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Extracting photoelectron spectra from the time-dependent wave function:
Comparison of the projection onto continuum states and window-operator methods
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Over the past three decades numerous numerical methods for solving the time-dependent Schrödinger
equation within the single-active electron approximation have been developed for studying ionization of atomic
targets exposed to an intense laser field. In addition, various numerical techniques for extracting the photoelectron
spectra from the time-dependent wave function have emerged. In this paper we compare photoelectron spectra
obtained by either projecting the time-dependent wave function at the end of the laser pulse onto the continuum
state having the proper incoming boundary condition or by using the window-operator method. Our results
for three different atomic targets show that the boundary condition imposed onto the continuum states plays a
crucial role for obtaining correct spectra accurate enough to resolve fine details of the interference structures of
the photoelectron angular distribution.
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I. INTRODUCTION

The pioneering work of Kulander in the late 1980s [1,2]
has paved the way for the numerical solution of the time-
dependent Schrödinger equation (TDSE) to become a very
important and powerful tool for studying the laser-atom in-
teraction and related strong-field phenomena. The constant
increase in computer power and processor speed of personal
computers in the past 30 years has led to the development of
numerous numerical methods for solving the TDSE (see, for
example, Refs. [3–9]). Nowadays, many software codes are
available for studying processes such as multiphoton ioniza-
tion, above-threshold ionization, high-order above-threshold
ionization, and high-order harmonic generation [10–13]. All
these methods have one thing in common, namely the TDSE is
solved within the single-active-electron (SAE) approximation
for a model atom, while the laser-atom interaction is treated in
dipole approximation, either using the length or the velocity
gauge form of the interaction operator.

Propagation of an initial bound state under the influence of
a strong laser field is only one part of the problem. Extraction
of the physical observables at the end of the laser pulse poses
another challenging task. Modern-day photoionization exper-
iments designed for recording photoelectron spectra (PES)
can be used to simultaneously measure the photoelectron
kinetic energy and its angular distribution (see, for example,
Refs. [14–16]). As the resolution of these experimental tech-
niques increased, the theoretical calculation of highly accurate
PES from ab initio methods such as numerical solution of the
TDSE became essential in order to distinguish different mech-
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anisms that play a role in a photoionization process. Examples
in above-threshold ionization include the interference carpets
[17] and a forklike structure, which vanishes for few-cycle
laser pulses [18]. Both of these effects materialize off the
polarization axis (for a linearly polarized laser field).

Formal exact PES for a one-electron photoionization pro-
cess can be calculated by projection of the time-dependent
wave function at the end of the laser pulse onto the continuum
states of the field-free Hamiltonian. We call this method the
PCS (projection onto continuum states) method. For long laser
pulses at near-infrared wavelengths and moderate intensities
the photoelectron can travel very far away from the origin. In
order to include the fastest photoelectrons the volume within
which the wave function is simulated has to be very large.
Another deficiency of the PCS method is that the continuum
states, onto which we project the solutions of the TDSE at the
end of the laser pulse, are analytically known only for the pure
Coulomb potential, while for non-Coulomb potentials they
have to be obtained numerically. That is why many approx-
imative methods for extracting PES with no need to calculate
the continuum states have emerged in the past three decades.
One of the earliest methods used for extracting the PES from
the time-dependent wave function is the so-called window-
operator (WO) method [19]. It has been successfully used in
the past for PES calculations for atomic targets exposed to a
strong laser field [20]. Recently, the WO method has also been
used for studying high-order above-threshold ionization of the
H2

+ molecular ion [21]. There is also the so-called tSURFF
method [22], which is designed to replace the projection onto
continuum states with a time integral of the outer-surface flux,
allowing one to use a much smaller simulation volume. An
extension of the tSURFF method called the iSURF method
[23] has also been used for calculating PES. Another way of
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calculating PES without explicit calculation of the continuum
states is to propagate the wave function under the influence
of the field-free Hamiltonian for some period of time after
the laser pulse has been turned off, so that even the slowest
parts of the wave function have reached the asymptotic zone
[24]. However, for neutral atomic targets this method requires
a large spatial grid to include the part of the wave function
associated with the fastest photoelectrons.

From a numerical point of view, the above-mentioned
approximative methods may be appealing since they are less
time consuming than the exact PCS method. However, they
can mask some fine details in the PES due to neglecting the
nature of the continuum state associated with a photoelectron.
Therefore, approximative methods used for extracting PES
from the wave function have to be checked for consistency by
comparing with the exact method. In this paper we compare
the results obtained using the exact PCS method with those
obtained with the WO method.

This paper is organized as follows. In Sec. II we first
describe our numerical method for solving the Schrödinger
equation. Next, we introduce the method of extracting PES
from the time-dependent wave function using the method of
projecting onto continuum states and the window-operator
method. In Sec. III we present our results for PES obtained
by these two methods. We compare results for three different
targets, fluorine negative ions and hydrogen and argon atoms,
modeled by different types of the binding potential. Finally,
we summarize our results and give conclusions in Sec. IV.
Atomic units (a.u.; h̄ = 1, 4πε0 = 1, e = 1, and me = 1) are
used throughout the paper, unless otherwise stated.

II. NUMERICAL METHODS

A. Method of solving the Schrödinger equation

We start by solving the stationary Schrödinger equation for
an arbitrary spherically symmetric binding potential V (r) =
V (r) in spherical coordinates:

H0ψ (r) = Eψ (r), H0 = − 1
2∇2 + V (r). (1)

We are looking for solutions in the form

ψn�m(r) = un�(r)

r
Y m

� (�), � ≡ (θ, ϕ), (2)

where the Y m
� (�) are spherical harmonics. The radial function

un�(r) is a solution of the radial Schrödinger equation:

H�(r)un�(r) = En�un�(r), (3)

H�(r) = −1

2

d2

dr2
+ V (r) + �(� + 1)

2r2
, (4)

where n is the principal quantum number and � is the orbital
quantum number. For bound states with the energy En� < 0
the corresponding radial wave function un�(r) has to obey the
boundary conditions un�(0) = 0 and un�(r) → 0 for r → ∞.
The radial equation (3) is solved numerically in the interval
[0, rmax] by expanding the radial function into the B-spline
basis set as

un�(r) =
N−1∑
j=2

cn�
j B(ks )

j (r), (5)

where N represents the number of B-spline functions in the
domain [0, rmax] and ks is the order of the B-spline function.
All results presented in this paper have been obtained using
the order ks = 10 and for simplicity we omit it in further
expressions. Since we require that the radial function vanishes
at the boundary, we exclude the first and the last B-spline func-
tion in the expansion (5). For more details on the properties of
the B-spline basis, see [25].

Inserting (5) into (3), multiplying the obtained equation
with Bi(r), and integrating over the radial coordinate for fixed
orbital quantum number �, we obtain a generalized eigenvalue
problem in the form of a matrix equation:

H�
0cn� = EScn�, (6)

where (
H�

0

)
i j =

∫ rmax

0
Bi(r)H�(r)Bj (r)dr, (7)

(S)i j =
∫ rmax

0
Bi(r)Bj (r)dr. (8)

The overlap matrix S originates from the fact that the B-spline
functions do not form an orthogonal basis set. All integrals
involving B-spline functions are calculated with the Gauss-
Legendre quadrature rule. Using a standard diagonalization
procedure for solving (6) we obtain the ground-state energy
and the corresponding eigenvector, which is used as an initial
state in the TDSE.

In order to describe the laser-atom interaction we numeri-
cally solve the time-dependent Schrödinger equation:

i
∂
(r, t )

∂t
= [H0 + VI (t )]
(r, t ), (9)

where VI (t ) is the interaction operator in the dipole approx-
imation and velocity gauge. We assume that the laser field
is linearly polarized along the z axis, so that the interaction
operator can be written as

VI (t ) = −iA(t ) · ∇ = −iA(t )

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
, (10)

where A(t ) = − ∫ t E (t ′)dt ′ and E (t ) is the electric field given
by

E (t ) = E0 sin2

(
ωt

2Nc

)
cos(ωt ), t ∈ [0, Tp], (11)

where ω = 2π/T is the laser-field frequency and Tp = NcT is
the pulse duration, with Nc the number of optical cycles. The
amplitude E0 is related to the intensity I of the laser field by
the relation E0 = √

I/IA, where IA = 3.509 × 1016 W/cm2 is
the atomic unit of intensity.

The TDSE is solved by expanding the time-dependent
wave function in the basis of B-spline functions and spherical
harmonics:


(r,�, t ) =
N−1∑
j=2

L−1∑
�=0

c j�(t )
Bj (r)

r
Y m0

� (�), (12)

where the expansion coefficients c j�(t ) are time dependent.
For a linearly polarized laser field, the magnetic quantum
number is constant and we set it equal to m0 = 0. Inserting
the expansion (12) into (9), multiplying the obtained result
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by Bi(r)Y m0∗
�′ (�)/r, and integrating over the spherical coordi-

nates, we obtain the TDSE in the form of the following matrix
equation:

i(S ⊗ 1�)
dc(t )

dt
= [

H�
0 ⊗ 1� − iA(t )WI

]
c(t ), (13)

where 1� is the identity matrix in � space and

c(t ) = [(c20, . . . , cN−10), (c21, . . . , cN−11),

. . . , (c2L−1, . . . , cN−1L−1)]T (14)

is a time-dependent vector. The matrices S and H�
0 are diag-

onal in � space, while the matrix WI couples the � − 1 and
� + 1 � block:

(WI )�
′�

i j = (Q)i j
[
�cm0

�−1δ�′,�−1 − (� + 1)cm0
� δ�′,�+1

]
+(P)i j

[
cm0
�−1δ�′,�−1 + cm0

� δ�′,�+1
]
, (15)

where

cm0
� =

√
(� + 1)2 − m2

0

(2� + 1)(2� + 3)
, (16)

(Q)i j =
∫ rmax

0

Bi(r)Bj (r)

r
dr, (17)

(P)i j =
∫ rmax

0
Bi(r)

dBj (r)

dr
dr. (18)

Since the matrix WI couples only the � − 1 and the � + 1 �

block, it can be decomposed in a sum of mutually commuting
matrices

WI =
L−2∑
�=0

(P ⊗ L�m0 + Q ⊗ T�m0 ), (19)

where

L�m0 = cm0
�

(
0 1
1 0

)
, (20)

T�m0 = (� + 1)cm0
�

(
0 1

−1 0

)
(21)

are effectively 2 × 2 matrices acting upon the vector
[c�, c�+1]T = [(c2l , . . . , cN−1l ), (c2�+1, . . . , cN−1�+1)]T .

The formal solution of the matrix equation (13) can be
written as

c(t + t ) = exp

{
− i(S−1 ⊗ 1�)

×
∫ t+t

t

[
H�

0 ⊗ 1� − iA(t ′)WI
]
dt ′

}
c(t ). (22)

The evolution of the inital wave function is described by the
same numerical recipe as in [10], but without using finite
difference expressions. Our final expression for this time
evolution is

c(t + t ) =
0∏

l=L−2

[
S ⊗ 1� − t

4 A(t + t )P ⊗ L�m0

S ⊗ 1� + t
4 A(t + t )P ⊗ L�m0

×S ⊗ 1� − t
4 A(t + t )Q ⊗ T�m0

S ⊗ 1� + t
4 A(t + t )Q ⊗ T�m0

]

×
L−1∏
�=0

(S − i t
2 H�

0) ⊗ 1�

(S + i t
2 H�

0) ⊗ 1�

×
L−2∏
�=0

[
S ⊗ 1� − t

4 A(t )Q ⊗ T�m0

S ⊗ 1� + t
4 A(t )Q ⊗ T�m0

×S ⊗ 1� − t
4 A(t )P ⊗ L�m0

S ⊗ 1� + t
4 A(t )P ⊗ L�m0

]
c(t ). (23)

B. Extracting the photoelectron spectra from the
time-dependent wave function

The photoelectron spectra can be extracted from the time-
dependent wave function 
(r, t ) at the end of the laser
pulse by projecting it onto the continuum states having the
momentum k = (k,�k ) and �k ≡ (θk, ϕk ). These continuum
states are solutions of the stationary Schrödinger equation
for an electron moving in a spherically symmetric potential
V (r). There are two linearly independent continuum states
labeled �

(+)
k (r) and �

(−)
k (r), which satisfy different boundary

conditions at large distance from the atomic target:

�
(±)
k (r)

r→∞−−−→ (2π )−3/2

(
eik·r + f (±)(θk )

e±ikr

r

)
, (24)

where f (±)(θk ) is the usual scattering amplitude. The solu-
tions �

(+)
k (r) represent continuum states that obey the so-

called outgoing boundary condition, whereas the solutions
�

(−)
k (r) represent continuum states that obey the so-called in-

coming boundary condition. The difference between these two
continuum states becomes manifest in the time dependence
of their corresponding wave packets as shown in [26]. Here
we only give the main result. Namely, a long time after the
interaction with the target, the continuum states �

(+)
k (r) and

�
(−)
k (r) behave as follows:

�
(+)
k (r, t )

t→∞−−−→ (2π )−3/2ei(k·r−Ekt ) + a scattering wave,

�
(−)
k (r, t )

t→∞−−−→ (2π )−3/2ei(k·r−Ekt ). (25)

In an ionization experiment, the electron liberated by ioniza-
tion winds up in a quantum state having linear momentum
k. Therefore, the continuum state �

(−)
k (r) is suitable for

describing an ionization experiment, while the continuum
state �

(+)
k (r) is employed for a collision experiment. For more

detailed analysis and discussion, see [27].
Both continuum states can be written as partial wave

expansions:

�
(±)
k (r) =

√
2

π

1

k

∑
�,m

i�e±i�
u�(k, r)

r
Y m

� (�)Y m∗
� (�k ), (26)

where � is the scattering phase shift of the �th partial
wave. The radial function u�(k, r) is a solution of the radial
Schrödinger equation (3) for fixed orbital quantum number
and kinetic energy Ek = k2/2. The continuum states (26)
are normalized on the momentum scale, i.e., 〈�(±)

k′ |�(±)
k 〉 =

δ(k′ − k).
For the pure Coulomb potential V (r) = −Z/r, the scatter-

ing phase shift � is equal to the Coulomb phase shift σ� =
arg �(� + 1 + iη), with η = −Z/k the Sommerfeld parameter.
The radial function u�(k, r) is given by the regular Coulomb
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function u�(k, r) = F�(η, kr), which is known in analytical
form. Coulomb functions F�(η, kr) and corresponding phase
shifts σ� are calculated using a subroutine from [28].

For the modified Coulomb potential

V (r) = −Z

r
+ Vs(r), (27)

the scattering phase shift � is the sum of the Coulomb phase
shift σ� and the phase shift δ̂� due to the presence of the
short-range potential Vs(r). In this case, the radial equation
is solved numerically by the Numerov method in the interval
r ∈ [0, r0], where r0 is the chosen size of the spherical box,
and the phase shift δ̂� is obtained by matching the numerical
solution u�(k, r) to the known asymptotic solution [29]:

Nu�(k, r) = cos δ̂�F�(η, kr) + sin δ̂�G�(η, kr), (28)

where G�(η, kr) is the irregular Coulomb function and N
is a normalization constant. To avoid having to calculate
derivatives, the phase shift δ̂� is obtained by matching at two
different points r1 and r2 close to the boundary r0:

tan δ̂� = κF�(η, kr2) − F�(η, kr1)

G�(η, kr1) − κG�(η, kr2)
, κ = u�(k, r1)

u�(k, r2)
. (29)

For a pure short-range potential V (r) = Vs(r) (η = 0), the
Coulomb functions F�(η, kr) and G�(η, kr) must be replaced
by the spherical Bessel function j�(kr) and the spherical
Neumann function n�(kr):

F�(0, kr) = kr j�(kr), G�(0, kr) = −krn�(kr). (30)

The spherical Bessel and Neumann functions and the
Coulomb functions are calculated using a subroutine from
[30]. After obtaining the phase shift δ̂�, the numerical solution
u�(k, r) is normalized according to (28).

The probability of finding the electron at the end of the
laser pulse in a continuum state with the momentum k =
(k,�k ) is given by

P(k,�k ) = d3P

k2dk d�k
= ∣∣〈�(−)

k

∣∣
(Tp)
〉∣∣2

. (31)

Inserting (26) and (12) into (31) we obtain the expression

P(k,�k ) = 2

π

1

k2

∣∣∣∣∑
i,�

ci�(Tp)(−i)�ei�Y m0
� (�k )Ii�(k)

∣∣∣∣
2

,

(32)
where we have introduced the integral

Ii�(k) =
∫ r0

0
u�(k, r)Bi(r)dr +

∫ rmax

r0

[cos δ̂�F�(η, kr)

+ sin δ̂�G�(η, kr)]Bi(r)dr. (33)

The photoelectron angular distribution (PAD), i.e., the proba-
bility P(Ek, θk ) of detecting the electron with kinetic energy
Ek emitted in the direction θk, is given by replacing k = √

2Ek
in (31) and integrating over ϕk:

P(Ek, θk ) = d2P

sin θkdEkdθk

= 1

π
√

2Ek

∣∣∣∣ ∑
i,�

ci�(Tp)(−i)�ei�

×√
2l + 1Pm0

� (cos θk )Ii�(k)

∣∣∣∣
2

, (34)

where Pm0
� (cos θk ) are associated Legendre polynomials. The

angle-integrated spectrum P(Ek ) is obtained by integrating
P(Ek, θk ) over θk:

P(Ek ) =
∫ π

0
P(Ek, θk ) sin θkdθk. (35)

C. Window-operator method

Obtaining the photoelectron angular distribution by pro-
jecting onto continuum states can be a challenging task
since the continuum states are highly oscillatory functions.
Therefore, the numerical integration has to be done with high
precision and stability to get the photoelectron spectra with an
accuracy of a few orders of magnitude. This is especially true
for non-Coulomb potentials since in this case the continuum
states must be obtained numerically.

In this section we present the implementation of the WO
method, which can be used for the extraction of the PES
without the need to calculate the continuum states. The WO
method is a useful technique for calculating the photoelectron
spectra whenever obtaining the correct scattering states is
troublesome, for instance, in the case of a one-dimensional
model atom or molecule [31–34] or in the case of a three-
dimensional one-electron molecule [21,35,36].

The WO method is based on the projection operator
Wγ (Ek ) defined by

Wγ (Ek ) = γ 2n

(H0 − Ek )2n + γ 2n , (36)

which extracts the component |χγ (Ek )〉 of the final wave
vector |
(Tp)〉 that contributes to energies within the bin of
the width 2γ , centered at Ek:

|χγ (Ek )〉 = Wγ (Ek )|
(Tp)〉. (37)

We set n = 3 and expand the wave vector into the basis (12):

χγ (Ek, r,�) =
N−1∑
i=2

L−1∑
�=0

b(γ )
i� (Ek )

Bi(r)

r
Y m0

� (�). (38)

To obtain the coefficients b(γ )
i� (Ek ) we solve Eq. (37) by

factorizing (36) [10] and transforming it into a series of matrix
equations:

1� ⊗ [
H�

0 − S(Ek − γ eiν34 )
][

H�
0 − S(Ek + γ eiν34 )

]
b(γ )

1

= γ 23
1� ⊗ Sc(Tp),

1� ⊗ [
H�

0 − S(Ek − γ eiν33 )
][

H�
0 − S(Ek + γ eiν33 )

]
b(γ )

2

= 1� ⊗ Sb(γ )
1 ,

1� ⊗ [
H�

0 − S(Ek − γ eiν32 )
][

H�
0 − S(Ek + γ eiν32 )

]
b(γ )

3

= 1� ⊗ Sb(γ )
2 ,

1� ⊗ [
H�

0 − S(Ek − γ eiν31 )
][

H�
0 − S(Ek + γ eiν31 )

]
b(γ )

= 1� ⊗ Sb(γ )
3 , (39)

where ν3 j = (2 j − 1)π/23. After obtaining b(γ ), the proba-
bility of finding the electron with the energy Ek is calculated
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as

Pγ (Ek ) =
∫

dV χ∗
γ (Ek, r,�)χγ (Ek, r,�)

=
∫

d� drPγ (Ek, r,�), (40)

where

Pγ (Ek, r,�) =
∣∣∣∣∣
N−1∑
i=2

L−1∑
�=0

b(γ )
i� (Ek )Bi(r)Y m0

� (�)

∣∣∣∣∣
2

. (41)

Now we make the assumption that the solid-angle element
d� in position space is approximately equal to the solid-angle
element d�k in momentum space (for details, see [37]). This
means that information about the probability distribution in
energy and in angle is obtained by integrating Pγ (Ek, r,�k ) ≈
Pγ (Ek, r,�) over the radial coordinate. In this case we de-
fine the probability Pγ (Ek,�k ) = Pγ (Ek, θk )/(2π ) which is
equal, up to a constant factor, to the PAD, Eq. (34).

III. RESULTS AND DISCUSSION

In this section we present the results for the PES obtained
by the methods discussed in the previous section. We begin
by comparing the spectra obtained using the PCS and WO
methods for a short-range potential. As the target we use the
fluorine negative ion F−. Within the SAE approximation we
model the corresponding potential by the Green-Sellin-Zachor
potential with a polarization correction included [38]:

V (r) = − Z

r[1 + H (er/D − 1)]
− α

2
(
r2 + r2

p

)3/2 , (42)

with Z = 9, D = 0.6708, H = 1.6011, α = 2.002, and rp =
1.5906. The 2p ground state of F− has the electron affinity
equal to Ip = 3.404 eV. In Fig. 1 we present the results
for PAD in the directions θk = 0◦, 90◦, and 180◦, obtained
by projecting the time-dependent wave function 
(Tp) onto
continuum states satisfying incoming boundary condition
(black solid line), outgoing boundary condition (green dot-
dashed line), and using the WO method with γ = 2 × 10−3

(red dashed line) for the laser-field parameters I = 1.3 ×
1013 W/cm2, λ = 1800 nm, and Nc = 6. The photoelectron
energy is given in units of the ponderomotive energy Up =
E2

0 /(4ω2). The TDSE is solved within a spherical box of the
size rmax = 2200 a.u. with the time step t = 0.1 a.u. To
achieve convergence we used L = 40 partial waves with N =
5000 B-spline functions. The convergence was checked with
respect to the variation of all these parameters. The continuum
states were obtained numerically in a spherical box of the
size r0 = 30 a.u. To allow for the best visual comparison,
the WO spectra were multiplied by a constant factor so that
optimal overlap is achieved with the PAD given by Eq. (34).
We notice that for θk = 0◦ and θk = 180◦ these two methods
produce almost identical photoelectron spectra, in contrast to
the spectrum in the perpendicular direction with respect to the
polarization axis, i.e., for θk = 90◦, where we notice a sig-
nificant difference. The WO method gives a large plateaulike
annex, which extends approximately up to 9Up, whereas the
PAD obtained by projection onto the �

(−)
k states drops very

quickly beyond 2Up. The results obtained projecting onto the

10-1

10-4

10-7

10-1

10-4

10-7P(
E k

,θ
k) (

a.
u.

) Φk
(−)

WO
Φk

(+)

0 4 8 12
Ek /Up

10-1

10-4

10-7

θk= 0°

θk= 90°

θk= 180°

FIG. 1. Differential detachment probabilities of F− ions for
emission of electrons in the directions θk = 0◦, 90◦, and 180◦, as
functions of the photoelectron energy in units of the ponderomo-
tive energy Up, for the following laser-field parameters: I = 1.3 ×
1013 W/cm2, λ = 1800 nm, and Nc = 6. The results are obtained
by projecting the time-dependent wave function 
(Tp) onto the �

(−)
k

states (black solid line) and �
(+)
k states (green dot-dashed line) and

using the WO method with γ = 2 × 10−3 (red dashed line).

states �
(+)
k exhibit almost the same plateaulike annex. We

will discuss this later. We notice here (and will again in the
subsequent figures) that the calculated spectra do not observe
backward-forward symmetry. This is due to the rather short
pulse duration (recall Nc = 6); it can nicely be explained in
terms of quantum orbits [39,40].

In Fig. 2 we present logarithmically scaled full PADs
obtained either by projecting on the states �

(−)
k (upper panel)

or by the WO method (lower panel). Both spectra have
been normalized to unity and the color map covers seven
orders of magnitude. As we can see, for small and very large
angles, these two methods produce almost identical interfer-
ence structures in the PADs. However, there is a substantial
difference between the two PADs in the angular range θk ∈
(25◦, 150◦) for Ek > 3Up.

Next we investigate the PAD for the hydrogen atom with
its pure Coulomb potential. In Fig. 3 we show the PES for
I = 1014 W/cm2, λ = 800 nm, and Nc = 6. The initial state
is 1s (Ip = 13.605 eV). The TDSE is solved in a spherical
box of the size rmax = 2200 a.u. using L = 40 partial wave
and N = 5000 B-spline functions. The time step is set to
t = 0.1 a.u. The spectra obtained using the WO method
are calculated with γ = 6 × 10−3. Again, we see that the
WO method as well as PCS on outgoing-boundary-condition
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FIG. 2. Full PADs for the same parameters as in Fig. 1. The upper
panel shows the PAD obtained by projecting onto the continuum
states �

(−)
k , while the lower panel shows the PAD obtained by the

WO method. The WO method gives additional structure for angles
θk ∈ (30◦, 150◦) and energies Ek > 3Up.

states give a plateaulike annex in the perpendicular direction,
which is absent from the PAD obtained by projecting onto
the Coulomb wave (the state �

(−)
k ). The same conclusion can

be obtained by comparing the full PADs, normalized to unity
and presented in Fig. 4. In the lower panel the PAD obtained
using the WO method clearly shows additional interference
structures just as in the case of F− ions.

As the last example we use the modified Coulomb potential
to model the 3p state of the argon atom in the SAE approxi-
mation. This potential is given by [41]

V (r) = −1 + a1e−a2r + a3r e−a4r + a5e−a6r

r
, (43)

with a1 = 16.039, a2 = 2.007, a3 = −25.543, a4 = 4.525,
a5 = 0.961, and a6 = 0.443. Using the potential (43) we
calculated the ionization potential of the 3p state and obtained
Ip = 15.774 eV. The TDSE is solved within a spherical box
of the size rmax = 1800 a.u. with the time step t = 0.05 a.u.
Convergence is achieved with L = 40 partial waves with N =
6000 B-spline functions. The continuum states are calculated
within a spherical box of the size r0 = 30 a.u. We used the
laser-field parameters I = 8 × 1013 W/cm2, λ = 800 nm, and
Nc = 6. The results for θk = 0◦, 90◦, and 180◦ are presented
in Fig. 5. For θk = 90◦ we again notice a plateaulike structure
in the spectrum obtained by the WO method and by projecting
on the states �

(+)
k . This is also visible from the full PADs

presented in Fig. 6.
From all these examples we can conclude that this

plateaulike structure observed at large angles is not caused by
the nature of the spherical potential V (r) but has a different
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FIG. 3. Differential ionization probabilities of H atoms for emis-
sion of electrons in the directions θk = 0◦, 90◦, and 180◦, as functions
of the photoelectron energy in units of the ponderomotive energy
Up, for the following laser-field parameters: I = 1014 W/cm2, λ =
800 nm, and Nc = 6. The results are obtained by projecting the
time-dependent wave function 
(Tp) onto the �

(−)
k states (black solid

line) and the �
(+)
k states (green dot-dashed line) and by using the WO

method with γ = 6 × 10−3 (red dashed line).

origin. Let us now explain the discrepancy between the spectra
obtained by projection on the states �

(−)
k on the one hand and

by projection on �
(+)
k or by the WO method on the other,

which we noticed in all examples presented above. As we
have already discussed, the continuum states have to satisfy
the incoming boundary condition in order to properly describe
the PES. This boundary condition is automatically included in
the continuum state (26) by the phase factor i�e−i� for each
partial wave. For a better understanding of the origin of the
artificial plateaulike annex that we see in the spectra obtained
using the WO method, in Figs. 1, 3, and 5 we have also
presented the PADs obtained projecting onto the continuum
states �

(+)
k (r). As we can see, the PAD in the direction θk =

90◦, calculated using the wrong continuum states �
(+)
k (r),

gives the same artificial plateaulike structures as the WO
method. Therefore, we conclude that the effect that we see
in the PADs obtained by the WO method is caused by the
boundary condition satisfied by the continuum states. Since
this boundary condition is not included or defined anywhere in
the WO method, the energy component χγ (Ek, r,�) extracted
from the time-dependent wave function 
(r, Tp) is a mixture
of the contributions from the �

(−)
k (r) and �

(+)
k (r) continuum

states. That is why we see in the spectrum obtained by the WO
method a plateaulike structure in the perpendicular direction.

023101-6



EXTRACTING PHOTOELECTRON SPECTRA FROM THE … PHYSICAL REVIEW A 102, 023101 (2020)

0 30 60 90 120 150 180
0

2

4

6

8

10

12

14

θk (degree)

E
k
/U

p

Projection

-7

-6

-5

-4

-3

-2

-1

0

0 30 60 90 120 150 180
0

2

4

6

8

10

12

14

θk (degree)

E
k
/U

p

WO

-7

-6

-5

-4

-3

-2

-1

0

FIG. 4. Full PADs for the H atom and laser-field parameters as in
Fig. 3. The upper panel shows the PAD obtained by projecting onto
the Coulomb wave for the free particle and the lower panel shows the
PAD obtained by the WO method. The WO method gives additional
interference structures for angles θk ∈ (30◦, 150◦) and Ek > 4Up.

Only the continuum states �
(+)
k (r) contribute to this spurious

plateau. It is worth noting that another consequence of taking
the wrong boundary condition is also visible in the spectrum
in the direction θk = 0◦ for Ar (Fig. 5). Namely, the destruc-
tive interference at approximately 8.8Up is far less pronounced
in the spectrum obtained by the WO method than in the
spectrum obtained by projecting onto the states �

(−)
k (r). The

reason is the interplay between the two different contributions,
one that comes from the continuum state �

(+)
k (r) and the

other that comes from the �
(−)
k (r) continuum state, which

is smaller by a few orders of magnitude. We see the same
feature in the spectrum for F− for θk = 0◦ (Fig. 1) at the
kinetic energy just above 8Up (it is less pronounced than
in the Ar case).

Rescattering plateaus at angles substantially off the polar-
ization direction of the laser field like those calculated for
the outgoing boundary conditions or by the WO method and
exhibited in Figs. 1–6 are difficult to understand for physical
reasons. All gross features observed so far in angle-dependent
above-threshold-ionization spectra have been amenable to
explanation in terms of the classical three-step scenario. How-
ever, this does not allow for electron energies perpendicular
to the field direction in excess of about 2Up [17,18,40].
The reason is that within the three-step model there is no
force acting on the electron in the perpendicular direction
by the laser field. Hence the perpendicular momentum has
to come either from direct ionization or from rescattering.
Direct ionization has a cutoff of about 2Up. High-energy
rescattering requires that the electron return to its parent atom
with high energy, and such an electron will invariably undergo
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FIG. 5. Differential ionization probabilities of the Ar atom for
emission of electrons in the directions θk = 0◦, 90◦, and 180◦, as
functions of the photoelectron energy in units of the ponderomo-
tive energy Up, for the following laser-field parameters: I = 8 ×
1013 W/cm2, λ = 800 nm, and Nc = 6. The results are obtained by
projecting the time-dependent wave function 
(Tp) onto the �

(−)
k

states (black solid line) and �
(+)
k states (green dot-dashed line) and

by using the WO method with γ = 6 × 10−3 (red dashed line).

additional longitudinal acceleration after the rescattering, so
that its final momentum will not be emitted at right angle to
the field.

We also emphasize that the WO method produces the
correct angle-integrated photoelectron spectrum as given by
Eq. (40). Indeed, Eq. (36), which defines the window op-
erator, is a representation of the projection operator on an
interval of the spectrum of the system in the continuum,
and it makes no difference which basis is used for its de-
scription (e.g., incoming or outgoing states), as long as it
is complete. In Fig. 7 we illustrate this by comparing the
angle-integrated spectra Pγ (Ek ) and P(Ek ) for the Ar atom.
This feature of the angle-integrated spectrum obtained using
the WO method has been analyzed previously in [42–44].
Therefore, we can conclude that the WO method is an effec-
tive method for calculating the angle-integrated photoelectron
spectrum.

IV. SUMMARY AND CONCLUSIONS

We presented a method of solving the time-dependent
Schrödinger equation (within the SAE and dipole approxima-
tions) for an atom (or a negative ion) bound by a spherically
symmetric potential and exposed to a strong laser field, by
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FIG. 6. Full PADs for the Ar atom and the same laser-field
parameters as in Fig. 5. The upper panel shows the PAD obtained
by projecting onto the continuum states �

(−)
k and the lower panel

shows the PAD obtained by the WO method. The WO method gives
additional structure for angles θk ∈ (30◦, 150◦) and Ek > 4Up.

expanding the time-dependent wave function in a basis of
B-spline functions and spherical harmonics and propagating
it with an appropriate algorithm. The emphasis is on the
method of extracting the angle-resolved photoelectron spectra
from the time-dependent wave function. This is done by
projecting the time-dependent wave function at the end of
the laser pulse onto the continuum states �k, which are
solutions of the Schrödinger equation in the absence of the
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E k

) (
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)
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WO

FIG. 7. Angle-integrated spectra for the Ar atom and the same
laser-field parameters as in Fig. 5. The spectra are obtained by
projecting onto continuum states with incoming boundary condition
(black solid line) and using the WO method (dashed red line).

laser field (the PCS method). In the context of strong-laser-
field ionization, the photoelectrons having the momentum k
are observed at large distances (r → ∞) in the positive time
limit (t → +∞). Therefore, it is the incoming (ingoing-wave)
solutions �

(−)
k that are relevant. These solutions merge with

the plane-wave solutions at the time t → +∞: �
(−)
k (r, t ) →

(2π )−3/2ei(k·r−Ekt ).
We have also presented another method of extracting the

photoelectron spectra from the TDSE solutions: the window-
operator method. The WO method extracts the part of the
exact solution of the TDSE at the end of the laser pulse which
contributes a small interval of energies near a fixed energy Ek.
The problem with this method is that it does not single out the
contribution of the solution �

(−)
k , but it includes an unknown

linear superposition of the states �
(−)
k and �

(+)
k . Therefore,

it may lead and does lead to unphysical results, depending
on the considered region of the spectrum. By comparing
the results obtained using the exact PCS method with those
obtained using the WO method for various potentials V (r)
we concluded that the WO method fails for an interval of the
electron emission angles around the perpendicular direction
(the angle θk = 90◦ with respect to the polarization axis of the
linearly polarized laser field). For θk = 90◦, the WO method
gives a plateaulike structure, which extends up to energies
Ek ∼ 9Up, while the spectra obtained using the exact PCS
method drop very fast beyond Ek ∼ (2 − 3)Up. The full PADs
show that this unphysical structure in the spectra obtained
using the WO method appears for angles θk ∈ (30◦, 150◦)
and energies Ek > 4Up. Note that this region is becoming of
interest in the investigation of the interference carpets [17]
and the forklike off-axis structures [18]. Furthermore, for
values of the angle θk for which the results obtained using
the PCS method exhibit interference minima (see, especially,
Fig. 5), the WO method smooths out these minima, due
to the spurious contribution of the states �

(+)
k , leading to

results that are quantitatively significantly incorrect. We have
checked our results using three different types of the potentials
V (r): a short-range potential (F− ion), the pure Coulomb
potential (H atom), and a modified Coulomb potential
(Ar atom).

Our conclusion is that the WO method is an approximative
method that can be used to extract the photoelectron spectrum.
It should be used with care since it may produce additional
structures in the spectrum, especially, but not only, off the
polarization axis, that have no physical significance. These
additional structures are a consequence of the wrong boundary
conditions tacitly imposed onto the continuum states by the
WO method. That is why every approximative method used
for calculating the photoelectron spectra should be tested
against the exact method of projecting the time-dependent
wave function onto continuum states satisfying the incoming
boundary condition.
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J. Phys. B 51, 162002 (2018).

[41] X.-M. Tong and C. D. Lin, J. Phys. B 38, 2593 (2005).
[42] R.-F. Lu, P.-Y. Zhang, and K.-L. Han, Phys. Rev. E 77, 066701

(2008).
[43] S. Chang-Ping, Z. Song-Feng, C. Jian-Hong, and Z. Xiao-Xin,

Chin. Phys. B 20, 113201 (2011).
[44] F. Catoire and H. Bachau, Phys. Rev. A 85, 023422 (2012).

023101-9

https://doi.org/10.1103/PhysRevA.35.445
https://doi.org/10.1103/PhysRevA.36.2726
https://doi.org/10.1016/S0301-0104(97)00063-3
https://doi.org/10.1103/PhysRevA.60.3125
https://doi.org/10.1103/PhysRevA.73.042505
https://doi.org/10.1063/1.2358351
https://doi.org/10.1103/PhysRevA.78.032502
https://doi.org/10.1103/PhysRevA.79.043421
https://doi.org/10.1016/j.cpc.2005.11.001
https://doi.org/10.1016/j.cpc.2009.03.005
https://doi.org/10.1016/j.cpc.2014.02.019
https://doi.org/10.1016/j.cpc.2015.10.014
https://doi.org/10.1126/science.1198450
https://doi.org/10.1103/PhysRevA.84.043420
https://doi.org/10.1103/PhysRevLett.109.073004
https://doi.org/10.1103/PhysRevLett.108.223601
https://doi.org/10.1088/1367-2630/14/5/055019
https://doi.org/10.1103/PhysRevA.90.023412
https://doi.org/10.1103/PhysRevA.42.5794
https://doi.org/10.1016/0010-4655(91)90267-O
https://doi.org/10.1103/PhysRevLett.81.1207
https://doi.org/10.1103/PhysRevA.60.R1771
https://doi.org/10.1103/PhysRevA.60.4718
https://doi.org/10.1103/PhysRevA.99.043426
https://doi.org/10.1088/1367-2630/14/8/085008
https://doi.org/10.1088/1367-2630/14/1/013021
https://doi.org/10.1016/j.cpc.2016.06.015
https://doi.org/10.1103/PhysRevA.100.013419
https://doi.org/10.1088/0953-4075/49/24/245001
https://doi.org/10.1103/PhysRevA.76.063407
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1016/j.cpc.2010.08.034
https://doi.org/10.1103/PhysRevA.83.063418
https://doi.org/10.1103/PhysRevA.74.051401
https://doi.org/10.1103/PhysRevA.89.053423
https://doi.org/10.1103/PhysRevA.93.013418
https://doi.org/10.1103/PhysRevA.100.053414
https://doi.org/10.1088/0953-4075/23/16/017
https://doi.org/10.1103/PhysRevA.71.061404
https://doi.org/10.1088/1361-6455/aad150
https://doi.org/10.1088/0953-4075/38/15/001
https://doi.org/10.1103/PhysRevE.77.066701
https://doi.org/10.1088/1674-1056/20/11/113201
https://doi.org/10.1103/PhysRevA.85.023422

