [17],

αLF
� =

∑
�′=0,±1,±2

D(2)∗
�,�′ (φ, θ, 0)αBF

�′ . (8)

These five components of the polarizability tensor are com-
plemented with a sixth component, i.e., the averaged trace,

ᾱ = 1

3
(αxx + αyy + αzz ), (9)

which, being a scalar polarizability, is rotationally invariant.
Here again we define rotational matrix elements as

〈�rot (J, K, M )|D(2)∗
�,�′ |�rot (J ′, K ′, M ′)〉

= (−1)M−K
√

(2J + 1)(2J ′ + 1)

×
(

J ′ 2 J
M ′ � −M

)(
J ′ 2 J
K ′ �′ −K

)
. (10)

Noting the normalizing condition

∑
M,�,M ′

(
J ′ 2 J
M ′ � −M

)2

= 1 (11)

for the i → f transition probability P(i → f ), we obtain

P(i → f )

∼
∣∣∣∣∣

∑
�′=0,±1,±2

(−1)−K

(
J ′ 2 J
K ′ �′ −K

)

× 〈
�vib

i

∣∣αBF
�′

∣∣�vib
f

〉∣∣∣∣∣
2

.

(12)

Here, �vib
i , �vib

f are vibrational wave functions characteristic
of the initial and final vibrational states, respectively. Provided
that total angular momentum J is assumed to relate to the rota-
tion of only linearly aligned nuclei in a set, i.e., the electronic
contribution is disregarded, it is reasonable to assume a zero
value for quantum number K , i.e., K ′ = K = 0. The selection
rules are hence determined by the value of(

J ′ 2 J
0 0 0

)
, (13)

which is nonzero provided that J ′ − J = 0,±2. This result
is entirely justified under an assumption that the molecular
polarizability has only two nonzero components, which are
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conventionally called trace ᾱ (9) and anisotropy �α of the
polarizability tensor:

�α = 1

2
[2αzz − (αxx + αyy)]. (14)

To resume this introductory section, we suggest that the
effect of induction must be sensitive to whether the symmetry
of the electronic cloud alters while the molecule is interacting
with the field. Given that the symmetry of the electronic
distribution does not coincide with the symmetry of the nu-
clear arrangement in a molecule, one consequently expects a
change in the CIA selection rules.

III. EXTENDED SELECTION RULES FOR ν2 + ν3

COMBINATION TRANSITION IN A LINEAR XYX
MOLECULE

Considering a molecule in the absence of an external
perturbation, the vibrational Hamiltonian Hvib is represented
as

Hvib = H0
vib + �H free

anh ,

in which

H0
vib = h̄ω1

2

(
p2

1 + q2
1

) + h̄ω2x

2

(
p2

2x + q2
2x

)
+ h̄ω2y

2

(
p2

2y + q2
2y

) + h̄ω3

2

(
p2

3 + q2
3

)
(15)

is an unperturbed Hamiltonian, qs, ps, and ωs are coordinates,
conjugate momenta, and harmonic frequencies, respectively,
for symmetric (s = 1), doubly degenerate (labeled supple-
mentary x and y) bending (s = 2), and antisymmetric (s = 3)
vibrational modes. The term �H free

anh means an anharmonic
perturbation operator for a single free CO2 molecule. Note
that we intentionally leave, in (15), the distinction between
ω2x and ω2y vibrations, although in an isolated molecule the
ω2 mode is obviously degenerate, so that ω2x = ω2y. We
express the vibrational Hamiltonian in the form (15) because,
as soon as a linear molecule is subject to a perturbing external
field at an angle, the degeneracy of ω2 is lifted (see, e.g., [18]
for the carbon dioxide dimer as an example). The case of a
nondegenerate bending mode is exactly what we intend to deal
with below in due course.

In a harmonic approximation, quantum state vector
|n1, n2x, n2y, n3〉 is factorized as a product of four vectors of
unidimensional oscillators |n1〉|n2x〉|n2y〉|n3〉, in which ns are
vibrational quantum numbers.

A. Vibrational problem in an isolated XYX molecule

We proceed to demonstrate that vibrational anharmonicity
in a nonrotating XYX molecule has no intrinsic effect on the
change of rovibrational selection rules for induced transition
ν2 + ν3. As we see in the next section, however, the inten-
sity of this transition is largely determined by mechanical
and dipolar anharmonic terms issued from expansions of
the potential energy and the induced dipole moment against
vibrational coordinates.

Consider first the vibrational selection rule for transition
ν2 + ν3 in molecule XYX. Provided that the sign of vibrational

matrix element 〈
�vib

i

∣∣μ∣∣�vib
f

〉
(16)

does not change upon symmetry operations, the transition
is permitted; the matrix element must otherwise be zero—
the transition is forbidden. In a harmonic approximation,
�H free

anh = 0. The oscillator wave functions are represented in
this case with Hermite polynomials in which k is an integer
so that the |2k〉 functions are even and their signs do not alter
upon permutation of the end X atoms. In contrast, wave func-
tions |2k + 1〉 are odd; their signs change upon permutation.
For the combination transition ν2 + ν3, we have

|n1, n2x, n2y, n3〉 → |n1, n2x + 1, n2y, n3 + 1〉. (17)

We conclude that this transition must be forbidden.
Given that the z axis is directed along the symmetry axis of

a molecule, one can expand the Cartesian components of the
dipole moment with respect to normal coordinates qs:

μx = μx
2q2x + μx

12q1q2x + · · · ,

μy = μ
y
2q2y + μ

y
12q1q2y + · · · ,

μz = μz
3q3 + μz

13q1q3 + · · · .

(18)

Here, μx
12, μ

y
12, μz

13, and so forth are anharmonic electro-
optical coefficients; the subscripts in (18) mean derivatives
with respect to relevant coordinates. Only those terms which
satisfy the symmetry condition do not vanish from (18). These
terms are different, however, for an isolated molecule and for
the same molecule subjected to an external electric field be-
cause the symmetry of the electronic cloud is distorted under
the perturbation in the field. We shall consider below only
those terms in an induced dipole moment which are capable of
giving rise to nonzero intensity of rotational transitions within
a specific collision-induced absorption band.

As the dipole moment in harmonic approximation is a
linear function of q2x and q3 coordinates [19], its sign must
change upon inversion of the sign of the coordinates. As a
consequence, the relevant matrix element

〈n1, n2x, n2y, n3|μ|n1, n2x + 1, n2y, n3 + 1〉
vanishes, as otherwise its sign should change upon a symme-
try operation.

Taking into account that anharmonicity has no obvious
impact on the above conclusion, the first nonzero anharmonic
correction to the wave function of an isolated CO2 molecule
is determined by the cubic terms in a vibrational Hamiltonian
with respect to coordinates

�H free
anh = a111q3

1 + a122q1
(
q2

2x + q2
2y

) + a133q1q2
3, (19)

in which a111, a122, a133 are mechanical anharmonicity co-
efficients. Operator �H free

anh contains only those cubic terms
that are shown in (19) as other combinations of vibrational
coordinates are prohibited according to the symmetry require-
ments [20–22]. As a result, in the first-order correction to the
harmonic approximation vector |n1, n2x, n2y, n3〉, vectors

|n1 ± 1, n2x, n2y, n3〉,
|n1 ± 1, n2x ± 2, n2y, n3〉,
|n1 ± 1, n2x, n2y, n3 ± 2〉,
|n1 ± 1, n2x, n2y ± 2, n3〉,
|n1 ± 3, n2x, n2y, n3〉
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must be added. All combinations of these vectors yield zero
matrix elements for the (17) transition. The prohibition of
vibrational transition (17) in an isolated XYX molecule is
thus strict, regardless of whether harmonic or anharmonic
vibrations are considered.

B. Polarizability of a molecule in external field

When molecule XYX is exposed to an external field, either
static, radiative, or produced by a neighboring molecule, the
combination transition (17) becomes slightly permitted. Ex-
amination of the selection rules for such an induced transition
requires a consideration of the rovibrational matrix element in
detail, as the vibrational anharmonic effect is tightly entangled
with the rotational properties of the polarizability tensor.

Consider an electronic Schrödinger equation written as

[T + V (ρ, Q)]|χA〉 = EA|χA〉. (20)

Here, T and V are kinetic and electronic potential-energy
operators, ρ and Q are, respectively, the sets of electronic
and nuclear coordinates, and |χA〉 and EA are electronic
eigenvectors and eigenvalues, which are parametrized with
nuclear coordinates. An application of external electric field F
causes a change in the molecular energy so that the electronic
Hamiltonian becomes T + V − MF, in which M(ρ, Q) is the
molecular dipole moment, which is, in general, a function of
both electronic and nuclear coordinates. To obtain a conven-
tional molecular dipole moment μ(Q), which in the body-
fixed frame is a function of only nuclear coordinates, one has
to average M(ρ, Q) over electronic coordinates ρ within a
given electronic state. Considering −MF as a perturbation, we
express the first-order energy correction in a diagonal form,
〈χA|(−MF)|χA〉, which reduces to operator −μF that relates
to rovibrational transitions in a field as μ(Q) = 〈χA|M|χA〉.
Given that the molecule lacks a permanent electric dipole
and that the matrix element for the vibrational transition is
zero, the first-order energy correction is zero. As a result, one
must consider the second-order perturbation term, in which
the induced dipole (6) arises. Here, αLF

kl is given by (7),
in which αBF

jr is determined by the Placzek formula for the
polarizability tensor [23],

(αBF
jr )AB =

∑
C

[ 〈χA|Mj |χC〉〈χC |Mr |χB〉
EC − EB + h̄ω0

+ 〈χA|Mr |χC〉〈χC |Mj |χB〉
EC − EA − h̄ω0

]
.

(21)

Here, frequency ω0, characteristic of an applied external field,
must be assumed to be zero provided that a static field is
considered, e.g., for the CIA case.

Potential V (ρ, Q) in (20) is a function of electronic and
normal vibrational coordinates, which we develop in a series
with respect to vibrational coordinates,

V (ρ, Q) = V0 +
∑

s

gsQs +
∑
s�r

gsrQsQr + · · · , (22)

in which V0 = V0(ρ) and coefficients gs, gsr, . . . are functions
of only electronic coordinates.

We also represent the electronic energy and wave functions
in terms of series over vibrational coordinates,

EA = E0
A +

∑
s

E (1)
A(s)Qs +

∑
s�r

E (2)
A(sr)QsQr + · · · ,

|χA〉 = ∣∣χ (0)
A

〉 + ∑
s

∣∣χ (1)
A(s)

〉
Qs +

∑
s�r

∣∣χ (2)
A(sr)

〉
QsQr + · · · .

(23)

According to [19,24], the wave equation (20) is expressible in
an equivalent form as this system of equations:

∂EA

∂Qs
= 〈χA| ∂V

∂Qs
|χA〉,

∂|χA〉
∂Qs

=
∑
C =A

〈χC | ∂V
∂Qs

|χA〉
EA − EC

|χC〉.
(24)

Having introduced (22) and (23) into (24) and then set all Qs

equal to zero, we obtain the first correction terms E (1)
A(s) and

|χ (1)
A(s)〉,

E (1)
A(s) = 〈

χ
(0)
A

∣∣gs

∣∣χ (0)
A

〉
,

∣∣χ (1)
A(s)

〉 =
∑
C =A

〈
χ

(0)
C

∣∣gs

∣∣χ (0)
A

〉
E0

A − E0
C

∣∣χ (0)
C

〉
. (25)

To find the second-order terms E (2)
A(s) and |χ (2)

A(s)〉, we differ-
entiate the system (24) with respect to Qr and then set all Qs

equal to zero. After some algebra, we obtain the second-order
correction to eigenvalues,

E (2)
A(sr) =

∑
C =A

〈
χ

(0)
C

∣∣gs

∣∣χ (0)
A

〉〈
χ

(0)
C

∣∣gr

∣∣χ (0)
A

〉
E0

A − E0
C

+
∑
C =A

〈
χ

(0)
A

∣∣gs

∣∣χ (0)
C

〉〈
χ

(0)
C

∣∣gr

∣∣χ (0)
A

〉
E0

A − E0
C

+ 〈
χ

(0)
A

∣∣gsr

∣∣χ (0)
A

〉
, (26)

and eigenfunctions,∣∣χ (2)
A(sr)

〉
=

∑
C =A

∑
D =C

〈
χ

(0)
D

∣∣gr

∣∣χ (0)
C

〉〈
χ

(0)
D

∣∣gs

∣∣χ (0)
A

〉
(
E0

A − E0
C

)(
E0

C − E0
D

) ∣∣χ (0)
C

〉

+
∑
C =A

∑
D =A

〈
χ

(0)
C

∣∣gs

∣∣χ (0)
D

〉〈
χ

(0)
D

∣∣gr

∣∣χ (0)
A

〉
(
E0

A − E0
C

)(
E0

A − E0
D

) ∣∣χ (0)
C

〉

+
∑
C =A

∑
D =C

〈
χ

(0)
C

∣∣gs

∣∣χ (0)
A

〉〈
χ

(0)
D

∣∣gr

∣∣χ (0)
C

〉
(
E0

A − E0
C

)(
E0

C − E0
D

) ∣∣χ (0)
D

〉

+
∑
C =A

〈
χ

(0)
C

∣∣gsr

∣∣χ (0)
A

〉
E0

A − E0
C

∣∣χ (0)
C

〉

−
∑
C =A

[〈
χ

(0)
A

∣∣gr

∣∣χ (0)
A

〉 − 〈
χ

(0)
C

∣∣gr

∣∣χ (0)
C

〉]
(
E0

A − E0
C

)2

×〈
χ

(0)
C

∣∣gs

∣∣χ (0)
A

〉∣∣χ (0)
C

〉
. (27)
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The wave functions and energies obtained so far are func-
tions of vibrational coordinates, which become inserted into
the Placzek formula (21). The resulting expression for the
polarizability tensor is not too difficult to derive, although re-
production here is not worthwhile because of its cumbersome
extent. We restrict ourselves by showing the development of
only one denominator in (21),

1

EA − EB + h̄ω0
= 1

E0
A − E0

B + h̄ω0

−
∑

s

E (1)
A(s) − E (1)

B(s)

(E0
A − E0

B + h̄ω0)2
Qs +

∑
s�r

(. . .)QsQr + · · ·. (28)

The components of the polarizability tensor thus obtained
depend on the vibrational coordinates; the nondiagonal com-
ponents of the polarizability tensor (21) no longer vanish. This
condition means that when a symmetric molecule is subjected
to an external field, the distorted symmetry of the electronic
cloud is apt to produce nonvanishing parallel or perpendicular
components of an induced dipole with respect to symmetry
axis z of the linearly arranged nuclei in that molecule.

An external field breaks the symmetry of an electronic
cloud surrounding the nuclei in a molecule. In addition to only
diagonal components of the polarizability tensor, nondiagonal
terms αxz and αyz arise as functions of coordinates q2x and q3.
In terms of a spherical tensor, we hence supplement (9) and
(14) with

α±1 = ∓αxz − iαyz. (29)

C. Integrated intensity of the combination ν2 + ν3 band

The integrated intensity of a vibrational transition in an
external field is determined by matrix element (16) with μ =
μind from (6) in the BF system.

Let axis z be aligned with the nuclear arrangement sym-
metry axis C∞. As the anisotropy of induction results in a
distortion of an initially symmetric charge distribution, new
terms arise in the vibrational Hamiltonian Hvib:

�H ind
anh = a233q2xq2

3 + a223q2
2xq3

+ a′
233q2yq2

3 + a′
223q2

2yq3.
(30)

Note that the coefficients a... in expansion (30) originate
from the coefficients g... in (22), which are averaged over
the electronic state making use of the relationships (24). In
(30) and hereafter, we use qs for the normal coordinates
instead of nuclear displacements Qs, which arise initially in
(22) as a natural measure of nuclear movements. Coordi-
nates qs are known to be such linear combinations of the
natural coordinates Qs, which diagonalize the harmonic part
of the vibrational potential energy. Consequently, after the

averaging over the electronic state, the potential function
developed against normal coordinates has to contain harmonic
(quadratic) and higher-order anharmonic (cubic, quartic, etc.)
terms. Some of these anharmonic terms are responsible for
conventional anharmonic vibrational frequency corrections in
an unperturbed CO2, whereas the supplementary terms shown
in (30) are due to violation of the symmetry restrictions caused
by external perturbation. As shown below, these new terms are
crucial for the formation of the induced band shape.

In subsequent paragraphs, we consider only those terms
in (30) that contain coordinates q2x. An off-axial perturbation
results in the splitting of the degenerate bending vibration so
that the degeneracy of vibration ω2 is lifted. The induction that
breaks the initial symmetry causes ω2x and ω3 vibrations to
become mixed, whereas the ω2y vibration can be disregarded
in our consideration below. We also disregard the term �H free

anh
because, as shown in the preceding paragraphs, it does not
affect the matrix elements that we are interested in examining.
As a result, the anharmonic part of the Hamiltonian (30) is
reduced to

�H ind
anh = a233q2xq2

3 + a223q2
2xq3. (31)

We also take into account that the electronic cloud is
distorted because of the ν2 + ν3 vibration. As a result, the
nondiagonal polarizability components (29) appear, which
depend simultaneously on the q2x and q3 coordinates. Ac-
cording to (6) and (8), these components contribute into μind.
Consequently, new anharmonic terms appear in the expansion
of the induced dipole moment,

μind
x = ∂μind

x

∂q2x
q2x + ∂2μind

x

∂q2x∂q3
q2xq3 + · · ·,

μind
y = ∂μind

y

∂q2y
q2y + ∂2μind

y

∂q2y∂q3
q2yq3 + · · ·,

μind
z = ∂μind

z

∂q3
q3 + ∂2μind

z

∂q2x∂q3
q2xq3

+ ∂2μind
z

∂q2y∂q3
q2yq3 + · · ·. (32)

Only those terms that concern an excitation of the bending
and asymmetric stretching vibrations are kept in (32). Armed
with this knowledge we proceed to calculate the matrix ele-
ment for the combination transition (17).

Consider first only the former term in (31) that acts as a
perturbation on the unperturbed Hamiltonian H0

vib (15). The
first-order correction |n, 1〉 to harmonic vector |n〉 defines
pertinent wave function �vib = |n〉 + |n, 1〉 and can be readily
found using the formalism of so-called quantum number
polynomials, described in detail in [19,24–27],

|n, 1〉 = a233

2 h̄
√

2

[√
n2xn3(n3 − 1)

(ω2x + 2ω3)
|n1, n2x − 1, n2y, n3 − 2〉+

√
n2x(n3 + 1)(n3 + 2)

(ω2x − 2ω3)
|n1, n2x − 1, n2y, n3 + 2〉

+ (2n3 + 1)
√

n2x

ω2x
|n1, n2x − 1, n2y, n3〉−

√
(n2x + 1)(n3 + 1)(n3 + 2)

(ω2x + 2ω3)
|n1, n2x + 1, n2y, n3 + 2〉

−
√

(n2x + 1)n3(n3 − 1)

(ω2x − 2ω3)
|n1, n2x + 1, n2y, n3 − 2〉 − (2n3 + 1)

√
n2x + 1

ω2x
|n1, n2x + 1, n2y, n3〉

]
. (33)
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In agreement with the algorithm of the perturbation theory described in [19,25], matrix element ∂μind
z

∂q3
q3 of the dipole term

was calculated using the first-order wave functions, whereas the matrix element from ∂2μind
z

∂q2x∂q3
q2xq3 was taken using zero-order

wave functions, i.e., harmonic functions. Polynomials �
s1s2xs2ys3

αβ (n, m) define the matrix elements taken between wave functions
|n, α〉, |m, β〉 of orders α and β, respectively, as shown below:

〈n, α|qs1
1 qs2x

2x q
s2y

2y qs3
3 |m, β〉 = 2

−(s1+s2x+s2y+s3 )

2

√
m1!m2x!m2y!m3!

n1!n2x!n2y!n3!
�

s1s2xs2ys3

αβ (n1, m1; n2x, m2x; n2y, m2y; n3, m3), (34)

in which nr � mr is assumed for all subscripts r. Taking into account only the former term in (31), we eventually obtain

Z (n1, n2x, n2y, n3) = 〈
�vib

i (n1, n2x, n2y, n3)
∣∣μind

z

∣∣�vib
f (n1, n2x + 1, n2y, n3 + 1)

〉 = ∂μind
z

∂q3

√
(n2x + 1)(n3 + 1)

× [
�0001

10 (n1, n1; n2x, n2x + 1; n2y, n2y; n3, n3 + 1) + �0001
01 (n1, n1; n2x, n2x + 1; n2y, n2y; n3, n3 + 1)

]
+ 1

2

∂2μind
z

∂q2x∂q3

√
(n2x + 1)(n3 + 1) �0101

00 (n1, n1; n2x, n2x + 1; n2y, n2y; n3, n3 + 1)

=
(

∂μind
z

∂q3

a233ω3

h̄ω2x(ω2x + 2ω3)
+ 1

2

∂2μind
z

∂q2x∂q3

)√
(n2x + 1)(n3 + 1). (35)

In a similar way, we consider the latter term in (31) that yields

X (n1, n2x, n2y, n3) = 〈
�vib

i (n1, n2x, n2y, n3)
∣∣μind

x

∣∣�vib
f (n1, n2x + 1, n2y, n3 + 1)

〉
=

[
∂μind

x

∂q2x

a223ω2x

h̄ω3(ω3 + 2ω2x )
+ 1

2

∂2μind
x

∂q2x∂q3

]√
(n2x + 1)(n3 + 1). (36)

The intensity of the combination band (17) that we seek is
thus found from the sum of the two matrix elements squared,

I (i → f ) ∼ ∣∣〈�vib
i

∣∣μind
∣∣�vib

f

〉∣∣2

= |X (0, 0, 0, 0)|2 + |Z (0, 0, 0, 0)|2. (37)

The expressions obtained here for the matrix elements and the
intensity of the combination band agree well with what has
been derived in previous investigations [22,28] for permitted
transitions. Induced dipole μind is given by

(μBF
j )ind =

∑
r

αBF
jr F BF

r .

In this formula, F BF
r implies the components of an external

field; polarizability tensor αBF
jr is defined by (21) in which

the energy, wave functions, and matrix elements depend on
vibrational coordinates, as explained.

Lifting a prohibition of the combination transition (17)
modifies the selection rules. Quantum number K is no longer
zero; the rotational wave functions in the form (3) are appli-
cable. For the line strength, we hence must have the same
expression as (12). In (12), the terms

(−1)−K

(
J ′ 2 J
K ′ ±1 −K

)〈
�vib

i

∣∣αBF
±1

∣∣�vib
f

〉
give rise to selection rules J ′ − J = 0,±1,±2 and K ′ − K =
±1. As matrix element〈

�vib
i

∣∣αBF
±1

∣∣�vib
f

〉
, (38)

in which

αBF
±1 = · · · + ∂2αBF

±1

∂q2x∂q3
q2xq3 + · · · , (39)

was shown above not to vanish, the transitions having �J =
±1 can occur as well as transitions with the �J = 0,±2
characteristic to induced absorption in a symmetric diatomic
molecule.

Interestingly, the vibrating molecule in an external field
manifests itself as if the induced dipole moment were perma-
nent. Using (4), for the line strength, we obtain

S(i → f )

∼
∣∣∣∣∣

∑
�′=0,±1

(−1)−K

(
J ′ 1 J
K ′ �′ −K

)

× 〈
�vib

i

∣∣μind
�′

∣∣�vib
f

〉∣∣∣∣∣
2

, (40)

where the matrix element 〈�vib
i |μind

�′ |�vib
f 〉 for the ν2 + ν3

combination band was calculated above. This means that
induced transitions with �J = ±1 are permitted and can be
perceived in the measured band shapes. Worth noting is that
the manifestation of extended selection rules is the more pro-
nounced the more important is the vibrational anharmonicity.

To resume, we can state that once a linear molecule is
exposed to an external field directed at an angle with respect to
the C∞ molecular axis, the symmetry of electronic distribution
is most likely broken. As a result, supplementary terms may
appear in the Hamiltonian, whereas new nondiagonal com-
ponents of the polarizability tensor give rise to new terms
in the dipole moment expansion. Expectedly, the dipole-
forbidden ν2 + ν3 rovibrational transition with conventional
quasidiatomic rotational selection rules �J = 0,±2 becomes
slightly permitted. The integrated intensity of this transition
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is given by (37). Moreover, the rotational structure of this
rovibrational band is enriched by transitions with �J = ±1
as it was initially suggested in [11].

IV. CONCLUSION

We have shown that in symmetric polyatomic molecules,
the selection rules for induced absorption proceed beyond
�J = 0,±2 derived for diatomic molecules. In a linear
molecule XYX, the induced dipole moment related to polariz-
ability components (29) does not turn into itself upon rotation
of a molecule by 180◦ against its B axis; the reason is that the
nonzero polarizability terms arise from the dependence of the
electronic wave function on normal coordinates q2x and q3.
Induced dipole moment μind hence does not transform into
itself when angle θ is replaced by π − θ . The anisotropy of
the induced dipole produced with an externally applied field
is intrinsic to the induced absorption within a combination
band and makes a molecule behave as if the induced dipole

were permanent. As a result, the conventional selection rules
appropriate to induced absorption become supplemented with
extended selection rules that, presumably, are not restricted to
�J = ±1, but can include other weaker rotational transitions
with �J = ±3, and so forth, provided that higher terms in
expansions against the vibrational coordinates are taken into
account. As a result, the pictorial guess suggested by [11]
receives its theoretical confirmation.
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