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Relativistic electron-spin dynamics in a strong unipolar laser field
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The behavior of an electron spin interacting with a linearly polarized laser field is analyzed. In contrast to
previous considerations of the problem, the initial state of the electron represents a localized wave packet, and a
spatial envelope is introduced for the laser pulse along its propagation direction, which allows one to take into
account the finite size of both objects. Special attention is paid to ultrashort pulses possessing a high degree
of unipolarity. Within a classical treatment (both nonrelativistic and relativistic), proportionality between the
change of the electron-spin projections and the electric-field area of the pulse is clearly demonstrated. We also
perform calculations of the electron-spin dynamics according to the Dirac equation. Evolving the electron wave
function in time, we compute the mean values of the spin operator in various forms. It is shown that the classical
relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator. The same results
are obtained when using the Lorentz transformation and the nonrelativistic (Pauli) spin operator in the particle’s
rest frame.

DOI: 10.1103/PhysRevA.102.023102

I. INTRODUCTION

Investigations in the field of laser physics over many
decades have not lost their relevance. Moreover, the appear-
ance of new technological standards opens up broad prospects
for understanding the complex processes that occur when
matter interacts with a laser field (for a review see, e.g.,
Refs. [1–4]). In particular, the progress in designing laser
setups which can generate femtosecond or even attosecond
pulses [5–14] motivates researchers to conduct more thorough
investigations of various fundamental and practical problems.
One of these issues is a comprehensive theoretical description
of the interaction between ultrashort pulses and quantum
objects. Possessing a number of remarkable features, among
which, for instance, is a high energy density, such laser
pulses provide an effective tool for studying the atomic scale
processes (see, e.g., Refs. [10,15–18]). Pulses with a high
degree of unipolarity [19], i.e., those the electric field of
which almost does not change its direction, are of particular
importance here. The feasibility of generating such pulses was
demonstrated in a number of studies [20–22]. Quantitatively,
a degree of unipolarity in the case of a spatially homogeneous
field can be described by the following parameter:

ξu = | ∫ E(t )dt |∫ |E(t )|dt
, (1)

where E(t ) is the corresponding electric-field strength. The
main advantage of pulses with large values of ξu is that they
allow one to achieve maximum efficiency in problems related
to acceleration of charged particles [6,8]. The numerator in
Eq. (1) represents the so-called electric-field area of the pulse
[23]:

SE =
∫

E(t )dt . (2)

If the field represents a finite laser pulse propagating in a
certain direction, then one should integrate over t for a given
position in space, which gives essentially the area of the
pulse profile. This quantity has several interesting properties,
notably the fact that it remains constant when the electro-
magnetic pulse propagates through dissipative media (the
properties of the electric-field area of the pulse were discussed
in detail in Refs. [23–29]). It turns out that this parameter to a
large extent determines the behavior of an electron in a laser
field. For example, in Refs. [30,31] considering a classical
relativistic charged particle in a laser pulse of an arbitrary
shape, it was shown that the particle’s final state is directly
governed by the electric-field area.

Along with studying the kinematic characteristics of an
electron in external laser fields, the analysis of the dynamics
of its intrinsic angular momentum—spin—is also of a great
importance. Various aspects of this problem were addressed in
a number of investigations (see Refs. [32–38]). For instance,
in Ref. [33] within a classical approach, the exact temporal
dependence of the electron spin interacting with a plane
monochromatic wave was obtained in both nonrelativistic and
relativistic regimes. In addition, a nonrelativistic quantum-
mechanical analysis of the problem was carried out. It was
demonstrated that the electron spin precesses with a certain
frequency around the magnetic-field direction. However, the
electron wave function was not localized in a major part
of the previous investigations, nor was the spatial envelope
introduced for the laser pulse within the scenario under con-
sideration although studying the interaction between the two
objects of a finite size should provide a solid connection
to real experimental setups. For example, in Ref. [32] the
authors localized only the electron as a Gaussian wave packet
keeping the external laser field infinite in space. In order
to incorporate the spatiotemporal localization of the field,

2469-9926/2020/102(2)/023102(15) 023102-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6585-9922
https://orcid.org/0000-0003-0708-2427
https://orcid.org/0000-0002-2769-6891
https://orcid.org/0000-0003-3414-1664
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.023102&domain=pdf&date_stamp=2020-08-04
https://doi.org/10.1103/PhysRevA.102.023102


I. A. ALEKSANDROV et al. PHYSICAL REVIEW A 102, 023102 (2020)

two different approaches are usually employed. The first one
rests on the use of a temporal envelope which allows one to
smoothly turn on and off the external electromagnetic field
(see, e.g., Refs. [35,36]). Such a treatment of the problem is
basically required by the need for solving the Dirac equation
within a finite time interval. However, a more natural approach
to localizing the laser field is to introduce a spatial envelope
making the field a finite pulse traveling along a certain direc-
tion. In this paper, we follow the latter course, describing it
in detail in Sec. II. Additionally, we note that the quantum
spin dynamics is often analyzed only on the basis of the
Schrödinger equation, i.e., in the nonrelativistic framework
(see, e.g., Ref. [33]). Finally, in this context we also mention
Refs. [39–45], where other various spin effects in intense laser
fields were investigated.

We aim to study the behavior of the electron spin inter-
acting with a linearly polarized laser field within the classical
formalism and the framework of relativistic quantum mechan-
ics, where the initial electron state chosen in the form of a
Gaussian wave packet evolves according to the Dirac equa-
tion. For the laser pulse, we introduce a spatial envelope in a
similar way as was done recently in Ref. [37], where the spin
was considered by means of a classical approach based on the
Lagrangian formalism [46,47] (see also Refs. [48,49], where
a classical geometrical-optics model was deduced from the
quantum theory and used for describing various spin effects
in space-time-dependent fields). In Ref. [37] the authors were
primarily focused on the influence of the electron spin on
its own kinematics (see also, e.g., Ref. [50] and references
therein). We place the main emphasis on studying the dynam-
ics of the electron spin itself when interacting with laser pulses
of a high degree of unipolarity. The present paper is a natural
continuation of a series of papers devoted to the analysis of the
electron dynamics in ultrashort pulses [29,30,51]. Performing
accurate calculations, we examine the role of the electric-field
area and compare the classical predictions with the results of
our quantum simulations.

It is also important to note that the relativistic electron
spin is well defined only in the absence of external fields
exerting forces on the particle. Moreover, when the electron
travels with a large velocity, the nonrelativistic (Pauli) oper-
ator ŝP = �/2 considered in the usual Dirac representation
is no longer applicable. The problem of how one should
describe relativistic spin effects remains highly contentious
(see, e.g., Refs. [36,52–57] and references therein). Accord-
ing to Refs. [58,59], the quantum-mechanical counterpart of
the classical spin vector is the Foldy-Wouthuysen operator
[58,60], i.e., the operator �/2 considered within the Foldy-
Wouthuysen representation (see also the recent paper [61]
where this issue is discussed in great detail). However, in
the literature, there are numerous other operators that are
considered as candidates for the spin operator (see, e.g.,
Refs. [36,52,53,55]). In the present paper, we describe the
electron-spin dynamics by evaluating the mean values of the
spin operator chosen in various forms. Besides the Pauli
and Foldy-Wouthuysen operators, we will consider those of
Frenkel [60,62–64] and Pryce [36,53,60,65,66]. As will be
shown below, a very accurate agreement with the predictions
of the classical relativistic model is achieved when using the
Foldy-Wouthuysen operator, which is in accordance with the

results of Refs. [58,59] (see also Ref. [61] and references
therein). Instead of the Foldy-Wouthuysen operator, one can
also employ the Pauli operator transformed from the particle’s
rest frame to the laboratory one. This operator is equivalent
to the Foldy-Wouthuysen one within the subspace of the
positive-energy states [56,57,67–70].

Our computations are based on the Dirac equation for an
electron in the presence of a laser field in the form of a
linearly polarized plane wave. To study the spin dynamics,
we calculate the mean values of the spin projections on the
Cartesian axes at the final time instant, when the electron and
the laser pulse no longer interact. The exact wave function
is constructed by means of the expansion coefficients with
respect to the basis of the Volkov solutions [71].

The paper is organized as follows. In Sec. II we describe
the field configuration of the laser pulse and the geometry
of the process under consideration. In Sec. III we briefly
discuss the choice of the relativistic electron-spin operator.
In Sec. IV we describe the method used for propagating the
initial electron wave function. Section V contains a classical
analysis of the spin dynamics leading to approximate closed-
form expressions for the final spin projections. In Sec. VI the
main results of our numerical computations are presented and
discussed. Finally, in Sec. VII we draw a conclusion.

We use atomic units throughout the paper: Planck constant
h̄ = 1, electron mass m = 1, and electron charge e = −1. In
these units the speed of light in vacuum is 1/α ≈ 137.036,
where α is the fine-structure constant.

II. DESCRIPTION OF THE PROCESS

Both the laser pulse and the wave packet are assumed to
be spatially localized only along the z axis which coincides
with the direction of the laser pulse propagation. The elec-
tromagnetic field is polarized along the x axis and modeled
with a vector potential in the form of a plane wave. Namely,
the electric component of the field is chosen in the laboratory
frame as follows:

Ex(t, z) = E (ct − z), (3)

E (ξ ) = E∗F

(
ωξ

c

)
sin

ωξ

c
, (4)

where E∗ is the field amplitude, ω is the carrier frequency
of the pulse, c is the speed of light, and t is time in the
laboratory frame. Accordingly, only one component of the
vector potential Aμ is not equal to zero:

A1 = Ax(t, z) = A(ct − z). (5)

The vector nμ = (1, 0, 0, 1) satisfies the following relations:
nx ≡ nμxμ = ct − z and n2 ≡ nμnμ = 0, where xμ = (ct, r).
The corresponding wave vector is k0 = (ω/c)n. The function
F represents a smooth envelope which is chosen as

F (η) = sin2[η/(2Nc)]θ (πNc − |η − πNc|), (6)

so that the pulse contains Nc carrier cycles (this number can
be a noninteger). In this paper, we vary Nc within the interval
0 � Nc � 2, where the degree of unipolarity ξu is large. Note
that in the case of such small values of Nc the carrier and the
envelope of the pulse (4) cannot be evidently disentangled,
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FIG. 1. Schematic setup of the process under consideration at
t = tin. The electron wave packet is localized along the z axis and
has initially a Gaussian profile with central value z = 0. The laser
pulse is polarized along the x axis, the magnetic field B is directed
along y, and the pulse travels in the z direction. At t = tin the laser
pulse and the wave packet do not overlap (L is sufficiently large).

nor should ω be interpreted as a well-defined fundamental
frequency of the external field. Moreover, for small values
of Nc, the field strength does not basically reach E∗. In what
follows, we will consider Nc as a parameter governing the
pulse duration (for given ω) and, more important, the electric-
field area of the pulse, which does not vanish once Nc is a
noninteger.

The initial state of the setup is displayed in Fig. 1. At
the initial time instant tin = −L/c, the laser pulse is local-
ized within the region z ∈ [−L − ξmax, −L], where ξmax ≡
2πcNc/ω. The value of L should be large enough so that the
laser pulse and the electron wave packet do not overlap at
t = tin, i.e., the support of the wave function has to reside
within the ray z > −L. The initial wave packet is centered
at the origin z = 0. The final state after the interaction is
considered at t = tout = (L̃ + ξmax)/c, where L̃ is the position
of the left edge of the laser pulse. It should be sufficiently
large, so that the external field and the wave packet no longer
overlap. We assume also that A = 0 for ξ � 0, while for
ξ � ξmax it has an arbitrary value A0. The latter point allows
us to examine a broad class of laser pulses including those
having a large electric-field area, e.g., unipolar ones.

Our main purpose is to calculate the mean values of the
spin projections, which change due to the interaction of the
electron with the external electromagnetic field. To this end,
we construct the exact solution of the Dirac equation in the
standard (Dirac) representation which includes the interaction
with the laser pulse:

i
∂

∂t
ψ (t, r) =

[
c α ·

{
p̂ + 1

c
A(t, r)

}
+ βc2

]
ψ (t, r). (7)

Here A(t, r) = A(ct − z)ex, ψ (t, r) is the electron wave func-
tion that coincides with the initial wave packet at t = tin,
p̂ = −i∇ is the momentum operator, ex is the unit vector in
the x direction, and α and β are the Dirac matrices defined as
follows:

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
, (8)

where σ are the Pauli matrices and I is the identity matrix
2 × 2. Having constructed the exact wave function, we can

then calculate the mean values of the spin projections:

〈ŝi〉(t ) =
∫

ψ†(t, r)ŝiψ (t, r)dr, i = 1, 2, 3. (9)

The explicit form of the operator ŝ is not uniquely defined in
relativistic quantum mechanics. This issue will be discussed
in the next section. The method of constructing the wave
function ψ (t, r) is described in detail in Sec. IV.

III. RELATIVISTIC SPIN OPERATOR

Even before the Dirac relativistic theory was formulated,
Pauli proposed a quantum-mechanical equation describing the
motion of a charged particle with spin 1/2 in an external
electromagnetic field [72]. This equation for a two-component
wave function incorporates the energy of the interaction be-
tween the particle’s intrinsic angular momentum (spin) and
the magnetic field. The corresponding spin operator in the
nonrelativistic theory has the form ŝNR = σ/2. The operator
of the orbital angular momentum associated with the particle
motion reads l̂ = r × p̂. Both of these operators together with
the total angular momentum operator ĵNR = l̂ + ŝNR commute
with the nonrelativistic Hamiltonian in the absence of external
fields, which means that all of the three vectors are conserved
in the case of a free particle. A straightforward generalization
of these expressions within relativistic quantum mechanics
leads to the following:

ŝP = 1

2
�, ĵ = l̂ + ŝP, � =

(
σ 0
0 σ

)
. (10)

Nevertheless, there is no clear reason why these specific
forms of the operators should be considered in the Dirac
representation. The operator ŝP, which acts in the space of
four-component functions in the Dirac representation, will be
referred to as the Pauli operator. In contrast to the nonrela-
tivistic case, the operators l̂ and ŝP do not commute with the
free-particle Dirac Hamiltonian ĤD = c α · p̂ + βc2. It is only
the total angular momentum j which represents a conserved
quantity. However, as was shown in Refs. [58,59] (see also
Ref. [61]), the relativistic operator corresponding to the clas-
sical spin in the particle’s rest frame is given by �/2 in the
Foldy-Wouthuysen representation. Let ÛFW denote the Foldy-
Wouthuysen unitary operator leading to two separate pairs of
one-component equations which are equivalent to the four-
component Dirac equation and independently describe the
solutions with positive and negative energy, respectively [58].
Then the Foldy-Wouthuysen spin operator ŝFW in the Dirac
representation is the result of the transformation Û −1

FWŝPÛFW

which reads

ŝFW = 1

2
� + iβ

2 p̂0
p̂ × α − p̂ × (� × p̂)

2 p̂0( p̂0 + c)
, (11)

where p̂0 =
√

c2 + p̂2. In the nonrelativistic limit, it obviously
coincides with ŝP = �/2.

However, there are several other forms of the spin
operator discussed in the literature besides the Pauli and
Foldy-Wouthuysen ones (see Refs. [36,52,53,55]). In this
paper, we will also examine the operator in the form of
Frenkel [60,62–64], which is defined by the following

023102-3



I. A. ALEKSANDROV et al. PHYSICAL REVIEW A 102, 023102 (2020)

expression:

ŝF = 1

2
� + iβ

2c
p̂ × α. (12)

This operator can be obtained, for example, by applying
Noether’s theorem in the case of the Klein-Fock-Gordon
theory formulated in the bispinor space [62]. Both of the oper-
ators (11) and (12), unlike ŝP, commute with the Dirac Hamil-
tonian ĤD. Note, however, that the Frenkel operator does not
satisfy the commutation relations [ŝi, ŝ j] = iεi jk ŝk , and its
eigenvalues are not equal to ±1/2. The definitions (11) and
(12) lead also to the following power expansion in π̂ ≡ p̂/c:

ŝFW = 1

2
� + iβ

2
(π̂ × α)

(
1 − 1

2
π̂2

)

− 1

4
π̂ × (� × π̂)

(
1 − 3

4
π̂2

)
+ O(π̂5)

= ŝF + O(π̂2). (13)

Consequently, the Frenkel operator is a sum of the
nonrelativistic operator ŝP and the leading-order relativistic
part of the Foldy-Wouthuysen operator.

Finally, we also employ the so-called Pryce operator the
name of which was taken from Refs. [36,53] although it is not
clear whether Pryce was the first to mention it. This operator
was also considered in Refs. [65,66] and has the following
form:

ŝPr = 1

2
β� + 1

2
(� · p̂)(1 − β )

p̂

p̂2 . (14)

Note that for a given c-numbered vector p it does not depend
on |p| but only on the direction of this vector, so it can already
be considered as a nonrelativistic operator which, however,
does not match ŝP unlike all of the operators mentioned
above. On the other hand, the spin projection onto the p
axis (helicity) is exactly the same for ŝP, ŝFW, ŝF, and ŝPr.
Moreover, the Pryce operator commutes with ĤD, has the
proper commutation relations, and has the eigenvalues ±1/2
[36,53]. Besides Eqs. (11) and (14), the Foldy-Wouthuysen
and Pryce operators have other equivalent expressions (see,
e.g., Ref. [36]). It turns out that the Pryce operator can be
obtained from Eq. (11) if one replaces p̂0 with ĤD/c.

Given the presence of the external electromagnetic field,
the momentum operator p̂ should be replaced with the sum
p̂ + A(t, r)/c. The mean value of the Pauli operator ŝP is com-
puted in the coordinate representation via Eq. (9). To calculate
the mean values of the operators (11), (12), and (14), we turn
to the momentum representation, where each component of
the operator p̂ is just a c number. In the following section, we
describe the method utilized in order to obtain the exact wave
function ψ (t, r).

We also note that in the presence of the external field the
Foldy-Wouthuysen operator does not precisely have the form
(11) with p̂ → p̂ + A(t, r)/c as the corresponding unitary
operator ÛFW becomes less trivial. However, since we are
interested in computing the total change of the spin projec-
tions, we consider the final electron state when the particle
no longer interacts with the laser pulse, so the expression
(11) is exact, provided one properly takes into account a
nonzero (but constant) value of the vector potential in the

space-time region where the final electron wave packet is
localized. Furthermore, as the final state of the electron is
free, the Foldy-Wouthuysen and Pryce operators yield exactly
the same results. Indeed, in the absence of external fields,
one can define the energy and momentum, so the operators
ĤD and cp̂0 are equivalent. We performed our calculations
using both of Eqs. (11) and (14) and confirmed this point
numerically. Accordingly, the results obtained by means of
the Pryce operator will not be presented in what follows. Note
that in the presence of external fields these two operators are
not equivalent.

Finally, one may also argue that instead of using some
specific form of the spin operator the spin degree of freedom
is to be described within the particle’s rest frame, which can
easily be attained by performing the Lorentz boost from the
laboratory frame if there are no external forces. One can then
calculate the mean value of a certain projection of ŝP taking
into account that the Lorentz transformation does not preserve
the norm (it is not unitary). It turns out that within the sub-
space of the positive-energy states this approach is completely
equivalent to the use of the Foldy-Wouthuysen operator and
the operator L̂pŝPL̂−1

p , where L̂p is the corresponding Lorentz
boost from the electron rest frame [56,57,67–70], i.e., the
positive-energy eigenvectors of ŝP transformed by L̂p are the
eigenvectors of ŝFW and L̂pŝPL̂−1

p . Accordingly, the use of
the Lorentz transformations would lead to exactly the same
findings regarding the problem considered in the present
paper. We also point out that in Refs. [36,52,53,55] a number
of other different forms of the relativistic spin operator were
examined.

IV. CALCULATION OF THE ELECTRON
WAVE-PACKET DYNAMICS

Due to the fact that the external field does not depend on
the coordinates x and y, the corresponding components of
the generalized momentum of the electron are conserved. To
study the nontrivial dynamics of the electron with regard to
the z axis, we construct the initial wave packet as follows:

ψ (0)
p,s(r) = 1

(2π )3/2
eipr

∫ +∞

−∞
dq eiqz f (q)u(p + qn, s), (15)

where f (q) determines the spectral structure of the wave
packet, s is the spin quantum number, and n coincides with
the unit vector ez. The vector p = (px, py, pz ) consists of the
following components: px and py are the exact values of the
projections of the electron momentum along the x and y axes,
respectively, and pz is the mean value of the z projection. In
order to ensure the condition 〈ψ (0)

p,s|ψ (0)
p,s′ 〉 = δs,s′ , we require∫ +∞

−∞
dq| f (q)|2 = 1. (16)

The function f (q) is chosen in the Gaussian form:

f (q) = 1√

q

√
π

e−q2/(2
q2 ), (17)

where the parameter 
q governs the width of the wave packet.
The initial spin state of the electron is determined by the
constant (independent of coordinates and time) bispinors
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u(p, s) corresponding to the positive-energy solutions of the
Dirac equation (s = ±). Together with the bispinors v(p, s)
involved in the states with negative energy, they form a
complete orthonormal set:

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = δss′ , (18)

u†(p, s)v(p, s′) = 0, (19)∑
s=±1

[u(p, s)u†(p, s) + v(p, s)v†(p, s)] = I. (20)

These bispinors satisfy the relations

(c α · p + βc2)u(p, s) = εu(p, s), (21)

(c α · p + βc2)v(p, s) = −εv(p, s), (22)

where ε = c
√

c2 + p2. We choose the bispinors in the follow-
ing form:

u(p,+1) = 1

2
√

p0(p0 − px )

⎛
⎜⎜⎝

c + p0 − px + ipy

pz

pz

c − p0 + px + ipy

⎞
⎟⎟⎠, (23)

u(p,−1) = 1

2
√

p0(p0 − px )

⎛
⎜⎜⎝

−pz

c + p0 − px − ipy

c − p0 + px − ipy

−pz

⎞
⎟⎟⎠, (24)

v(p,+1) = 1

2
√

p0(p0 + px )

⎛
⎜⎜⎝

c − p0 − px + ipy

pz

pz

c + p0 + px + ipy

⎞
⎟⎟⎠, (25)

v(p,−1) = 1

2
√

p0(p0 + px )

⎛
⎜⎜⎝

−pz

c − p0 − px − ipy

c + p0 + px − ipy

−pz

⎞
⎟⎟⎠, (26)

where p0 = ε/c. Note that for these bispinors the value of the
quantum number s corresponds to a certain spin projection
(±1/2) onto the z axis only in the case pz = 0 (no matter
which spin operator is employed).

The initial condition reads ψp,s(tin, r) = ψ (0)
p,s(r). Our goal

is to evolve this state in time and calculate the mean values
of the spin projections. The main idea of the method is the
following. The initial state can be expanded into the complete
set of the Volkov states [71,73,74], and the expansion coef-
ficients do not depend on time since the Dirac Hamiltonian
is Hermitian. The wave function at an arbitrary time instant t
can then be constructed using the coefficients evaluated. The
Volkov states are defined by the following expressions:

ϕ
(ζ )
p′,s′ (t, r) = 1

(2π )3/2
eiζ p′r f (ζ )

p′,s′ (t, z), (27)

f (ζ )
p′,s′ (t, z) = e−iζε′t exp

{
− i

∫ nx

0
dξ

1

2(np′)

[
− 2

c
[p′A(ξ )]

− ζ
1

c2
A2(ξ )

]}[
1 − ζ

2c(np′)
/n/A

]
wζ (p′, s′), (28)

where w+(p′, s′) = u(p′, s′), w−(p′, s′) = v(−p′, s′), and /a ≡
γ μaμ. Each of the Volkov functions has a well-defined sign of
energy ζ = ±, which does not depend on time (this is con-
sistent with the fact that a plane-wave electromagnetic field
cannot produce electron-positron pairs). Given the specific
form of the vector potential (5) used in this paper, we obtain

f (ζ )
p′,s′ (t, z) = e−iζε′t exp

{
(−i)

ε′ − cp′
z

[
p′

x

∫ ξ

0
dξ ′ A(ξ ′)

+ ζ

2c

∫ ξ

0
dξ ′ A2(ξ ′)

]}

×
[

1+ ζ

2(ε′−cp′
z )
A(ξ )(γ 0−γ 3)γ 1

]
wζ (p′, s′),

(29)

where ξ = nx = ct − z.
The electron wave function can be expanded in terms of

the Volkov states:

ψp,s(t, r) =
∑

ζ

∑
s′

∫
d p′ C(ζ )

p′,s′ϕ
(ζ )
p′,s′ (t, r). (30)

The expansion coefficients C(ζ )
p′,s′ are evaluated at t = tin as a

standard inner product:

C(ζ )
p′,s′ =

∫
dr

[
ϕ

(ζ )
p′,s′ (tin, r)

]†
ψ (0)

p,s(r). (31)

As the wave packet (15) depends on x and y only via exp(ipr),
the coefficients are “diagonal” with respect to px and py:

C(ζ )
p′,s′ = δ(p′

x − ζ px )δ(p′
y − ζ py)c(ζ )

p′
z,s

′ . (32)

One can easily verify that

−i∂xϕ
(+)
p′,s′ (t, r) = p′

xϕ
(+)
p′,s′ (t, r). (33)

Thus the index p′
x corresponds to the generalized momentum

projection (the same holds also for p′
y). We receive

c(ζ )
p′

z,s
′ =

∫ +∞

−∞

dz

2π

∫ +∞

−∞
dq ei(pz−ζ p′

z )zeiqz

× [
f (ζ )

p′,s′ (tin, z)
]†

f (q)u(p + qn, s), (34)

where p′
x = ζ px and p′

y = ζ py. Since the initial state (15)
is orthogonal to the subspace of the negative-energy states,
the coefficients c(−)

p′,s′ vanish, which allows us to use only the
Volkov solutions corresponding to positive energy (ζ = +).
The wave function can now be obtained according to

ψp,s(t, r) =
∑

s′

∫
d p′

z c(+)
p′

z,s
′ ϕ

(+)
px,py,p′

z,s
′ (t, r). (35)

We use this expression at t = tout in order to evaluate the
full change of the spin projections. Once the coefficients
(34) are calculated, we build a spatial grid within a box the
center of which coincides with the classical value of the final
coordinate z (classical equations of motion are solved as a
usual Cauchy problem). Then we adjust the box position and
size to properly capture the final wave packet and calculate the
wave function according to Eq. (35) with necessary precision
and spatial resolution. The same procedure is used for the box
in momentum space.
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When the exact wave function (35) is constructed, one can
calculate the mean values of various observable quantities,
e.g., the spin projections, either in the momentum or coordi-
nate representation.

V. SPIN DYNAMICS OF A CLASSICAL ELECTRON

The temporal dependence of the spin angular momentum
of a classical electron in the presence of an external electro-
magnetic field can be described in the classic nonrelativistic
case by means of the precession equation for the magnetic
moment m = −s/c (|s| = 1/2) [75]:

ds
dt

= −1

c
s ×

(
B − v

c
× E

)
, (36)

where v is the electron’s velocity. As was shown in Ref. [33],
if the external field represents a monochromatic plane wave,
i.e.,

E = E∗ cos(ωt − kz)ex, B = E∗ cos(ωt − kz)ey, (37)

where k = ω/c, then the spin projections change according to


sNR
x (τ ) = sin[σE (τ )] cos[θ0 + σE (τ )], (38)


sNR
y (τ ) = 0, (39)


sNR
z (τ ) = − sin[σE (τ )] sin[θ0 + σE (τ )]. (40)

Here τ = t − z/c, σE (τ ) = SE (τ )/(2c), SE (τ ) =
(E∗/ω) sin ωτ is the x projection of the electric-field area
of the pulse calculated over a finite time interval, and θ0

determines the initial orientation of the particle’s spin (in
contrast to the notations of Ref. [33], θ0 is measured here
from the z direction). If the electric-field area is sufficiently
small, i.e., |σE (τ )| � 1, one obtains


sNR approx.
x (τ ) = σE (τ ) cos θ0 − σ 2

E (τ ) sin θ0, (41)


sNR approx.
z (τ ) = −σE (τ ) sin θ0 − σ 2

E (τ ) cos θ0, (42)

where we have neglected the terms of order σ 3
E (τ ) and higher.

If θ0 = 0, the changes of the x and z spin projections are pro-
portional to σE (τ ) and σ 2

E (τ ), respectively (see also Ref. [34]).
A relativistic generalization of Eq. (36) is the Thomas-

Bargmann-Michel-Telegdi (T-BMT) equation [64,76] (see
also, e.g., Refs. [63,75,77]):

ds
dt

= −1

c
s ×

(
1

γ
B − 1

γ + 1

v

c
× E

)
, (43)

where γ = (1 − v2/c2)−1/2. In the case of the monochromatic
field (37), one can derive the relativistic analogs of the rela-
tions (38)–(40) (see Ref. [33]):


sR
x (τ ) = sin[arctan{σE (τ )}]

× cos[θ0 + arctan{σE (τ )}], (44)


sR
y (τ ) = 0, (45)


sR
z (τ ) = − sin[arctan{σE (τ )}]

× sin[θ0 + arctan{σE (τ )}]. (46)

In the case σE (τ ) � 1, one recovers the expressions (38)–
(42). In Ref. [33] these results were obtained assuming that the
particle is initially at rest. In what follows, we will also con-
sider a nonzero initial momentum pz. In this case, Eqs. (44)–
(46) alter according to the substitution arctan{σE (τ )} →
arctan{σE (τ )/D}, where D ≡ (1 + �z − pz/c)/2 and �z ≡
[1 + (pz/c)2]1/2. This modification is always taken into ac-
count in our computations and is important unless |pz/c| � 1
as D = 1 − pz/(2c) + [pz/(2c)]2 + O(|pz/c|4). The deriva-
tion of this result can be found in the Appendix. We also
note that Eqs. (44)–(46) have this particular form in terms of
σE (τ ) no matter what phase is chosen in Eq. (37) (one can, for
instance, replace cos with sin).

In addition to using the analytical expressions (38)–(42)
and (44)–(46), we also solved numerically the equations of
motion for a particle in the field of a finite laser pulse
[Eqs. (3) and (4)] and evolved the spin angular momentum
according to Eqs. (36) and (43). Thus, in our calculations
only quantum effects were not taken into account. In the
next section, we compare these predictions for the case of a
classical electron with the analytical expressions for the case
of a monochromatic field and with the results of quantum
calculations described in Sec. IV. In order to partially take
into account the finite size of the laser pulse when studying
the total change of the spin, we replace the area SE (τ ) in
Eqs. (38)–(42) and (44)–(46) with the total electric-field area
of the laser field [Eqs. (3) and (4)]:

SE =
{

(E∗/ω) sin2(πNc)/
(
1 − N2

c

)
, Nc 
= 1,

0, Nc = 1.
(47)

As will be seen below, this substitution to a great extent takes
into account the effects of the spatial finiteness of the laser
pulse.

Finally, we consider pz = 0 and θ0 = 0, which substan-
tially simplifies the expressions displayed above, so that they
take the following form:


sNR
x (τ ) = 1

2 sin[2σE (τ )], (48)


sNR approx.
x (τ ) = σE (τ ), (49)


sR
x (τ ) = σE (τ )

1 + σ 2
E (τ )

, (50)


sNR
z (τ ) = − sin2[σE (τ )], (51)


sNR approx.
z (τ ) = −σ 2

E (τ ), (52)


sR
z (τ ) = − σ 2

E (τ )

1 + σ 2
E (τ )

. (53)

These classical relations clearly demonstrate that the electron-
spin dynamics is fully determined by the electric-field area
of the external laser field, which indicates a great impact
which unipolar pulses have on the particle’s spin. In the next
section, these approximate expressions and those for θ0, pz 
=
0 [Eqs. (38)–(42) and (44)–(46)] will be benchmarked against
the numerical solutions of Eqs. (36) and (43) and the results
of quantum simulations.
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VI. RESULTS AND DISCUSSION

In this section, we discuss the predictions of the classical
treatment of the electron-spin dynamics and the results of
relativistic calculations based on the Dirac equation which
is solved by means of the method presented in Sec. IV.
The mean value of the electron spin is evaluated using the
spin operators discussed in Sec. III. Our computations are
carried out for various values of the particle’s initial central
momentum pz (the transverse components of the momentum
are equal to zero). We choose first the following external field
parameters: E∗ = 10 a.u. ≈ 5.14 × 1010 V/cm and ω = 1 a.u.
corresponding to a peak intensity of 3.51 × 1018 W/cm2

and the wavelength λ = 2πc/ω ≈ 45.6 nm. According to
Eq. (47), the total electric-field area always satisfies |SE | �
14 a.u. ≈ 1.74 × 10−4 sV/m, so |σE | � 0.05. In Sec. VI C, we
will also examine laser pulses with ω = 0.1 a.u. (λ ≈ 456
nm), which can have a large electric-field area, i.e., |σE | � 1
no longer holds for such pulses.

The width 
q of the initial electron wave packet in mo-
mentum space was varied from 0.0001 to 1 a.u. in our quan-
tum computations and we also employed a super-Gaussian
envelope e−q4/(4
q4 ) of the wave packet. None of these modi-
fications affected the results presented in what follows. More-
over, the final mean values of the z coordinate calculated
with the operator r and the z projection of the particle’s
momentum proved to exactly follow the classical relativistic
solutions, i.e., the corresponding relative discrepancy was
always much smaller than the spin effects examined in this
paper. It means that the spin-induced forces, which we do not
incorporate in our classical treatment, are insignificant within
our simulations. We also found that the difference between
the results obtained with the operator r in the Dirac and
Foldy-Wouthuysen representations is negligible.

Finally, we point out that we entirely neglect the QED
effects and radiation reaction (RR) since the external field
strength is not large enough to manifest them (see, e.g.,
Refs. [78–80]). For instance, studies of nonlinear Comp-
ton scattering involving localized electron wave packets or
ultrashort (or even unipolar) laser pulses were reported in
Refs. [81–86]. To make sure that the relatively subtle spin
effects discussed in what follows do not depend on RR, we
added the RR terms in the form of Landau-Lifshitz [87] in the
classical equations of motion, which did not affect the results
presented in the paper.

A. Classical spin dynamics

Let us first consider the classical treatment of the problem
where we compare the predictions of Eqs. (38)–(42) and (44)–
(46) with the results of the exact calculations based on the
classical equations (36) and (43). To elucidate the influence
of the laser field on the electron spin, we evaluate the total
change of the spin projections as a difference between their
final and initial values.

First, we note that in all our calculations the change of the
y projection of the spin (projection onto the magnetic-field
direction) was always at least five orders of magnitude smaller
than the corresponding values for the projections along the
x and z axes, which agrees well with the results (39) and
(45). Accordingly, we will refrain from discussing the y spin
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FIG. 2. Total dimensionless electric-field area σE = SE/(2c) as a
function of Nc evaluated according to Eq. (47) for E∗ = 10 a.u. and
ω = 1 a.u.

projection and will only analyze the x and z ones. Second,
since the electric-field area is sufficiently small, the approxi-
mate expressions (41) and (42) yield the same results as those
obtained by means of Eqs. (38) and (40) (the corresponding
lines would be indistinguishable from one another in the plots
presented in this subsection).

Before we discuss how the total spin change depends on the
dimensionless field area σE = SE/(2c), we present the plot
σE (Nc) according to Eq. (47) which is used throughout the
paper (see Fig. 2). This function oscillates and vanishes for
integer values of Nc. The amplitude decreases with Nc. As we
are mainly interested in laser pulses which have a high degree
of unipolarity (1), we opt to consider only pulses containing
no more than two “optical cycles” (0 < Nc � 2).

In Fig. 3 we display the total change of the electron-
spin projections as a function of the field area σE for pz =
14 a.u. (px = py = 0). Using the expression (47) for the total
electric-field area of the laser pulse [Eqs. (3) and (4)] allows
us to partially take into consideration the finiteness of the laser
pulse in Eqs. (38), (40), (44), and (46), which were derived
in the case of a monochromatic field (37). In order to take
into account the finite-size effects precisely, we performed the
exact numerical computations evolving the classical particle’s
spin according to Eqs. (36) and (43) (solid lines in Fig. 3).

The plots in Fig. 3 uncover several important patterns.
First, we observe that plugging the actual electric-field area
into the approximate expressions allows one to capture the
effects of the spatial finiteness of the external laser pulse to
very high accuracy, i.e., the exact solutions of Eqs. (36) and
(43) yield the same results. It means also that the change
of the electron spin is governed by very simple closed-form
expressions, e.g., Eqs. (44)–(46) in the relativistic regime, and
it is determined by the electric-field area of the laser pulse,
which plays a crucial role in the process. Second, the shape
of the curves in Fig. 3 (left) differs from that of the curves in
Fig. 3 (right). This can be easily accounted for by means of
Eqs. (41) and (42). The initial value θ0 of the precession angle
amounts to θ0 = 0.102 ≈ 6◦, which matches the correspond-
ing expectation value for the Foldy-Wouthuysen spin operator
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FIG. 3. Change of the spin projections sx (left) and sz (right) of a classical electron after the interaction with the laser pulse [Eqs. (3) and
(4)] as a function of the electric-field area. The approximate predictions 
sNR and 
sR are obtained with the aid of Eqs. (38) and (40) and
Eqs. (44) and (46), respectively, using the actual electric-field area (47). Equations (36) and (43) are solved numerically taking into account
the spatiotemporal dependence of the laser field [Eqs. (3) and (4)]. The initial momentum of the electron is pz = 14 a.u. (px = py = 0), and
θ0 = 0.102 ≈ 6◦. The external field parameters are E∗ = 10 a.u., ω = 1 a.u.

in the initial electron state within our quantum simulations
[the bispinors (23)–(26) correspond to nonzero θ0 once pz 
=
0]. Since both θ0 and σE are small, the right-hand side of
Eq. (41) is almost linear in σE , which leads to the straight lines
in Fig. 3 (left). On the other hand, both of the terms in Eq. (42)
are significant (they both are considerably smaller than 
sNR

x ).
Thus, in Fig. 3 (right) one observes a parabola the vertex of
which corresponds to σ ∗

E = −(1/2) tan θ0 ≈ −0.051. Finally,
the graphs reveal a discrepancy between the nonrelativistic
and relativistic predictions which is expected to grow with
increasing pz. We note that for pz → 0 all of the four curves
plotted completely coincide.

In Fig. 4 we depict the results of the analogous calculations
with pz = 70 a.u. (pz ∼ c/2). In this case, θ0 = 0.472. First,
we see that the curves in Fig. 4 (right) are now much closer
to straight lines due to a large value of θ0 (≈27◦) making
the first (linear) term in Eq. (42) dominant. Observe also

that the change 
sz becomes notably larger. Additionally, the
discrepancy between the relativistic and nonrelativistic results
is now well pronounced, as it should be (such great values
of pz/c do not warrant using nonrelativistic methods). On the
other hand, the approximate treatment of the finite-size effects
remains very accurate as there is no difference between the
solid and dashed lines in the graphs.

Our results indicate that the change of the particle’s spin
strongly depends on the electric-field area of the laser pulse
and can be described to high precision by the approximate
formulas (38), (40), (44), and (46), provided one employs a
proper form of the function σE depending on the external field
parameters. The classical analysis suggests that unipolar laser
pulses are particularly efficient at changing the electron-spin
state. Finally, we note that the field area SE (or dimensionless
σE ) is the relevant quantity here unlike the unipolarity param-
eter ξu.
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FIG. 4. Change of the spin projections sx (left) and sz (right) of a classical electron after the interaction with the laser pulse [Eqs. (3) and
(4)] as a function of the electric-field area. The plot legend is the same as in Fig. 3. The initial momentum of the electron is pz = 70 a.u.
(px = py = 0), and θ0 = 0.472 ≈ 27◦.
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FIG. 5. Change of the spin projections sx (left) and sz (right) of a relativistic electron wave packet after the interaction with the laser pulse
[Eqs. (3) and (4)] as a function of Nc. The calculations are performed with the aid of the classical T-BMT equation (43) (line C) and by solving
the Dirac equation and using the Pauli, Frenkel, and Foldy-Wouthuysen spin operators (lines P, F, and FW, respectively). The initial electron
momentum is p = 0. The external field parameters are E∗ = 10 a.u., ω = 1 a.u.

B. Quantum spin dynamics

Using the method described in Sec. IV, we perform quan-
tum computations of the electron-spin projections as a func-
tion of Nc for three different values of the initial electron
momentum pz. To calculate the mean values of the spin
projections, we employ four different spin operators described
in Sec. III, i.e., those of Pauli, Frenkel, Foldy-Wouthuysen,
and Pryce (the Foldy-Wouthuysen and Pryce operators yield
precisely the same data). The results will be compared with
the classical predictions obtained by means of the T-BMT
equation (43) being solved numerically, i.e., both quantum
and classical treatment exactly take into account the finite-size
effects.

As was stated above, the generalized momentum projec-
tions along the x and y directions are conserved since the
external field depends only on the z coordinate. It is useful
to estimate the total change of the z momentum component.
Taking into account that for ξ � ξmax the vector potential
is constant, A(ξ ) = A0 = −cSE , one can perform the inte-
gration in Eq. (29) and find the z dependence of the wave
function assuming that the main contribution in the expansion
(30) corresponds to the initial momentum p with px = py = 0.
Equating this spatial dependence with exp[i(pz + 
pz )z], we
obtain


pz ≈ c√
c2 + p2

z − pz

S2
E

2c
. (54)

For pz/c → 0 it tends to S2
E/(2c).

Let us first consider the case pz = 0 (see Fig. 5). In Fig. 5
(left) we observe that all of the spin operators give identi-
cal results that coincide with the classical curve. Moreover
these lines exactly reproduce the curve in Fig. 2 according
to Eq. (49) as the particle motion along the z direction is
essentially nonrelativistic (see discussion below). In Fig. 5
(right) we observe a tremendously different situation. Using
the Foldy-Wouthuysen operator predicts the same Nc depen-
dence as the classical T-BMT equation, whereas the Pauli and
Frenkel operators lead to substantially different results. Since

in the nonrelativistic limit all of these operators coincide, the
discrepancy is associated with relativistic effects. In order to
explain the difference in the behavior of the curves displayed
in the two graphs, we shall consider the second term in the
definition of the Frenkel operator (12), which corresponds to
the leading relativistic correction to the Pauli operator [see
also Eq. (13)]. Since the field is polarized along the x axis
and we always assume px = py = 0, we receive

( p̂ + A/c) × α = −p̂zαyex + [ p̂zαx − (Ax/c)αz]ey

+ (Ax/c)αyez. (55)

As the central value of the electron’s initial momentum is zero
(pz = 0) and the z component hardly changes in the laser
field [
pz ≈ S2

E/(2c) � 0.73 a.u.], the x projection of this
vector product vanishes, which explains why we obtain the
indistinguishable curves in Fig. 5 (left). On the other hand, the
relativistic dynamics of the z component of the electron spin
is much less trivial due to notable acceleration of the particle
along the x axis. The final value of the x projection Ax/c of the
kinetic momentum is determined by the electric-field area SE ,
which reaches ≈14 a.u. Note that for integer values of Nc the
area SE vanishes, so all the curves in Fig. 5 (right) coincide
and intersect with the line 
s = 0, while for large values
of the pulse area (47) the discrepancy is huge. According
to the results of our computations, the relativistic part of
the Frenkel operator completely cancel the nonrelativistic
(Pauli) contribution. Furthermore, the higher-order relativis-
tic terms included in the Foldy-Wouthuysen operator make
the quantum predictions exactly coincide with the classical
estimates.

In Fig. 6 (left), a slight difference between the curves
becomes noticeable due to the nonzero initial momentum
pz = 14 a.u. [see the x projection of Eq. (55)]. For the pro-
jection sz, the relativistic effects, which arise not due to the
nonzero value of pz but due to acceleration of the electron in
the laser field, are clearly visible in Fig. 6 (right). The use
of the Foldy-Wouthuysen operator still leads to the classical
results as it should be according to Refs. [58,59,61]. Finally,
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FIG. 6. Change of the spin projections sx (left) and sz (right) of a relativistic electron wave packet after the interaction with the laser pulse
[Eqs. (3) and (4)] as a function of Nc. The calculations are performed with the aid of the classical T-BMT equation (43) (line C) and by solving
the Dirac equation and using the Pauli, Frenkel, and Foldy-Wouthuysen spin operators (lines P, F, and FW, respectively). The initial electron
momentum is pz = 14 a.u. (px = py = 0). The external field parameters are E∗ = 10 a.u., ω = 1 a.u.

in Fig. 7 we depict the data obtained for the case pz = 70
a.u. The difference among various curves in the case of 
sx

becomes evident. Nevertheless, the FW curve still accurately
reproduces the classical predictions for both 
sx and 
sz.

The results presented in Figs. 5–7 bring us to two main
conclusions. First, it was demonstrated that the classical
predictions are reproduced to high precision by quantum
simulations with the Foldy-Wouthuysen operator up to pz ≈
c/2. According to Sec. VI A, it means that the relativistic
electron-spin dynamics is basically described by the clas-
sical approximate formulas (44)–(46) and thus determined
by the electric-field area. The latter point indicates a great
efficiency of unipolar laser pulses in the context of changing
the electron-spin state. Second, the spin dynamics is de-
scribed in significantly different ways when using different
spin operators. More specifically, the use of the Pauli and

Frenkel operators does not lead to a quantitative coincidence
of the results with the classical predictions, whereas the values
obtained by employing the Foldy-Wouthuysen operator match
the classical ones in all our calculations. These findings of
numerical simulations confirm the correspondence between
the classical spin vector and the quantum-mechanical spin
operator in the form of Foldy-Wouthuysen [58,59,61].

So far the electric-field area always obeyed σE � 0.05.
In the next section, we will increase it by choosing a lower
frequency. Accordingly, most of the relativistic effects dis-
cussed above as well as the changes of the spin projections
themselves will become more pronounced. Namely, we will
employ ω = 0.1 a.u., so the field area will become ten times
larger (the Nc dependence in Fig. 2 will be multiplied by 10).
This frequency relates to the wavelength λ ≈ 456 nm, which
corresponds to the visible spectrum.
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FIG. 7. Change of the spin projections sx (left) and sz (right) of a relativistic electron wave packet after the interaction with the laser pulse
[Eqs. (3) and (4)] as a function of Nc. The calculations are performed with the aid of the classical T-BMT equation (43) (line C) and by solving
the Dirac equation and using the Pauli, Frenkel, and Foldy-Wouthuysen spin operators (lines P, F, and FW, respectively). The initial electron
momentum is pz = 70 a.u. (px = py = 0). The external field parameters are E∗ = 10 a.u., ω = 1 a.u.
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FIG. 8. Change of the spin projections sx (left) and sz (right) of a classical electron after the interaction with the laser pulse [Eqs. (3) and
(4)] as a function of the electric-field area. The plot legend is the same as in Fig. 3. The initial momentum of the electron is pz = 70 a.u.
(px = py = 0), and θ0 = 0.472 ≈ 27◦. The external field parameters are E∗ = 10 a.u., ω = 0.1 a.u.

C. Lower frequency

First, we will consider the classical spin dynamics along
the same lines as in Sec. VI A. To keep the discussion concise,
we present the results only for pz = 70 a.u. (see Fig. 8).
As was stated above, the electric-field area is now ten times
larger, so the particle’s spin changes much more significantly,
and the simplest expressions (41) and (42) are no longer
applicable [for ω = 1 a.u. they gave the same results as
Eqs. (38) and (40)].

The main new feature here is the fact that the curves
in Fig. 8 are far from being straight in contrast to those
displayed in Fig. 4. The reason for this is the same—the
parameter σE reaches large values, so that |σE | � 1 is not
valid. Considering these plots in a sufficiently small vicinity of
σE = 0, we would obtain the plots similar to those depicted in
Fig. 4. Moreover, the curves in Fig. 8 are no longer parabolas
as they should be described by means of the more complex
expressions (38), (40), (44), and (46). The most important
point here is that these approximate closed-form expressions
explicitly involving the electric-field area remain very accu-
rate, so there is still no need to perform the full computations
based on Eqs. (36) and (43).

Finally, we turn to the quantum description of the process.
In Fig. 9 we present the Nc dependences for p = 0 and ω =
0.1 a.u. Even for 
sx the results are considerably different
because the z projection of the electron’s momentum now
notably changes. Both our quantum and classical computa-
tions confirmed Eq. (54) to high accuracy, i.e., 
pz ∼ S2

E/(2c)
(this ratio is now 100 times greater and can reach 73 a.u.).
Nevertheless, the Foldy-Wouthuysen operator leads to the
same data as the classical calculations, whereas the other
operators predict different patterns. Note also that when using
the Frenkel operator the sx projection can exceed 1/2 (see
dashed orange line in Fig. 9) since the eigenvalues of this
operator do not equal ±1/2.

In Fig. 10 we display our results for pz = 70 a.u. which
lead essentially to the same findings as those discussed above:
the discrepancy among different curves is evident, the FW
curve always coincides with the classical one. The initial

value pz does not play now a decisive role as this momen-
tum projection changes a lot under the action of the laser
field.

For the parameters chosen in our computations, we did not
observe any significant difference between the results of quan-
tum calculations and those obtained by means of the T-BMT
equation. According to the common criteria justifying a qua-
siclassical treatment (see, e.g., Ref. [88] for the nonrelativistic
conditions), some discrepancy may appear in the domain of a
small particle’s momenta or high laser frequencies. However,
this regime corresponds to a smaller field area obscuring the
spin effects, which we are interested in.

VII. CONCLUSION

In this paper, we analyzed the dynamics of the electron
spin in the field of a linearly polarized short laser pulse of
a finite size. First, it was demonstrated that the total change
of the classical spin can be described by simple closed-form
expressions involving the initial momentum of the particle
and the electric-field area of the laser pulse. Our quantum
computations based on the Dirac equation indicated also
that the pulse area is paramount within the process under
consideration. In order to maximize the impact that the laser
field has on the electron spin, one has to generate pulses with
a larger electric-field area.

Second, unipolar pulses may allow one to directly probe
the relativistic spin operators and to assess their relevance
to the observable quantities. It was shown that the different
choice of the relativistic spin operator can indeed lead to
significantly different results, and the corresponding discrep-
ancies strongly depend on the field area. In particular, it
turned out that the predictions obtained by using the Foldy-
Wouthuysen spin operator always match the classical results.
This point confirms that the Foldy-Wouthuysen operator is the
quantum-mechanical counterpart of the classical spin. More-
over, since the initial and final states of the electron are free,
the Pryce operator yields the same results as that of Foldy-
Wouthuysen. The other forms of the spin operator (Pauli and
Frenkel ones) predict substantially different patterns. Besides,
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FIG. 9. Change of the spin projections sx (left) and sz (right) of a relativistic electron wave packet after the interaction with the laser pulse
[Eqs. (3) and (4)] as a function of Nc. The calculations are performed with the aid of the classical T-BMT equation (43) (line C) and by solving
the Dirac equation and using the Pauli, Frenkel, and Foldy-Wouthuysen spin operators (lines P, F, and FW, respectively). The initial electron
momentum is p = 0. The external field parameters are E∗ = 10 a.u., ω = 0.1 a.u.

instead of using the Foldy-Wouthuysen operator, one can
equivalently perform the Lorentz boost to the particle’s rest
frame and calculate the mean values of the Pauli spin operator
since the wave packet does not contain any contributions from
the negative-energy continuum.
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APPENDIX: EXACT SOLUTION OF THE T-BMT
EQUATION IN THE CASE OF A MONOCHROMATIC

PLANE WAVE

Here we present a derivation of the exact solution of the
classical equation (43) governing the spin dynamics in the
case of a nonzero initial momentum pz (for pz = 0 it can

be found in Ref. [33]). The external field is assumed to be
a monochromatic plane wave (37).

First, one has to solve the relativistic equations of motion
for a classical electron. They read

m
du
dt

= e
(

E + v

c
× B

)
, (A1)

dε

dt
= evE, (A2)

where u = γ v, ε = γ mc2, γ = (1 − v2/c2)−1/2, and we have
recovered the electron charge e and mass m. The y component
of Eq. (A1) leads to uy(t ) = vy(t ) = 0 as the initial conditions
are ux(0) = uy(0) = 0, uz(0) = pz/m. Here pz represents a
specific value of the initial momentum projection (unlike u,
v, γ , and ε, it does not depend on time). The x component of
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FIG. 10. Change of the spin projections sx (left) and sz (right) of a relativistic electron wave packet after the interaction with the laser pulse
[Eqs. (3) and (4)] as a function of Nc. The calculations are performed with the aid of the classical T-BMT equation (43) (line C) and by solving
the Dirac equation and using the Pauli, Frenkel, and Foldy-Wouthuysen spin operators (lines P, F, and FW, respectively). The initial electron
momentum is pz = 70 a.u. (px = py = 0). The external field parameters are E∗ = 10 a.u., ω = 0.1 a.u.
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Eq. (A1) has the following form:

m
dux

dt
= e

(
1 − vz

c

)
E∗ cos(ωt − kz). (A3)

It is convenient to substitute t with τ ≡ t − z/c. Since dτ =
(1 − vz/c) dt , one obtains

m
dux

dτ
= eE∗ cos ωτ, (A4)

and thus

ux(τ ) = u0 sin ωτ, (A5)

where u0 ≡ eE∗/(mω). The particle is initially at z = 0, which
means that τ = 0 is equivalent to t = 0. Using then the z
component of Eqs. (A1) and (A2) and taking into account
Ex = By [see Eq. (37)], one can easily obtain dε = mc duz,
which brings us to

ε = mc2

√
1 + p2

z

(mc)2
− cpz + mcuz. (A6)

Here we have employed the initial conditions (at t = 0 the
energy is given by the first term). Note that the combination
ε/c − muz is a constant of motion, which does not allow the
quantum nonlinearity parameter χ = [|e|h̄/(m3c4)] |Fμν pν |
[89] to reach large values during the interaction. This gauge-
and Lorentz-invariant parameter is a measure of QED effects
in, e.g., nonlinear Compton scattering, so its small value
makes pure plane-wave backgrounds basically unfavorable for
studying strong-field QED phenomena (see, e.g., Ref. [90] and
references therein). The differential equation for uz(τ ), which
follows either from Eq. (A1) or from Eq. (A2), reads

m
duz

dτ
= ux

γ c − uz
eE∗ cos ωτ. (A7)

Using then Eqs. (A5)–(A7) and γ = ε/(mc2), we receive

duz

dτ
= ωu2

0

2c

sin 2ωτ√
1 + [pz/(mc)]2 − pz/(mc)

. (A8)

Integrating this equation and taking into account uz(0) =
pz/m, we obtain

uz(τ ) = pz

m
+ u2

0

2c

sin2 ωτ√
1 + [pz/(mc)]2 − pz/(mc)

. (A9)

Let us now discuss how the T-BMT equation (43) can
be solved. First, we note that the factor −1/c in Eq. (43)
corresponds to e/(mc). Second, from Eq. (43) it immediately
follows that sy = const. The equations involving sx and sz have
the following form:

dsx

dt
= −ωu0

γ c
sz

(
1 − uz/c

γ + 1

)
cos(ωt − kz), (A10)

dsz

dt
= ωu0

γ c
sx

(
1 − uz/c

γ + 1

)
cos(ωt − kz). (A11)

Using now the ansatz sx = (1/2) sin θ and sz = (1/2) cos θ ,
we derive a differential equation for θ (τ ):

dθ

dτ
= −ωu0

c

γ + 1 − uz/c

(γ + 1)(γ − uz/c)
cos ωτ. (A12)

Having obtained the functions uz(τ ) and γ (τ ) = ε(τ )/(mc2)
[see Eqs. (A6) and (A9)], we can recast Eq. (A12) into

dθ

dτ
= −ωu0

c

D cos ωτ

D2 + [u0/(2c)]2 sin2 ωτ
, (A13)

which leads to

θ (τ ) = θ0 − 2 arctan

{
1

D

u0

2c
sin ωτ

}
(A14)

= θ0 + 2 arctan

{
1

D
σE (τ )

}
. (A15)

Here D and σE (τ ) are defined in the same way as in Sec. V:

D = 1

2

[
1 + �z − pz

mc

]
, (A16)

�z =
√

1 + p2
z

(mc)2
, (A17)

σE (τ ) = |e|SE (τ )

2mc
. (A18)

It is worth noting that θ (τ ) expressed in terms of the electric-
field area of the pulse [see Eq. (A15)] does not depend on the
initial phase of the field. Indeed, if we add some initial phase
ϕ0 to the argument of the cosine in (37), the expression (A5)
will turn into

ux(τ ) = u0[sin (ωτ + ϕ0) − sin ϕ0], (A19)

and the expression (A14) will be modified accordingly. How-
ever, due to the fact that in this case the electric-field area has
the form

SE (τ ) = E∗
ω

[sin (ωτ + ϕ0) − sin ϕ0], (A20)

the connection between σE (τ ) and ux(τ ) remains unchanged:

σE (τ ) = −ux(τ )

2c
. (A21)

Hence, we can conclude that regardless of the presence of ϕ0

the function θ (τ ) is fully determined by σE (τ ).
Thus, the spin projections in terms of θ (τ ) change accord-

ing to the following relations:


sx(τ ) = 1

2
[sin θ (τ ) − sin θ0] = sin

[
arctan

{
σE (τ )

D

}]

× cos

[
θ0 + arctan

{
σE (τ )

D

}]
, (A22)


sz(τ ) = 1

2
[cos θ (τ ) − cos θ0]

= − sin

[
arctan

{
σE (τ )

D

}]

× sin

[
θ0 + arctan

{
σE (τ )

D

}]
, (A23)

which coincide with those discussed in the main text [see
Eqs. (44) and (46) and comments below them].
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