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Determination of the dipole polarizability of the alkali-metal negative ions

B. K. Sahoo *

Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad-380009, India

(Received 22 May 2020; accepted 13 August 2020; published 31 August 2020)

We present electric dipole polarizabilities (αd ) of the alkali-metal negative ions, from H− to Fr−, by em-
ploying four-component relativistic many-body methods. Differences in the results are shown by considering
Dirac-Coulomb (DC) Hamiltonian, DC Hamiltonian with the Breit interaction, and DC Hamiltonian with the
lower-order quantum electrodynamics interactions. At first, these interactions are included self-consistently in
the Dirac-Hartree-Fock (DHF) method, and then electron correlation effects are incorporated over the DHF wave
functions in the second-order many-body perturbation theory, random phase approximation, and coupled-cluster
(CC) theory. Roles of electron correlation effects and relativistic corrections are analyzed using the above
many-body methods with size of the ions. We finally quote precise values of αd of the above negative ions
by estimating uncertainties to the CC results, and compare them with other calculations wherever available.
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I. INTRODUCTION

There are several experimental techniques available to
produce negative alkali-metal ions in the laboratory. The tech-
niques to produce these ions have been engineered time to
time over the several decades [1,2]. Electron affinities (EAs)
of these systems have been measured very precisely [3–7].
Photoabsorption spectra of these ions have also been exten-
sively investigated both theoretically and experimentally, in
order to understand their structures [8–11]. Starting from the
1970s, a series of studies on the photodetachment of negative
lithium (Li−), sodium (Na−), and potassium (K−) ions have
been conducted by several groups [5,12–15]. Theoretical re-
sults from these lighter ions were in excellent agreement with
the corresponding experimental values. By solving a set of
coupled equations, Norcross had predicted the existence of
bound excited states in negative alkali-metal ions [16]. This
was later conformed by Greene [17], by applying a com-
bined approach of j j coupling in the R-matrix method and
generalized quantum-defect theory while attempting to de-
scribe photodetachment spectra of negative rubidium (Rb−),
cesium (Cs−), and francium (Fr−) ions. Later, another study
[18] disproved the existence of such states in these ions by
reanalyzing the calculations using the Dirac R-matrix method.
Instead, the authors of the work suggested that the lowest ex-
cited state of the above alkali-metal negative ions is a multiplet
of 3Po

J -shape resonance. This work clearly demonstrated the
importance of relativistic effects for accurate calculations of
atomic properties in these ions. Similarly, several studies on
negative hydrogen (H−) ion have been carried out [19,20],
and its applications [21,22] and production sources are well
known to the physicists [23,24].

Apart from EAs and photodetachment cross sections, there
is scarcity in the atomic data of the negative alkali-metal
ions. Alkali-metal atoms have a closed shell and a valence
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orbital in their electronic configurations. Owing to this, it is
relatively simpler to calculate atomic wave functions of these
atoms. However, it is challenging to determine atomic wave
functions of the alkaline earth-metal atoms due to strong elec-
tron correlations among the valence electrons in such systems.
The negative alkali-metal ions are isoelectronic to the alkaline
earth-metal atoms.

Electric dipole polarizability (αd ) is a very useful property
of any atomic system. This quantity has been measured very
precisely [25] in the alkali-metal atoms as well as in the singly
charged positive alkaline earth-metal ions, and with reason-
able accuracy in the alkaline earth-metal atoms. However,
there has not been a single measurement of αd carried out thus
far in any of the negative alkali-metal ions due to difficulties
in setting up their experiments. There are no full relativistic
calculations of αd available in these ions, and only a few non-
relativistic calculations have been reported in the lighter H−
[26–28], Li− [13,29,30], Na− [13], and K−[13] ions. Except
the high-precision calculations in H−, the reported values of
other ions are not very reliable.

Calculations of αd in the alkali-metal atoms are in very
good agreement with the experiments [31,32]. The reason
for this is that one can easily use their experimental energies
and electric dipole (E1) matrix elements inferring from the
lifetime measurements of their atomic states in the evaluation
of αd values using the sum-over-states approach. It is possible
to adopt the sum-over-states approach in these atoms because
they possess a large number of bound states in contrast to the
negative alkali-metal ions. Ab initio procedures demonstrate
that the electron correlation and the relativistic effects are
pronounced, and they need to be accounted for, in order to
determine αd values of alkaline earth-metal atoms [33–35],
which are isoelectronic systems to the negative alkali-metal
ions. A few calculations of the αd values of some heavier
negative ions of the coinage metal atoms have been reported
by Sadlej and coworkers [36,37], by employing a variety
of methods including the coupled-cluster (CC) theory. In
another study by Schwerdtfeger and Bowmaker [38], these

2469-9926/2020/102(2)/022820(6) 022820-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4397-7965
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022820&domain=pdf&date_stamp=2020-08-31
https://doi.org/10.1103/PhysRevA.102.022820


B. K. SAHOO PHYSICAL REVIEW A 102, 022820 (2020)

quantities were also evaluated by using total angular momen-
tum j-averaged relativistic pseudopotentials in the configura-
tion interaction (CI) method. These works highlight about the
unusually large electron correlation and relativistic effects in
the determination of αd values in the negative ions compared
to their counterisoelectronic neutral atoms. But the relativistic
effects were estimated only approximately in these calcula-
tions. Recently, we had evaluated αd values of Cl− and Au−

by applying a number of relativistic many-body methods at
different levels of approximation to demonstrate the roles of
electron correlations for their accurate determination. Here,
we intend to determine αd values of all the negative alkali-
metal ions very accurately.

II. THEORY

It is not possible to adopt a finite-field (FF) approach to
determine αd of atomic states by preserving spherical sym-
metry property and treating parity as a good quantum number.
Thus, the spherical symmetry of the systems is exploited in
Refs. [36–38] in order to adopt the FF procedure for the
determination of αd of negative ions. Also, the FF approach
introduces large uncertainty to the calculation of αd , which
stems from both numerical differentiation as well as neglect-
ing higher-order perturbation corrections in the evaluation of
the second-order perturbed energy due to external electric
field, in a brute-force manner. To overcome these problems
in the determination of αd while retaining spherical sym-
metry behavior of atomic orbitals, we follow a perturbative
approach in which the total Hamiltonian of the system is
defined in the presence of a weak external electric field �E as
H = Hat + �D · �E with the atomic Hamiltonian Hat and electric
dipole operator D in a similar framework as Dalgarno and
Lewis [39]. In such case, the wave function and energy of an
atomic state can be expressed as

|�0〉 = ∣∣� (0)
0

〉 + | �E |∣∣� (1)
0

〉 + · · ·, (1)
and

E0 = E (0)
0 + | �E |E (1)

0 + 1
2 | �E |2E (2)

0 · · ·, (2)

respectively, where superscripts (0), (1), etc., denote order of
�E in the expansion. Since D is an odd-parity operator, E (1)

0 = 0
and the second-order energy is traditionally given by E (2)

0 ≡
αd . It follows that αd can be evaluated in the perturbative
approach as [34]

αd = 2

〈
�

(0)
0

∣∣D
∣∣� (1)

0

〉
〈
�

(0)
0

∣∣� (0)
0

〉 . (3)

Thus, it is imperative to determine both the unperturbed wave
function |� (0)

0 〉 of Hat and the first-order perturbed wave func-
tion |� (1)

0 〉 due to D very reliably for an accurate evaluation
of αd . Instead of using the sum-over-states approach to deter-
mine |� (1)

0 〉, we would like to solve it as the solution to the
first-order inhomogeneous perturbed equation given by

(
Hat − E (0)

0

)∣∣� (1)
0

〉 = −D
∣∣� (0)

0

〉
. (4)

Though the solution of this equation appears to be simi-
lar to the procedure adopted by Dalgarno and Lewis [39],
it can be kept in mind that we only obtain the first-order

wave function |� (1)
0 〉 for Eq. (3) instead of determining E (2)

0
directly.

III. METHODS FOR CALCULATIONS

The many-electron atomic wave function can be
obtained by

|�0〉 = �0|�0〉, (5)

where |�0〉 is a mean-field wave function, which is obtained
here by the Dirac-Hartree-Fock (DHF) method, and �0 is
known as the wave operator that is responsible for accounting
for electron correlation effects due to the interactions that are
neglected in the determination of |�0〉. Likewise, for the wave
function, we can expand �0 in the presence of weak electric
field �E as

�0 = �
(0)
0 + | �E |�(1)

0 + · · ·. (6)

Using this, we can write the unperturbed and the first-order
perturbed wave function as

∣∣� (0)
0

〉 = �
(0)
0 |�0〉 and

∣∣� (1)
0

〉 = �
(1)
0 |�0〉. (7)

In the nth-order perturbation theory, we express [35]

�(0) =
n∑

k=0

�(k,0) and �(1) =
n−1∑

k=0

�(k,1), (8)

with �(0,0) = 1, �(1,0) = 0, and �(0,1) = ∑
p,a

〈�p
a |D|�0〉

ε
(0)
a −ε

(0)
p

for all

the occupied orbitals denoted by the index a and unoccupied
orbitals denoted by the index p. In the second-order relativistic
perturbation theory [RMBPT(2) method] that accounts for the
lowest-order electron correlation effects [35] in the many-
body theory, it corresponds to n = 1 in the above summations.

We present results from two all-order many-body meth-
ods: relativistic random-phase approximation (RRPA) and
relativistic CC (RCC) theory. The RCC theory incorporates
electron correlation effects more rigorously, while RRPA has
traditionally been employed to capture these effects due to
the core polarization only, which can be done to all orders
in a computationally much less expensive way. The correla-
tion effects arising through RRPA also represent the orbital
relaxation effects that arise naturally in the mixed-parity or-
bitals of the DHF method in the FF procedure. In our RRPA
implementation [40,41], they are contained in �

(0)
0 = 1 and

�(1) = ∑∞
k=0

∑
p,a �(k,1)

a→p. Here, a → p means replacement of
an occupied orbital a from |�0〉 by a virtual orbital p, which
alternatively refers to a singly excited state with respect to
|�0〉. The RCC theory implicitly includes correlation effects
arising through RRPA along with other correlation effects
such as pair-correlation effects to all orders and is known as
the gold standard method of many-body theory for its capabil-
ities of producing accurate results in multielectron systems. In
this theory, the wave operators are given by [40,42]

�(0) = eT (0)
and �(1) = eT (0)

T (1), (9)

respectively. We consider only singles and doubles excitations
in the RCC calculations (RCCSD method) by expressing

T (0) = T (0)
1 + T (0)

2 and T (1) = T (1)
1 + T (1)

2 , (10)

022820-2



DETERMINATION OF THE DIPOLE POLARIZABILITY OF … PHYSICAL REVIEW A 102, 022820 (2020)

where subscripts (1) and (2) denote the level of excitation. In
this method, αd determined as

αd = 2
〈�0|�(0)†D�(1)|�0〉
〈�0|�(0)†�(0)|�0〉 = 2〈�0|(

︷︸︸︷
D(0) T (1) )c|�0〉, (11)

where
︷︸︸︷
D(0) = eT †(0)

DeT (0)
is a nontruncating series. We have

adopted an iterative procedure to take into account contri-
butions from this nonterminating series self-consistently, as
described in our earlier works on αd calculations in the closed-
shell atoms [42,43].

For the evaluation of |�0〉, we consider first the Dirac-
Coulomb (DC) Hamiltonian, given by

HDC =
∑

i

[cαi · pi + (βi − 1)c2 + Vn(ri )] +
∑

i, j>i

1

ri j
,

(12)

where c is the speed of light, α and β are the usual Dirac
matrices, pi is the single-particle momentum operator, Vn(ri )
denotes the nuclear potential, and 1

ri j
represents the Coulomb

potential between two electrons located at the ith and jth

positions. We estimate the Breit interaction by using the
Dirac-Coulomb-Breit (DCB) Hamiltonian (HDCB = HDC +
V B) by defining the potential,

V B = −
∑

j>i

[αi · α j + (αi · r̂ij)(α j · r̂ij)]

2ri j
, (13)

where r̂ij is the unit vector along rij. Similarly, contributions
from the quantum electrodynamics (QED) effects are esti-
mated using the Dirac-Coulomb–QED (DCQ) Hamiltonian
(HDCQ = HDC + V Q) by considering V Q = VVP + VSE with
the vacuum polarization interaction potential VVP and the self-
energy interaction potential VSE. We use the model potentials
for VVP and VSE as defined in Refs. [44,45].

We use Gaussian-type orbitals (GTOs), as defined in
Ref. [46], to obtain the single-particle orbitals. We have con-
sidered orbitals up to h-angular momentum symmetry (orbital
angular momentum l = 5) to carry out all the calculations.
We have used 40 GTOs for each symmetry to obtain the DHF
wave function. However, we have frozen high-lying orbitals
beyond energy 3000 atomic units (a.u.) to account for electron
correlation effects through the employed many-body methods.
We have verified contributions from these neglected orbitals
using RRPA and they are found to be extremely small. These
contributions are included in the uncertainty estimation later.

IV. RESULTS AND DISCUSSION

In Table I, we present αd values of all the negative alkali-
metal ions in a.u., ea3

0, from the DHF, RMBPT(2), RRPA, and
RCCSD methods using the DC, DCB, and DCQ Hamiltoni-
ans. It can be seen from this table that the DHF method gives
lower values in all the ions, and the electron correlation con-
tributions enhance their magnitudes. Except in the H− ion, the
RRPA yields the largest value for each ion. The results from
the RMBPT(2) method are also larger than the values obtained
using the RCCSD method, except in the lighter H− and Li−

ions. It can be recalled that the results from the RMBPT(2)

TABLE I. Calculated αd values (in ea3
0) of the negative alkali-

metal ions from the DHF, RMBPT(2), RRPA, and RCCSD methods.
Results from the DC, DCB, and DCQ Hamiltonians are listed sep-
arately to highlight the roles of Breit and QED interactions in the
determination of αd of the above ions.

Method DC DCB DCQ

H− ion
DHF 44.41 44.61 44.41
RMBPT(2) 66.35 66.35 66.35
RRPA 91.13 91.13 91.13
RCCSD 206.14 206.16 206.15

Li− ion
DHF 500.90 500.94 500.91
RMBPT(2) 764.68 764.74 764.70
RRPA 1176.68 1176.76 1176.70
RCCSD 794.06 794.08 794.07

Na− ion
DHF 605.91 606.00 606.03
RMBPT(2) 923.52 923.66 923.72
RRPA 1447.69 1447.92 1448.01
RCCSD 952.54 952.63 952.67

K− ion
DHF 1053.39 1053.58 1053.89
RMBPT(2) 1586.91 1587.18 1587.68
RRPA 2565.41 2565.88 2566.66
RCCSD 1353.69 1353.84 1354.19

Rb− ion
DHF 1214.16 1214.43 1215.40
RMBPT(2) 1816.88 1817.22 1818.75
RRPA 2968.55 2969.21 2971.66
RCCSD 1506.57 1506.75 1507.88

Cs− ion
DHF 1534.15 1534.48 1537.06
RMBPT(2) 2271.42 2271.78 2275.81
RRPA 3770.88 3771.71 3778.25
RCCSD 1800.42 1800.54 1803.59

Fr− ion
DHF 1357.23 1357.78 1357.33
RMBPT(2) 1990.66 1991.21 1990.77
RRPA 3308.49 3309.76 3308.69
RCCSD 1619.04 1619.16 1619.03

method are actually the lowest-order core-polarization terms
and results from RRPA are the contributions from the all-order
core-polarization effects including the DHF value. Thus, the
huge differences between the results from the RMBPT(2) and
RRPA methods imply that the core-polarization effects arising
through the higher-order perturbation theory are quite strong
in the negative alkali-metal ions. Since RRPA values are the
mean-field contributions (i.e., DHF values) in the FF proce-
dure, it would require immense efforts to attain convergence in
the values by evaluating the property in the FF framework than
in the perturbation approach through a many-body method
as adopted here. Nonetheless, the RCCSD method implicitly
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FIG. 1. (X-DHF)/DHF values, where X represents contributions
from the DHF, RMBPT(2), RRPA, and RCCSD methods, against the
atomic number (Z) of the negative alkali-metal ions. Values from the
DHF method act as reference (zero line on x axis) for comparison
of correlation contributions incorporated at different levels of many-
body methods.

incorporates the RRPA contributions in addition to correla-
tion effects due to non-RRPA effects such as those from the
pair correlations. Large differences between the RRPA and
RCCSD results indicate that the non-RRPA contributions are
also substantially large, but with the opposite sign than that
of the RRPA contributions. As a result, the final results in the
RCCSD method come out to be smaller than the RMBPT(2)
values in the heavier ions.

The electron correlation effects in the simplest two-
electron H− ion, which is analogous to the He atom, shows
a unique trend than the rest of the ions. In this system, the
inclusion of electron correlation effects increases the αd val-
ues gradually through the RMBPT(2), RRPA, and RCCSD
methods. Recently, we have evaluated this property for the
negative chlorine (Cl−) and gold (Au−) ions by employing
the above many-body methods [41]. We find similar trends
in the electron correlation effects in H− and Cl−, but the
correlation contributions at different levels of approximations
in the many-body theory are found to be quite large in H−
compared to Cl−. The DHF value of αd was larger than
the RCCSD value in Au−, in contrast to the trend seen in
the negative alkali-metal ions. In Fig. 1, we plot the frac-
tional differences of the results from the DC Hamiltonian
from different methods against the atomic number (Z) of the
negative alkali-metal ions. This shows that scaling of cor-
relation contributions through RMBPT(2) and RRPA varies
linearly with the size of the considered systems, but no partic-
ular trend is followed by the contributions from the RCCSD
method.

We notice from Table I that both the higher-order rela-
tivistic effects due to the Breit and QED interactions do not
contribute significantly to αd of the considered ions. How-
ever, the trends in the results from different approximations
in many-body theories demonstrate that the estimated correc-
tions from the Breit and QED interactions vary in different
methods. It is, therefore, not prudent to estimate corrections

TABLE II. Contributions from the DC Hamiltonian through dif-
ferent RCC terms in the determination of αd (in ea3

0) of the negative
alkali-metal ions. The differences between the sum of the contribu-
tions from the mentioned terms and the final values from the RCCSD
method given using the DC Hamiltonian in Table I correspond to
the contributions from the remaining RCC terms that are not shown
explicitly here.

Ion DT (1)
1 T (0)†

1 DT (1)
1 T (0)†

2 DT (1)
1 T (0)†

1 DT (1)
2 T (0)†

2 DT (1)
2

H− 149.59 30.47 −3.88 −1.99 32.25
Li− 968.86 −146.32 −108.09 25.45 127.48
Na− 1160.42 −193.82 −118.33 34.24 133.65
K− 1741.75 −358.37 −204.67 69.89 197.74
Rb− 1948.21 −414.85 −224.50 82.39 209.90
Cs− 2351.13 −516.10 −278.24 105.36 250.74
Fr− 2076.99 −448.47 −214.02 87.29 190.49

due to these relativistic effects by applying lower-order many-
body methods as done in literature quite often.

To gain a deeper insight into the behavior of electron
correlation effects in the determination of αd of the nega-
tive alkali-metal ions, we present contributions from different
RCC terms in Table II by using the DC Hamiltonian. Con-
tributions from the higher-order nonlinear RCC terms are not
given explicitly, but their importance can be found from the
differences in the results after summing contributions from
the shown terms and the final RCCSD values from the DC
Hamiltonian given in Table I. Contrasting behaviors of cor-
relation effects between H− and other ions can be visibly
noticeable. The first term, DT (1)

1 , includes the DHF value,
and the leading-order RRPA and non-RRPA correlation con-
tributions [34]. This is the reason for the seemingly dominant
contribution of the term over all others. Though the overall
trend of correlation effects between H− and Cl− was earlier
found to be similar, comparison of individual contributions
from various RCC terms of the above table and that given
in Ref. [41] for Cl− does not suggest the same. In the Cl−

ion, the DT (1)
1 term accounts for almost all of the αd value

in the RCCSD method, whereas in H−, almost all the RCC
terms are found to be significant. Also, it can be found from
Ref. [41] that only the first three terms contribute mostly to
the determination of αd in the heavier Au− ion, where contri-
butions from the T (0)†

2 DT (1)
1 RCC term are found to be quite

large in the alkali-metal negative ions. We plot contributions
from the above RCC terms in Fig. 2 to demonstrate their
roles quantitatively in different ions. For this purpose, we
have plotted the DT (1)

1 value after subtracting the DHF result.
As seen, the magnitudes of the correlation effects are slowly
increasing with the size of the system through each RCC term,
with the only exception being the trend from Cs− to Fr−.

In Table III, we quote the final values along with un-
certainties by considering the RCCSD results from the DC,
DCB, and DCQ Hamiltonians of our calculations. The un-
certainties are estimated by extrapolating contributions from
the finite-size basis functions that were used and the ne-
glected higher-level excitations (especially from the triple
excitations). Our final values are compared with the available
literature results in the same table. It is worth noting again
that due to complication in measuring αd of the negative ions,
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FIG. 2. Plot demonstrating correlation contributions arising
through the leading order RCC terms against Z of the negative
alkali-metal ions. The DHF value is subtracted from the first term
to show only its correlation contribution.

there are no experimental values available until date and cal-
culations are reported only for a few lighter negative ions by
employing lower-order nonrelativistic many-body methods.
We find that among the negative alkali-metal ions, precise
results are available only for H−, by applying few-body meth-
ods. Though the RCC theory is not apt to investigate electron
correlation effects in H−, the applied RCCSD method in this
work is the complete ansatz of the RCC theory for this ion.
Thus, its result can serve as the benchmark to our calculations
for other ions. A very good agreement of our result with the
reported precise value [28] implies reliability in the calcu-
lation using the RCCSD method. In this context, we would
like to emphasize here that the DHF, RMBPT(2), and RRPA
results are far off from the RCCSD result in this ion. The
entire uncertainty to its αd value arises due to construction of
basis functions owing to its point-size nucleus in contrast to
other ions. An old theoretical study presents αd values of Li−,
Na−, and K− by analyzing photodetachment cross sections
in both the length and velocity gauge approximations [13].

TABLE III. The recommended αd values (in ea3
0) of negative

alkali-metal ions from this work. Previous calculations using non-
relativistic methods are also given for comparison. The estimated
uncertainties are quoted in parentheses.

Ion This work Others

H− 206.2(5) 206.165 [26], 206.37683 [27]
206.1487618(37) [28]

Li− 794(2) 832a [13], 798b [13], 650(50) [29]
798(5) [30]

Na− 953(5) 989a [13], 1058b [13]
K− 1354(7) 1805a [13], 1757b [13]
Rb− 1508(8)
Cs− 1804(10)
Fr− 1620(10)

aFrom the length gauge calculation.
bFrom the velocity gauge calculation.

Values from both the gauge expressions differ widely, raising
questions about their accuracies. Two more calculations for
αd of Li− using CI methods are found in literature [29,30].
However, results from both the CI calculations are far apart
and much outside of the quoted error bars. Thus, these results
cannot be used assuredly for any application of this ion. Our
αd value of Li− matches well with the velocity gauge result of
Ref. [13] and calculation by Ågren et al. [30], but this agree-
ment could be coincidental as large disagreements between
our calculations, performed in length gauge, with the results
from gauges of Ref. [13] are seen in the Na− and K− ions. To
our knowledge, there are no theoretical studies on αd of Rb−,
Cs−, and Fr− available in the literature to make comparative
analysis with our calculations.

We would also like to make an analogy among the roles
of electron correlation effects played in the determination of
αd values of the positively charged ions and neutral atoms
belonging to the isoelectronic sequence of the considered
negative ions. Comparing the calculations in the positively
charged ions and alkaline earth-metal atoms from our earlier
work [35], and that with the results for the undertaken negative
ions reported in this work, we find that the Breit and QED
contributions are negligibly small in all these three types of
systems belonging to the same isoelectronic sequence. The
correlation trends are found to be almost similar among these
systems, but the final results are found to be at least an or-
der bigger in the negative ions than their positively charged
counterparts and neutral atoms [25,34,35]. This implies that
the negative ions are highly polarized and very sensitive to an
applied electric field.

V. CONCLUSION

We have evaluated electric dipole polarizabilities of all the
negative alkali-metal ions very accurately. Propagations of
electron correlation effects are investigated from lower order
to all order in perturbation in the determination of these quan-
tities by employing a relativistic second-order perturbation
theory, random phase approximation, and coupled-cluster
method on the Dirac-Hartree-Fock calculation. Trends of
correlation effects from these methods and through different
terms of the coupled-cluster approach are demonstrated quan-
titatively. It shows that the roles of electron correlation effects
follow almost similar trends in all ions except in H−, on which
they bestow a completely different trend. Random-phase
approximation predicts the values by huge magnitudes, while
the coupled-cluster method gave moderate values. This clearly
suggests that there are huge cancelations among the electron
correlation effects arising through the pair-correlation and
core-polarization effects. It also demonstrates that magnitudes
of the correlation effects increase with the size of the system
with an exception in the trend from Cs− to Fr−. We have also
compared electron correlation trends in the determination
of the above-mentioned quantities among the negative
alkali-metal ions, and their isoelectronic positively charged
ions and neutral atoms. This comparison shows that electric
dipole polarizabilities in the above ions are about an order
larger than the values of their respective positively charged
ions and neutral atoms indicating that negative alkali-metal
ions are highly polarized. Higher-order relativistic corrections
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due to the Breit and quantum electrodynamics interactions
are found to be negligibly small, but their magnitudes are
observed to be modified with the electron correlation effects.
There are only a few existing calculations of the investigated
property available for the lighter ions. Since it is extremely
difficult to measure the electric dipole polarizabilities of the
negative alkali-metal ions, our estimated precise values of
these quantities will be very useful to the applications of

these ions. Our results can be further improved after including
contributions from the triple excitations.
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