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Apropos of the growing interest in the study of long-range interactions for their applications in cold-atom
physics, we perform theoretical calculations for the two-dipole C6 and three-dipole C9 dispersion coefficients
involving alkaline-earth-metal atoms with alkaline-earth-metal atoms and alkaline-earth-metal ions. The C6

and C9 coefficients are expressed in terms of the dynamic dipole polarizabilities, which are calculated using
relativistic methods. Thereafter, the calculated C6 coefficients for the considered alkaline-earth-metal atoms
are compared with previously reported values. Due to unavailability of any other earlier theoretical or
experimental results, for the C6 coefficients for alkaline-earth-metal atoms with alkaline-earth-metal ions and
the C9 coefficients we perform separate fitting calculations and compare the results. Our calculations match in an
excellent manner with the fitting calculations. We also report the oscillator strengths for the leading transitions
and static dipole polarizabilities for the ground states of the alkaline-earth-metal ions, i.e., Be+, Mg+, Ca+, Sr+,
and Ba+, as well as the alkaline-earth-metal atoms, i.e., Be, Mg, Ca, Sr, and Ba. These show good agreement
when compared with the available experimental results.
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I. INTRODUCTION

Laser-cooled atoms and ions have been the subject of sev-
eral recent investigations covering many aspects of ultracold-
atom physics. Accurate knowledge of the long-range part of
an interatomic interaction between cooled atoms and ions
can be viewed as the cornerstone of research on atom-ion
hybrid traps [1,2], experiments on photoassociation [3,4], de-
termination of scattering lengths, fluorescence spectroscopy,
analysis of Feshbach resonances, probing extra dimensions
to accommodate Newtonian gravity in quantum mechanics,
determination of stability of Bose-Einstein condensates, etc.
[5–9]. The study of long-range interaction is of special in-
terest for low-temperature collisions [2,10–18] and is quite
important in the determination of collisional frequency shift.
In various works it has been proposed that controlled ion-atom
cold collisions can be used for future quantum information
processing [19,20]. Further, the investigation of the long-
range interaction yields vital information which helps in the
understanding of the different aspects of the ion-atom bound
state [21], charge-transfer processes [12,13,16,17,22], spin-
exchange reactions, and formation of cold molecular ions
[23,24].

The long-range interaction potential is mostly expressed in
a power series of the inverse of the interatomic separation R.
The leading R−6 term in this series representation is called
the dispersion term, with coefficient C6, which is of partic-
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ular interest when the two atomic species are considered. In
contrast, the term with coefficient C9 is regarded as the main
contributor to the nonadditive part of the interaction energy
among three atomic species. The first theoretical study on
ion-atom interactions goes back to the approach given by
Langevin [25] and Margenau [26]. Since then, a number of
theoretical approaches have been reported. In a recent review,
Koutselos and Mason [27] summarized data on ion-atom
dispersion C6 coefficients using the Slater-Kirkwood formula.
Ahlrichs et al. [28] also used the same method to calcu-
late dispersion coefficients for Li+, Na+, K+, P−, and Cl−

ions interacting with He, Ne, and Ar atoms and found good
agreement between the experimental and theoretical results.
Koutselos et al. [29] determined interaction potentials from
the universal interaction curves between the noble-gas–noble-
gas, alkali-metal-ion–noble-gas, and halogen-ion–noble-gas
interactions, which agree well with the experimentally de-
termined potentials. They also successfully reproduced the
measured diffusion coefficients and ion mobilities. Mitroy and
Zhang [30] calculated long-range dispersion coefficients for
Mg+ and Ca+ interacting with a number of atoms by using
the sum rule. Tang et al. [31] evaluated C6 coefficients for the
ground and excited states of Li, Li+, and Be+ interacting with
He, Ne, Ar, Kr, and Xe atoms in their ground states. They used
the variational Hylleraas method to determine the necessary
list of multipole matrix elements. Singh et al. [32] reported
the long-range dispersion coefficients for the interaction of
inert-gas atoms with alkali-metal atoms as well as alkaline-
earth-metal and alkali-metal ions. They employed the rela-
tivistic coupled-cluster method to estimate the dynamic dipole
and quadrupole polarizabilities of the alkali-metal atoms
and singly ionized alkaline-earth-metal atoms, whereas a
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relativistic random-phase approximation approach was taken
to determine these quantities for the closed-shell configured
inert gas atom and singly ionized alkali-metal and doubly ion-
ized alkaline-earth-metal ions. The accuracy of these results
was checked by comparing their static polarizability values
with the experimental results. Gould and Bucko [33] obtained
a dispersion coefficient between rare-gas atoms and ions by
implementing time-dependent density-functional theory with
exchange kernels. They first calculated frequency-dependent
dipole polarizabilities for atoms and ions and then integrated
them over frequency to produce C6 coefficients.

In addition to the above-mentioned theoretical studies for
long-range ion-atom interactions, there are several experimen-
tal studies which have been performed on ion-atom inter-
actions to understand the nature of force between ultracold
atoms and ions in hybrid ion-atom traps and some of these are
described here. Smith et al. [1] successfully constructed a hy-
brid ion-atom trap which was designed to cotrap laser-cooled
Ca+ ions along with cold Na atoms. The first experiment on
ion-atom cold collisions was reported by Grier et al. [34] for
an alkaline-earth-metal-like system, viz., Yb +Yb+ at ener-
gies ranging from 35 mK to 45 K. Next, heteronuclear Yb+-
Ca collisions were investigated by Zipkes et al. [2,35] in the
range of 0.2–5 K. Hall et al. [36,37] performed an experiment
on cold reactive collisions among laser-cooled ions and atoms.
Sullivan et al. [38] studied the collision of Ba+ ions with Ca
atoms, in which the charge-exchange process is energetically
prohibited unless Ca is electronically excited by the cooling
laser. Ravi et al. [39] investigated the cooling of the Rb+ ion
by Rb atoms, where they experimentally demonstrated that
rubidium ions cool in contact with magneto-optically trapped
rubidium atoms, unlike the general expectation of ion heating.
The cooling process is described theoretically and justified
with numerical simulations, which involves resonant charge
exchange collisions. Lee et al. [40] also investigated the same
system, i.e., Rb+ + Rb, where the ions were produced directly
from the atomic cloud by two-photon ionization. The use of
such an alkaline-earth-metal molecular ionic system helps to
examine the distinct processes that are essential for quantum
information storage [41,42].

Besides the two-body dipole interaction, the three-body
dipole interaction has also been of immense interest for the
past few decades. The first few studies on three-dipole in-
teractions were by Axilrod and Teller [43] and Muto [44].
Axilrod and Teller [43] predicted the order of magnitude
of the C9 coefficient and Muto [44] evaluated its value by
using a simple atomic model. Later, Axilrod [45] also used
a simplified atomic model to compute C9 coefficients, which
were in agreement with those of Muto [44]. Further, Mari-
nescu and Starace [46] investigated the nonadditive part of
the long-range interaction by implementing nondegenerate
perturbation theory up to third order and calculated the dis-
persion coefficients C9 for three alkali-metal atoms interacting
through their electric dipole moments. Both the homonuclear
and heteronuclear cases were studied in this work. Patil and
Tang [47] studied two- and three-body dispersion coefficients
for the alkali-metal isoelectronic sequence. They calculated
multipolar matrix elements by using simple wave functions,
which were based on the asymptotic behavior and binding en-
ergies of the valence electron. These matrix elements allowed

them to evaluate polarizabilities and dispersion coefficients
of heteronuclear and homonuclear interactions from C6 to
C24. Anatole von Lilienfeld and Tkatchenko [48] presented
a numerical estimation of the leading two- and three-body
dispersion energy terms in van der Waals interactions for a
broad range of molecules and solids. These calculations were
based on Axilrod-Teller-Muto and London expressions where
the required dispersion coefficients C6 and C9, are evaluated
from the electron density. These coefficients were investigated
by Huang and Sun [49] using a variational stable method of
Gao and Starace [50], as well as the simple ground-state wave
function of the valence electron previously suggested by Patil
and Tang [47].

Ultracold alkaline-earth-metal atoms are widely used in
precision measurements and quantum simulation studies. Due
to their unique atomic structure, they can be used to in-
vestigate quantum many-body system problems, such as the
simulation of synthetic gauge fields, Kondo physics, and
SU(N ) physics. However, to thoroughly explore the potential
of ultracold alkaline-earth-metal atoms, these systems need to
be studied in detail [51]. Interestingly, recent developments in
the experimental methods have opened the way for combining
ultracold trapped ions and atoms in a single experimental
setup [52,53]. Most of the ion-atom experiments use alkaline-
earth-metal ions trapped and laser cooled in a Paul trap
immersed in ultracold neutral alkali-metal or alkaline-earth-
metal atoms trapped in magnetic, magneto-optical, or dipole
traps [20,54–57].

Several cold atomic ion-atom combinations have already
been experimentally investigated [55,57], including Ca atoms
and Ba+ ions, confined in a hybrid trap [38]. In addition,
the interactions and chemical reactions between the neutral
alkaline-earth metal (A) and ionic alkaline-earth metal (B) are
also being studied for diatomic AB+ and triatomic A2B+ sys-
tems [57,58]. Due to the recent developments in the research
field, there is a growing interest worldwide in investigating
these systems, both experimentally and theoretically. With this
motivation, we have carried out a thorough theoretical study
of the long-range (C6 and C9) atom-ion interactions between
the alkaline-earth-metal atoms and their ions.

In the present work we determine the two-dipole C6 coef-
ficients among Be, Mg, Ca, Sr, and Ba alkaline-earth-metal
atoms and among Be+, Mg+, Ca+, Sr+, and Ba+ alkaline-
earth-metal ions. Also, the three-dipole C9 coefficients for
the interaction between three alkaline-earth-metal atoms, as
well as two alkaline-earth-metal atoms with the alkaline-
earth-metal ions, are evaluated. Despite their importance,
the dispersion coefficients of these systems have not been
explored experimentally or theoretically to date; therefore,
we cannot compare our calculated data with the literature.
To ascertain the reliability of our calculation procedure and
the accuracy of the obtained results, we have calculated the
dispersion coefficients C6 for the homonuclear alkaline-earth-
metal atoms and compared them with the previously available
results [59–63].

In order to obtain these dispersion coefficients, we have
employed relativistic methods to calculate dynamic dipole po-
larizabilities of atoms and ions. For this purpose, the oscillator
strength of the leading transitions in alkaline-earth-metal ions
and atoms are calculated and compared with data from the
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National Institute of Standards and Technology (NIST) [64]
as well as other [65–74] values. Results are also reported for
ground-state polarizability and their comparison is presented
with other calculations [60,75–78] and measurements [79–85]
wherever available. Finally, C6 coefficients for homonuclear
dimers of alkaline-earth-metal atoms are compared with other
results [62,63], whereas for C6 and C9 values of the remaining
combinations we have used the approximate fitting models to
verify our results.

The paper is organized as follows. In Sec. II we give a
brief overview of the theoretical methodology employed in
the present work. Our results are presented and discussed in
Sec. III. Finally, a summary is given in Sec. IV. We have
used atomic units (a.u.) throughout the paper unless stated
otherwise.

II. THEORETICAL CALCULATION

A. Dispersion coefficients

The long-range van der Waals interaction among three
atomic species in ground states is given by

V ( �R12, �R23, �R31) = −C(12)
6
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12
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8
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R3
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(1)

where the C(i j)
6 and C(i jk)

9 parameters are the dispersion coeffi-
cients for two-body and three-body interactions, respectively,
with i, j, k = 1, 2, 3, and Ri j is the interatomic distance be-
tween the ith and jth atomic systems. The angle θk is defined
as cos θk = −R̂ik · R̂k j . The leading contributor to the potential
is from the C6 terms, which are defined in terms of dipole
polarizabilities αi(iω) as

C(i j)
6 = 3

π

∫ ∞

0
dω αi(iω)α j (iω). (2)

The last term of Eq. (1) is the lowest order of the inverse pow-
ers to the internuclear distances in the third-order correction
to the ground-state energy and it is a three-body interaction
term which is given by [46]

C(i jk)
9 = 3

π

∫ ∞

0
dω αi(iω)α j (iω)αk (iω). (3)

Note that this term has a different sign from those of the
other pair interaction terms in Eq. (1) and is thus called the
nonadditive part of the long-range interaction potential. It
is multiplied by an angle-dependent factor which is positive
for max(θ1, θ2, θ3) < 117◦ and negative for max(θ1, θ2, θ3) >

126◦ [46]. In the present work, we determine the C6 and C9

coefficients using the ab initio methods as given by Eqs. (2)
and (3).

In addition, we also calculate these coefficients using
simple fitting formulas for comparison purposes. Since it is
cumbersome to determine polarizabilities for a sufficiently

large number of frequencies, instead of using the exact ab
initio method, alternative fitting methods have been adopted to
calculate the C6 coefficients in the literature. Among these the
Slater-Kirkwood formula [86] is one of the most frequently
used methods in which the dispersion coefficients for the
atom-ion system are approximated by

C(i j)
6 = 3

2

αiα j

(αi/Ni )1/2 + (α j/Nj )1/2
, (4)

where Ni and Nj are the effective numbers of electrons in
the ith and jth atomic systems, respectively; both can be
determined using an empirical formula which assumes that the
dominant contributions arise from the loosely bound electrons
present in the outer shell of the systems

(Ni )
1/2 = 4

3C(ii)
6

/
(αi )

3/2, (5)

with the van der Waals coefficient Cii
6 of the homonuclear

dimer and static polarizability αi of the atom i. Substituting
the above relation, we get

C(i j)
6 = 2C(ii)

6 C( j j)
6( α j

αi

)
C(ii)

6 + (
αi
α j

)
C( j j)

6

. (6)

This formula has been extensively tested by Kramer and
Herschbach [87] and found to give a quite good estimate of the
C6 coefficients. Similarly, the nonadditive C9 coefficients for
the atomic three-dipole dispersion coefficient can be obtained
by using an approximate fitting through the expression derived
by Midzuno and Kihara [88],

C(iii)
9 = 3

4αi(0)C(ii)
6 , (7)

and for the general case of three different atoms they obtain

C(i jk)
9 = 2QiQ jQk (Qi + Q j + Qk )

(Qi + Q j )(Q j + Qk )(Qk + Qi )
, (8)

where [89]

Qi = α j (0)αk (0)

αi(0)
C(ii)

6 . (9)

Nevertheless, both the above fitting formulas (6) and (8)
are only valid and suitable for the qualitative description of
the ion-atom dispersion coefficients, but it is imperative to
use more accurate values of polarizabilities for the precise
description of the ion-atom dispersion coefficients. In the
present work, we determine these quantities for the alkaline-
earth-metal ions and alkaline-earth-metal atoms using the
ab initio methods as given by Eqs. (2) and (3) and further
compare these coefficients with the values obtained using the
Slater-Kirkwood formula (6) and with the approximations (7)
and (8) used by Midzuno and Kihara [88], which we refer
to as the fitted values in our discussion. Moreover, we also
determine the oscillator strengths of the leading transition
and static dipole polarizabilities of the ground states of the
alkaline-earth-metal ions and atoms and compare them with
the available experimental values and other precise calcula-
tions.

B. Dipole polarizability

It follows that calculation of the dispersion coefficients re-
quire knowledge of the dipole αv (iω) dynamic polarizabilities
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for the atom and ion in ground state v. Following [90], αv (iω)
can be categorized into three parts,

αv (iω) = αv
c (iω) + αv

val(iω) + αv
vc(iω), (10)

with c and val representing the contributions due to the core
and valence effects, respectively, and αv

vc the compensation
term, which accounts for the contribution from the excitation
to the occupied valence shell that is forbidden by the Pauli ex-
clusion principle. In the sum-over-states approach the valence
correlation contributions to the ground state can be estimated
using the expression

αv
val(iω) =

∑
p�=v

fvp

(Ev − Ep)2 + ω2
, (11)

where f is the oscillator strength from state v to excited
intermediate states p and the E are the corresponding energies
of the states. The oscillator strengths f for the corresponding
transitions can be deduced using the relation [91]

fvp = −303.756

gvλ
|〈 jp||D|| jv〉|2. (12)

Here λ is the transition wavelength expressed in angstroms,
gv denotes the statistical weight, and 〈 jp||D|| jv〉 represents the
reduced dipole matrix element in a.u. It is required to calculate
a sufficient number of atomic states so that ample oscillator
strengths can be evaluated to estimate contributions to the αv

val
values.

We have evaluated as many transitions as possible for
accurate calculation of the valence contribution by using
the all-order method and the multiconfigurational Dirac-Fock
(MCDF) approximation for ions and atoms, respectively, as
discussed in the next section. For better accuracy in the
calculation of polarizabilities, instead of using our calculated
energy values, we use experimental energies from the NIST
database [64], where the best compiled values are given.

The core contributions αv
c (iω) have been calculated using

a random-phase approximation as described in Refs. [92–94].
The core-valence contributions αv

vc(iω) are typically ex-
tremely small in magnitude and are ignored in the present
study.

C. Evaluation of matrix elements

The approach we use here to evaluate the dispersion co-
efficients is based on the use of accurately calculated dipole

TABLE I. Comparison of our calculated oscillator strengths f of the leading transitions with the previous available values. Numbers in
square brackets denote multiplication by powers of 10.

Ion Upper level Lower level Term fpresent fprevious

Be+ 2p 2s 2S1/2 → 2P1/2 0.166[0] 0.166[0]a

Be+ 2p 2s 2S1/2 → 2P3/2 0.332[0] 0.332[0]a

Mg+ 3p 3s 2S1/2 → 2P1/2 0.303[0] 0.303[0]b

Mg+ 3p 3s 2S1/2 → 2P3/2 0.609[0] 0.608[0]b

Ca+ 4p 4s 2S1/2 → 2P1/2 0.321[0] 0.330[0]c

Ca+ 4p 4s 2S1/2 → 2P3/2 0.648[0] 0.682[0]c

Sr+ 5p 5s 2S1/2 → 2P1/2 0.344[0] 0.341[0]d

Sr+ 5p 5s 2S1/2 → 2P3/2 0.710[0] 0.703[0]d

Ba+ 6p 6s 2S1/2 → 2P1/2 0.342[0] 0.348[0]e

Ba+ 6p 6s 2S1/2 → 2P3/2 0.739[0] 0.690[0]e

Atom Upper level Lower level Term fpresent fprevious

Be 2s2p 2s2 1S0 → 3P1 0.204[−9] 0.390[−8]f

Be 2s2p 2s2 1S0 →1P1 0.137[1] 0.137[1]g

Mg 3s3p 3s2 1S0 → 3P1 0.309[−6] 0.238[−5]h

Mg 3s3p 3s2 1S0 →1P1 0.175[1] 0.180[1]i

Ca 4s4p 4s2 1S0 → 3P1 0.825[−3] 0.510[−4]j

Ca 4s4p 4s2 1S0 →1P1 0.175[1] 0.175[1]j

Sr 5s5p 5s2 1S0 → 3P1 0.351[−3] 0.100[−2]d

Sr 5s5p 5s2 1S0 →1P1 0.199[1] 0.192[1]d

Ba 6s6p 6s2 1S0 → 3P1 0.836[−2] 0.840[−2]e

Ba 6s6p 6s2 1S0 →1P1 0.162[1] 0.164[1]e

aReference [65].
bReference [66].
cReference [67].
dReference [68].
eReference [69].
fReference [70].
gReference [71].
hReference [72].
iReference [73].
jReference [74].
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matrix elements for the two atomic states. The wave functions
required for the evaluation of matrix elements for alkaline-
earth-metal ions are obtained considering the single- and
double-excitation approximation in the all-order (SD) method
as described in Refs. [92,95]. In the SD method, the wave
function of the state with the closed core with a valence
electron v is represented as an expansion

|�v〉SD =
⎡
⎣1 +

∑
ma

ρmaa†
maa + 1

2

∑
mnab

ρmnaba†
ma†

nabaa

+
∑
m �=v

ρmva†
mav +

∑
mna

ρmnvaa†
ma†

naaav

⎤
⎦|	v〉, (13)

where |	v〉 is the Dirac-Hartree-Fock wave function of the
state. In the above expression, a†

i and ai are the creation and
annihilation operators, the indices {m, n} and {a, b} designate
the virtual and core orbitals of |	v〉, ρma and ρmv are the
corresponding single core and valence excitation coefficients,
and ρmnab and ρmnva are the double core and valence excita-
tion coefficients, respectively. To construct the single-particle
orbitals for the SD method, we have used a total of 70 B-spline
functions with a cavity of radius R = 220 a.u.

The wave functions required for the computation of matrix
elements for alkaline-earth-metal atoms in their initial and
final states are obtained through the MCDF approach using
the GRASP2K code [96]. In this approximation an atomic
state function (ASF) is considered as a linear combination
of various configurational state functions (CSFs) which have

same total angular momentum and parity, i.e.,

|�v〉MCDF =
N∑

n=1

an|	n〉, (14)

where n denotes the number of CSFs, an is the mixing coeffi-
cient of the CSF |	n〉 in representation of the state |�v〉. The
single-particle orbital radial functions and expansion coeffi-
cients are obtained first by multiconfiguration self-consistent-
field calculations using the Dirac-Coulomb Hamiltonian.
Further, relativistic configuration-interaction calculations are
performed including Breit and quantum electrodynamic cor-
rections. In order to increase the accuracy of the ASF we con-
sider the maximum number of CSFs in the linear contribution
and finally retain only those which have a mixing coefficient
of value greater than 10−3. It is important to mention here that
in the present work we have used the all-order method for ions
as this method is suitable for the monovalent system and gives
an accurate result for them as compared to the MCDF method.
Since for the two-valence-electron alkaline-earth-metal atoms
it is difficult to apply the all-order method and also at present
we do not have a suitable code developed, we have used
the MCDF approach and utilized the available GRASP2K code
[96], which gives equally accurate results for divalent systems.

After obtaining wave functions for the aforementioned
ions and atoms, we determine the dipole-allowed (E1) matrix
element for a transition. It is relatively straightforward to
make use of the generated list of matrix elements to evalu-
ate oscillator strengths and dipole polarizabilities which are

TABLE II. Comparison of our calculated static dipole polarizabilities αv (0) (in a.u.) for the considered alkaline-earth-metal ions and
alkaline-earth-metal atoms in their ground states with the available measurements and other theoretical calculations.

Ion State Present calculations Other calculations Measurements

Be+ 2s 24.5 24.5a

Mg+ 3s 35.0
Ca+ 4s 76.1 75.88b 75.3(4)c

Sr+ 5s 91.7 91.10b, 93.3(9)d 86(11)e

Ba+ 6s 125.5 123.07b 123.88(5)f

Atom State Present calculations Other calculations Measurements

Be 2s2 36.6 38.1g, 37.76(22)h

Mg 3s2 71.9 71.3(7)h 71.5(3.1)i

Ca 4s2 158.2 157.1(1.3)h 168.7(13.5)j

Sr 5s2 214.5 197.2(2)h 186(15)k

Ba 6s2 276.2 273.5(2.0)h 268(22)l

aReference [75].
bReference [76].
cReference [79].
dReference [77].
eReference [80].
fReference [81].
gReference [78].
hReference [60].
iReference [82].
jReference [83].
kReference [84].
lReference [85].
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TABLE III. Dispersion coefficients C6 for the interaction between two homonuclear alkaline-earth-metal atoms in the ground state.

Interaction Present calculation Other calculations Measurements

Be-Be 196 213.1a, 214b, 248c

Mg-Mg 636 629.5a, 627(12)b, 648c 683(35)d

Ca-Ca 2138 2188a, 2121(35)b, 2002c 2080(7)e

Sr-Sr 3654 3250a, 3103(7)b, 2849c

Ba-Ba 5324 5160(74)b, 4479c

aReference [59].
bReference [60].
cReference [61].
dReference [62].
eReference [63].

further used to calculate the dispersion coefficients as de-
scribed in the theory earlier.

III. RESULTS

A. Oscillator strengths

We have calculated the first few oscillator strengths having
dominant contributions to the dipole polarizability as given by
Eq. (11). Table I presents a comparison between the present
calculations and other previously reported results [65–74],
which are also available from the NIST database [64]. We
find excellent agreement between the two results for ions.
However, for atoms, the calculated oscillator strengths agree
well with the previous data for the 1S0 → 1P1 transition, while
for 1S0 → 3P1 transitions a slight discrepancy of the order of
∼10−6 can be observed. This difference can be conveniently
ignored as the small value of the oscillator strength will have
an insignificant contribution to the determination of polariz-
ability. Thus, our results for oscillator strengths are precise
enough to predict the reliable values of the polarizability of
the ionic and atomic systems considered.

B. Static dipole polarizabilities

The calculated oscillator strengths are used to determine
the static dipole polarizabilities of the alkaline-earth-metal
ions and atoms concerned. As described previously in the
theoretical method, we use a sum-over-states approach to
calculate the polarizability in this work. It should however
be noted that for the ground-state polarizability, only the
first few low-lying transitions contribute the most. Note that
the error introduced due to the truncation of the summation
was not more than 1.5% for ions and even smaller for the
atoms.

1. Alkaline-earth-metal ions
Our results for static dipole polarizability of alkaline-earth-

metal ions are presented and compared in Table II with other
theoretical calculations of [75–77] as well as different precise
measurements [79–81]. One can readily see that present re-
sults are in good agreement with the theoretical results [76]
that are obtained using the relativistic coupled-cluster method
in the finite field gradient technique along with the optimized
Gaussian-type basis set. However, in our calculation, we have
used a sum-over-states approach which permits us to use
accurate experimental energy data wherever available. This

justifies the good agreement of the present calculations with
the measurements. For example, the static dipole polarizabil-
ity value of the Ca+ ion, measured by Chang [79], is in very
close agreement with our evaluated value, whereas for other
ions, i.e., Sr+ [80] and Ba+ [81], the agreement is within 2%.
Unfortunately, for the Mg+ ion we did not find any data in the
literature to compare with our result. However, based on our
results of Be+, Ca+, Sr+, and Ba+ ions, we believe our value
for the Mg+ ion should also be reliable.

2. Alkaline-earth-metal atoms

The present results of static dipole polarizability of
alkaline-earth-metal atoms are given in Table II, where these
are compared with the previously reported calculation of
Porsev and Derevianko [60] and other experimental results
[82–85]. Porsev and Derevianko calculated their static dipole
polarizabilities by using available reported experimental en-
ergies and theoretically calculated matrix elements. Close
agreement between our results for Be, Mg, Ca, and Ba atoms
with theoretical calculations [60] and other experimental
measurements [82–85] can be seen from Table II. However,
for the Sr atom, we observe that our value of static dipole
polarizability is somewhat higher as compared to the available
calculation [60] and the experimental value [84]. This could
be due to our slightly higher value of oscillator strength as

TABLE IV. Dispersion coefficients C6 for the interaction be-
tween two heteronuclear alkaline-earth-metal atoms and their com-
parison with the fitted result obtained by Eq. (6).

Interaction Present calculation Fitted

Be-Mg 351 364
Be-Ca 626 663
Be-Sr 814 786
Be-Ba 969 977
Mg-Ca 1150 1160
Mg-Sr 1494 1380
Mg-Ba 1784 1727
Ca-Sr 2793 2652
Ca-Ba 3360 3367
Sr-Ba 4403 4032
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TABLE V. Dispersion coefficients C6 for the alkaline-earth-metal ions interacting with the alkaline-earth-metal atoms and their comparison
with the fitted value obtained using Eq. (6).

Be Mg Ca Sr Ba

Ion Present calc. Fitted Present calc. Fitted Present calc. Fitted Present calc. Fitted Present calc. Fitted

Be+ 115 105 208 188 379 377 493 453 589 587
Mg+ 173 188 312 310 564 574 733 682 876 853
Ca+ 322 377 587 584 1082 1105 1413 1317 1698 1664
Sr+ 388 453 706 702 1302 1335 1699 1593 2044 2016
Ba+ 511 587 930 930 1719 1770 2247 2112 2708 2673

compared to the NIST [64] value for the leading transition
1S0 → 1P1.

C. The C6 coefficients

Using our calculations for dipole polarizabilities, we fur-
ther calculate the C6 dispersion coefficients for the combina-
tion of interactions between two homonuclear alkaline-earth-
metal atoms, two heteronuclear alkaline-earth-metal atoms,
and alkaline-earth-metal atoms with their ions in their ground
state. We have taken the calculation of C6 for homonuclear
alkaline-earth-metal atom dimers simply for comparison pur-
poses in order to check the reliability of our calculations
and to see how these match with the other available results.
These coefficients are presented in Table III, where we have
also compared our calculations with the available previous
theoretical [59–61] and experimental [62,63] results. We find
that our calculated value of C6 for Ca-Ca dimer shows excel-
lent agreement with the experimental result while it deviates
from measurements by ∼7% for the Mg-Mg dimer. Also,
one can see from Table III that there is significant disagree-
ment among the reported theoretical values from Mitroy and
Bromley [59], Porsev and Derevianko [60], and Patil [61]
for all homonuclear alkaline-earth-metal-atom dimers. This
difference among these results can be attributed to different
methodologies adopted in the theoretical approaches. We
also observe that with an increase in the atomic size of
the homonuclear dimer the C6 dispersion coefficients also
increase. The same trend can also be seen in the other reported
theoretical and experimental results.

Further, we have calculated C6 dispersion coefficients
for the interaction between the two heteronuclear
alkaline-earth-metal atoms in their ground state; these

are shown in Table IV. There are no other results reported for
these C6 coefficients with which we can compare our results.
However, for the sake of comparison, we have also obtained
C6 using the Slater-Kirkwood formula given by Eq. (6) using
experimental values of static dipole polarizabilities of each
atom as well as C6 coefficients as reported by Porsev and
Derevianko [60] for homonuclear alkaline-earth-metal-atom
dimers. These calculated values are also presented for
comparison in Table IV and are referred to as the fitted
calculations. Results determined using this approach show
close agreement with the present C6 values, except for the
dimer, which is combined with the Sr atom, i.e., Be-Sr, Mg-Sr,
Ca-Sr, and Sr-Ba dimers. This could be due to our calculated
dipole polarizability of the Sr atom being higher than the
experimental value, as can be seen from Table II. Agreement
between results from both methods clearly confirms the
validity of our method of calculation of C6 dispersion
coefficients for heteronuclear alkaline-earth-metal atoms.
Similar to the previous case, we again find that the value of
C6 increases with the increasing size of interacting atoms.

The calculated C6 dispersion coefficients for the alkaline-
earth-metal ions interacting with the alkaline-earth-metal
atoms are shown in Table V. In this case, there are again no
other previously reported theoretical or experimental results
to compare with our results. Consequently, we performed
calculations using the fitting approach using Eq. (6) and com-
pared these in Table V. We observe good agreement between
the present results with our fitting calculations for all the
dimers of alkaline-earth-metal ions with the alkaline-earth-
metal atoms except when the neutral Sr atom is involved. The
possible reason can again be the higher value of our calculated
dipole polarizability. The close agreement between these two

TABLE VI. Dispersion coefficients C9 for the interaction among three alkaline-earth-metal atoms. Fitted values are obtained from Eq. (7).

Atom Calculation Be-Be Mg-Mg Ca-Ca Sr-Sr Ba-Ba

Be present 5368 18310 66608 115009 169600
Be fitted 6051 18830 72683 104765 175036
Mg present 9893 34024 125721 217665 322323
Mg fitted 10644 33482 131571 190085 319626
Ca present 18503 64768 248117 432498 647488
Ca fitted 20459 65779 267852 388883 663115
Sr present 24160 84848 327456 571661 858017
Sr fitted 24439 78724 322681 468843 801218
Ba present 28978 102290 399639 699526 1054803
Ba fitted 31021 100814 420111 611823 1052640
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TABLE VII. Dispersion coefficients C9 for the interaction between two alkaline-earth-metal atoms and alkaline-earth-metal ions. The fitted
values are obtained using Eq. (8).

Ion Calculation Be-Be Mg-Mg Ca-Ca Sr-Sr Ba-Ba

Be+ present 3264 11261 41903 72644 107799
Be+ fitted 3466 11457 49331 72185 125948
Mg+ present 4840 16634 61381 106248 157285
Mg+ fitted 5261 16537 64896 93742 157547
Ca+ present 9276 32308 122618 213393 318658
Ca+ fitted 10167 32420 130467 189086 320800
Sr+ present 11091 38619 146658 255303 381479
Sr+ fitted 12292 39314 159066 230705 392236
Ba+ present 14571 50859 194466 339068 508069
Ba+ fitted 16297 52133 210998 306040 520380

approaches justifies the accuracy of our method of obtaining
C6 coefficients.

D. The C9 coefficients

After calculating the value of C6 for dimers, we have
determined the C9 dispersion coefficients for the interaction
between three alkaline-earth-metal atoms. The calculated re-
sults are shown in Table VI. Due to unavailability of other
results for comparisons, we have again evaluated C9 using
fitting equations, i.e., Eqs. (7) and (8). In order to solve
these equations, we have used C6 coefficients for homonuclear
alkaline-earth-metal-atom dimers by Porsev and Derevianko
[60] and used experimental static dipole polarizability from
Schwerdtfeger and Nagle [97]. One can see from Table VI
that both sets of values for C9 dispersion coefficients of the
systems concerned show close agreement. The maximum
difference between the two results can be seen for the systems
which have the Sr atom in their combinations for the reason
stated earlier.

Finally, we have calculated the values of C9, as given in
Table VII, for the interaction between two alkaline-earth-
metal atoms and alkaline-earth-metal ions. In addition to a
calculation by our method, we have determined these coef-
ficients with fitting equations, i.e., Eqs. (7) and (8). To solve
these equations experimental values [97] of the static dipole
polarizability Ca+, Sr+, and Ba+ are used. In the case of
Be+ and Mg+ our calculated result for dipole polarizability
is utilized due to unavailability of the corresponding measure-
ments. From this table we find close agreement between both
sets of calculations, excluding the systems with the Sr atom.
This is consistent with our other results for C6 and C9. The C9

coefficients also show trends similar to C6 with respect to the
size of the interacting atomic systems.

IV. CONCLUSION

In the present work, we have studied the nature of the
interaction coefficients for the alkaline-earth-metal atoms in-
teracting among themselves and with the alkaline-earth-metal
ions and obtained the values of the two-body C6 and three-
body C9 dispersion coefficients. To determine these coeffi-
cients, oscillator strengths for leading transitions and static
dipole polarizability of atoms and ions in their ground states
were determined using relativistic methods. These results
were compared with corresponding data from other theo-
retical calculations, measurements, and the NIST database
and overall good agreement was found. Apart from C6 val-
ues for alkaline-earth-metal homonuclear dimers, the C6 and
C9 coefficients were reported here. Therefore, we have per-
formed fitting calculations, for the sake of comparison, using
measured values of dipole polarizability and other available
parameters. Good agreement between values from our and
fitting methods indicates the reliability of our calculations
for C6 and C9 dispersion coefficients. We hope our results
will induce more theoretical and experimental studies in
this direction and help to make progress in quantum in-
formation processing, quantifying molecular potentials for
ultracold collision investigation, and designing better atomic
clocks.
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050404 (2004).

[10] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev. Lett. 105,
133202 (2010).

[11] E. Bodo, P. Zhang, and A. Dalgarno, New J. Phys. 10, 033024
(2008).

[12] P. Zhang, E. Bodo, and A. Dalgarno, J. Phys. Chem. A 113,
15085 (2009).

[13] P. Zhang, A. Dalgarno, and R. Côté, Phys. Rev. A 80,
030703(R) (2009).

[14] Z. Idziaszek, T. Calarco, P. S. Julienne, and A. Simoni,
Phys. Rev. A 79, 010702(R) (2009).

[15] B. Gao, Phys. Rev. Lett. 104, 213201 (2010).
[16] R. Côté, Phys. Rev. Lett. 85, 5316 (2000).
[17] R. Côté and A. Dalgarno, Phys. Rev. A 62, 012709 (2000).
[18] O. P. Makarov, R. Côté, H. Michels, and W. W. Smith,

Phys. Rev. A 67, 042705 (2003).
[19] H. Doerk, Z. Idziaszek, and T. Calarco, Phys. Rev. A 81, 012708

(2010).
[20] A. Harter and J. H. Denschlag, Contemp. Phys. 55, 33

(2014).
[21] R. Côté, V. Kharchenko, and M. D. Lukin, Phys. Rev. Lett. 89,

093001 (2002).
[22] E. R. Sayfutyarova, A. A. Buchachenko, S. A. Yakovleva, and

A. K. Belyaev, Phys. Rev. A 87, 052717 (2013).
[23] T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller,

Nat. Phys. 6, 275 (2010).
[24] P. F. Staanum, K. Hojbjerre, P. S. Skyt, A. K. Hansen, and M.

Drewsen, Nat. Phys. 6, 271 (2010).
[25] M. P. Langevin, Ann. Chim. Phys. 5, 245 (1905) [translation in

E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley,
New York, 1964), Appendix II].

[26] H. Margenau, Philos. Sci. 8, 603 (1941).
[27] A. Koutselos and E. Mason, J. Chem. Phys. 85, 2154 (1986).
[28] R. Ahlrichs, H. Bohm, S. Brode, K. Tang, and J. P. Toennies,

J. Chem. Phys. 88, 6290 (1988).
[29] A. Koutselos, E. Mason, and L. Viehland, J. Chem. Phys. 93,

7125 (1990).
[30] J. Mitroy and J. Y. Zhang, Eur. Phys. J. D 46, 415 (2008).
[31] L.-Y. Tang, J.-Y. Zhang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy,

J. Chem. Phys. 133, 104306 (2010).
[32] S. Singh, K. Kaur, B. K. Sahoo, and B. Arora, Asian J. Phys.

25, 6 (2016).
[33] T. Gould and T. Bucko, J. Chem. Theory Comput. 12, 3603

(2016).
[34] A. T. Grier, M. Cetina, F. Oručević, and V. Vuletić, Phys. Rev.
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