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Nonlinear Compton scattering of polarized photons in plane-wave backgrounds
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We investigate the phenomenology of nonlinear Compton scattering of polarized photons by unpolarized
electrons in plane-wave backgrounds. The energy and angular spectra of polarized photons are calculated for
linearly and circularly polarized pulses, monochromatic fields and constant crossed field backgrounds. When the
field intensity is in the weakly nonlinear regime, photons in different polarization states are predicted to possess
very different energies and angular distributions. We explain this difference by calculating the spectrum for
nonlinear Thomson scattering in a linearly polarized monochromatic background and projecting the electron’s
trajectory onto the different polarization directions. Finally, we calculate a scenario for multi-GeV electrons and,
by considering the energy and angular-resolved photon polarization purity, find one can achieve a GeV-photon
beam with polarization purities of over 90%.
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I. INTRODUCTION

The process in which an electron collides with a laser pulse
and absorbs more than a single laser photon before radiating
is referred to as nonlinear Compton scattering (NLC): e →
e + γ . It has been studied theoretically in a constant crossed
background [1], in a monochromatic plane wave [1–4], and in
a finite pulse [5–9] and has been adapted to numerical Monte
Carlo simulations [10–14]. Experimentally, up to the fourth
harmonic has been observed in the E144 experiment [15],
which collided a high-energy electron of 46.6 GeV with an
intense laser pulse [16]. Evidence of the quantum effect of
recoil in radiation reaction has recently been seen in laser-
plasma experiments [17,18], and experimental campaigns in
E320 at FACET-II [19] and in LUXE at DESY [20] plan
to measure the transition of NLC to the nonperturbative
regime.

There has been recent attention given to the description
of electron and photon polarization in NLC. Using a non-
precessing polarization basis [21], one can calculate the rate of
polarization flip in single NLC events, which have been added
to laser-plasma simulation codes [22]. It is necessary to intro-
duce some asymmetry in the background field to prevent the
spin-polarizing effect of the laser pulse from averaging out to
zero, and various schemes such as counterpropagating pulses
[23] or using an elliptically polarized beam [24] have been
suggested to achieve higher spin-polarization purities. Using
a simulation approach based on the locally constant field
approximation (LCFA) [25–30] in the quantum-dominated
radiation-reaction regime [31], it was recently suggested [32]
that, by using high-energy spin-polarized electron beams
colliding with an intense laser pulse, and an energy cut to
the emitted photons, a highly polarized photon beam could
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be achieved. At the same time as the current article was in
preparation, Wistisen and Di Piazza [33] performed a QED
calculation valid for arbitrary pulse length and spin-polarized
electrons in a circularly polarized background, and they con-
cluded that the deterioration in photon polarization purity
that accompanies an increasing nonlinearity parameter can be
compensated for by also using an angular cut.

A further importance of polarized single (dressed) ver-
tex processes is their occurrence in higher-order processes.
It has been shown several times [34–38] that, to correctly
factorize the “two-step” trident process of NLC followed by
nonlinear Breit-Wheeler pair creation, observed in the E144
experiment [39,40], one is required to consider the transverse
polarization of the intermediate photon (whereas the “one-
step” process involves all polarization states of the photon
[41,42]). Analogously, in double NLC, it is the polarization
of the intermediate electron that must be calculated for a
correct factorization [21,43,44], and this “gluing” approach
has recently been extended to QED cascades [45] (where
a chain of dressed-vertex processes such as NLC and pair
creation can occur [10,46–51]). Therefore it is of use to have
expressions for polarized processes in a range of backgrounds,
which also can be employed in higher-vertex calculations.

In the current paper, we focus on the polarization of
the emitted photons in NLC and focus on the high-energy,
intermediate intensity regime that is planned to be probed
in E320 [19] and LUXE [20]. Being able to prepare high-
energy photon beams with a high degree of polarization purity
is advantageous for phenomenological studies. For example,
it has been suggested that combining polarized high-energy
photons with currently available laser facilities would allow
the first measurement of real photon-photon scattering, either
directly [52–55] or via the Kramer-Kronig relation that links
the process to polarized Breit-Wheeler pair creation [56,57].
A general framework for incorporating polarized NLC to
numerical simulations was derived in Ref. [11] and applied
to study electromagnetic cascades in rotating electric fields.
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We derive photon-polarized NLC from unpolarized elec-
trons in a pulsed plane-wave background and show that the
energy and angular spectra of the emitted photons depend
sensitively on their polarization states. Therefore, by using
angular and energy cuts, one can achieve a significantly high
degree of polarization. We find that the angular distribution
of the photons in different polarization states are qualitatively
different, exhibiting typical patterns of the different orders
of multipole radiation. By deriving photon-polarized NLC in
circularly and linearly polarized monochromatic backgrounds
and comparing with a classical analysis of the electron tra-
jectory, we find an explanation for the familiar multipole
structures in the angular spectrum that can be traced to the
projection of the electron’s motion on the photon polarization
directions.

The paper is organized as follows. Section II gives an
overview of the finite-pulse derivation and defines important
quantities that are used throughout the paper. In Sec. III, we
outline the derivations for the production of linearly polarized
photons in linearly polarized backgrounds: a pulsed field, a
monochromatic field, and a constant crossed field, and then
in Sec. IV, we proceed with the production of circularly po-
larized photons in circularly polarized backgrounds: a pulsed
field, a monochromatic field, and a constant crossed field. In
Sec. V, we display numerical results that show the significant
discrepancy in the polarized photon energy spectrum and
angular distribution by the QED result compared with the
LCFA. In Sec. VI, we outline a classical calculation of the
equivalent number of photons in the radiated field and demon-
strate how, by decomposing the classical trajectory along the
photon polarization directions, we recover the leading-order
behavior of the QED result. In Sec. VII, we conclude.

II. SCATTERING IN PULSE BACKGROUND

All the electromagnetic backgrounds we consider are of a
transverse plane-wave nature with a reduced vector potential
a(φ) = eA(φ), for positron charge e and vector potential A,
and φ = κ · x is the external-field phase with wave vector κ =
ω0(1, 0, 0, 1) satisfying κ

2 = 0, κ · a = 0, and ω0 is the field
frequency. The scattering-matrix element for NLC is then

Sfi = −ie
∫

d4x ψq/ε
∗ψp

eik·x
√

2V k0
, (1)

where p and q are the incoming and outgoing electron mo-
menta, respectively; k and ε are the scattered photon momen-
tum and polarization, respectively, satisfying k · ε = 0, and
we recap the Volkov state

ψp =
[

1 + /κ/a(φ)

2 κ · p

]
up√
2p0V

e−ip·x−i
∫ φ 2p·a(ϕ)−a2 (ϕ)

2κ·p dϕ
.

We wish to express the photon polarization in terms of
the eigenstates of the polarization operator in the background
field, which ensures photon polarization will not change after
the emission. (The probability for photon-photon scattering
[58] is very small, so that deviations in experiment from
the plane-wave background are not expected to appreciably
impact our assumption that the photon polarization remains
constant after emission.) In linear background fields with

polarization ε1 = (0, 1, 0, 0) [or ε2 = (0, 0, 1, 0)], the eigen-
polarization can be expressed in terms of the orthogonal basis
[59]:

ε1 = ε1 − k · ε1

k · κ

κ, ε2 = ε2 − k · ε2

k · κ

κ,

e± = ±k + 1

2 k · κ

κ, (2)

which satisfies the normalization: ε2
1 = ε2

2 = e2
− = −e2

+ =
−1, and up to a sign, the photon transverse polarization
vectors are related to the invariants

ε1 ∼ k · F√
−(k · F )2

, ε2 ∼ k · F̃√
−(k · F̃ )2

,

where F is the Faraday field tensor and F̃ its dual. However,
in circular background fields with polarization (ε1 ± iε2)/

√
2,

the eigenbases ε1,2 are replaced with

ε1,2 → ε± = 1√
2

(ε1 ± iε2).

Whilst we use a polarization basis related to the photon for
its propagation through the background field, one should bear
in mind that any measurement of the photon’s polarization
will necessarily involve a polarization basis specified by a
detector (see, e.g., Sec. 65 of Ref. [60]). We are interested in
the polarization of GeV photons, for which the process of pair
polarimetry has been suggested as a method of measurement
[54], which relies upon the Bethe-Heitler process of photon
decay to an electron-positron pair in a Coulomb field.

We then calculate the probability P j for NLC of a photon
with polarization ε j to be

P j = V 2
∫

〈|Sfi(ε j )|2〉spin
d3q d3k

(2π )6
, (3)

where 〈·〉spin refers to averaging over initial spins and sum-
ming over final spins of the electron, j = 1 and 2 in the
linear background field and j = + and − in the circular
field. Expanding the photon polarization in the basis Eq. (2),
only the photon’s transverse polarization states (ε1 and ε2 in
linear backgrounds, ε+ and ε− in circular backgrounds) will
survive, allowing us to write the total probability P as a sum
of the probability of scattering into each of these polariza-
tion states P = P1 + P2 (P = P+ + P−) for linear (circular)
background fields. Since the only nontrivial dependency on
x is in the dependency on κ · x, one acquires a momentum-
conserving δ function in three coordinates, and we choose to
integrate out the scattered electron momentum q. Eventually
we arrive at the intermediate stage:

P j = α

(2π )2

1

η2
p

∫ 1

0

s

t
ds

∫
d2r⊥

∫
dφdφ′

× [
T(ε j )e

ic(φ−φ′ )−i
∫ φ

φ′
2p·a(ϕ)−a2 (ϕ)

2κ·p dϕ
]
, (4)

where α = e2/4π is the fine-structure constant,
ηp = κ · p/m2, s = κ · k/κ · p is the light-front momentum
fraction of the scattered photon, t = 1 − s, and
c = (k+ + q+ − p+)/2κ

0. We use light-front coordinates:
x± = x0 ± x3, x⊥ = (x1, x2), and r⊥ = k⊥/sm is the
normalized photon momentum in the plane perpendicular to
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the laser propagation direction, and it relates directly to the
outgoing angle of the scattered photon:

r⊥ = mηp

ω0

sin θ

1 + cos θ
(cos ψ, sin ψ ), (5)

where θ is the polar angle measured from a head-on collision
of the photon with the laser pulse and ψ is the azimuthal angle.
The dependence of the emission probability P j on the photon
polarization state ε j is included in

T(ε j ) = Eq(φ)/ε∗
j Ep(φ)E p(φ′)/ε jEq(φ′),

and we use the shorthand

Ep(φ) =
[

1 + /κ/a(φ)

2 κ · p

]
up√
2p0

.

III. LINEARLY POLARIZED PHOTON

A linearly polarized background field has linearly polar-
ized photon eigenstates. Here, we consider a laser background
of the following form:

a(φ) = mξg(φ) sin(φ)ε1, (6)

which has polarization ε1, intensity parameter ξ , and pulse
envelope g(φ).

The derivation is very similar to that of the well-known un-
polarized case [1,2]. Performing the calculation for T(ε j ), we
arrive at the linearly polarized photon-momentum spectrum:

d3P j

dsd2r⊥ = α

(2π )2

1

η2
p

s

t

∫
dφ

∫
dφ′ei(φ−φ′ )

〈
k·πp
κ·q

〉
×

[
�(φ) · ε j �(φ′) · ε j + �

s2

8t

]
, (7)

where we define the instantaneous classical electron momen-
tum in a plane wave,

πp(φ) = p − a(φ) + κ

2p · a(φ) − a2(φ)

2κ · p
,

and use the following shorthand: � = [a(φ) − a(φ′)]2/m2,
�(φ) = πp(φ)/m − k/ms. The window average of f is de-
noted by 〈 f 〉 = (φ − φ′)−1

∫ φ

φ′ f (ϕ)dϕ. Equation 7 contains a
(divergent) contribution from a pure phase term, which per-
sists outside the laser pulse and therefore must be regularized.
Since we are interested in angular distributions, we cannot
use the standard “iε” prescription [61,62], but instead must
regularize in the way introduced in Ref. [5] and recently
further developed in Ref. [30]. This then leads to inserting
regulation factors R(φ) [R(φ′)],

R(φ) = 1 − k · πp(φ)

k · p
, (8)

wherever necessary in Eq. (7) to ensure the integrand is zero
outside the pulse, which means �(φ) → �reg.(φ):

�reg.(φ) = −�R(φ) − a(φ)/m, (9)

where � is the normalized shifted momentum:

� = k

sm
− p

m
. (10)

So far this derivation has been quite general; we now
specify it in a standard way to short pulses by defining an
average ϕ = (φ + φ′)/2 and interference phase ϑ = φ − φ′
[29,63,64]. Integrating over the transverse momentum k⊥

[65], we arrive at the photon-polarized light-front–momentum
spectrum: P1,2 = (P ± �P)/2, where P = P1 + P2 is the
total unpolarized probability and �P = P1 − P2 is the change
in probability due to scattering into a particular polarization
state:

dP
ds

= α

πηp

∫
dϕ

(∫ ∞

0

dϑ

ϑ
K − π

2

)
, (11a)

d�P
ds

= α

πηp

∫
dϕ

∫ ∞

0

dϑ

ϑ
(a1 − a2) sin

(
sϑμ

2ηpt

)
, (11b)

where

K =
(

1 − �
1 + t2

4t

)
sin

(
sϑμ

2ηpt

)
,

the Kibble mass μ = μ(ϕ, ϑ ) = 1 − 〈a2〉/m2 + 〈a〉2/m2, and
a j = [〈a · ε j〉 − a(φ) · ε j][〈a · ε j〉 − a(φ′) · ε j]/m2. One sig-
nificant difference in the standard derivation of NLC in a pulse
is that, when one considers polarized electrons or photons, a
term arises of the following form:∫

dϑ

ϑ2
ei f (ϑ ), (12)

in addition to the usual terms with preexponent integrands of
the form 1/ϑ . The regularization of this term proceeds in the
same way as for the 1/ϑ term (i.e., one can write 1/ϑ2 =
−d (1/ϑ )/dϑ , integrate by parts, and use the Sokhotsky-
Plemelj theorem on the remaining 1/ϑ term). (The regular-
ization of this integral has also been dealt with in Ref. [61].)

A. Photon-polarized NLC LCFA

The LCFA can be acquired from Eq. (7) by performing a
Taylor series in the interference phase. To make the connec-
tion, let us specify the field to be a′(ϕ) = mξ (ϕ) ε1, where
ξ (ϕ) includes the pulse amplitude and the wave form. Then
making the following substitutions,

� → −ϑ2ξ 2(ϕ) ,

ϑ

〈
k · πp

κ · q

〉
→ k · πp(ϕ)

tηp
ϑ + 1

24

sξ 2(ϕ)

tηp
ϑ3,

�(φ) · ε j �(φ′) · ε j → [�(ϕ) · ε j]
2 − ϑ2 ξ 2(ϕ)

4
δ1, j,

in Eq. (7), one can simply perform the integral over ϑ to
acquire the polarized photon triple differential spectrum:

d3P j

dsd2r⊥ = α

πηp

∫
dϕ Ai(y)

[
[�(ϕ) · ε j]

2z + δ1, jy + s2

2t
y

]
,

(13)

where

y = 2

s

k · πp(ϕ)

m2
z, z =

(
s

χpt

)2/3

,

and χp = χp(ϕ) = |ξ (ϕ)|ηp. We note that this angular-
resolved LCFA result depends not only on the local electric
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field ξ (ϕ) but also on the local vector potential a(ϕ) included
in π (ϕ). Integrating over transverse momenta k⊥, the light-
front momentum spectrum becomes

dP
ds

= − α

ηp

∫
dϕ

[
Ai1(z) + 1 + t2

t

1

z
Ai′(z)

]
, (14a)

d�P
ds

= α

ηp

∫
dϕ

1

z
Ai′(z), (14b)

which is just an integration over the pulse shape of the NLC
result in a constant crossed field [21].

B. Linearly polarized monochromatic background

Beginning with Eq. (7), we derive photon-polarized NLC
for a linearly polarized monochromatic background [corre-
sponding to g(φ) = 1 in Eq. (6)]. The main complication
introduced by linear polarization of the background is that a2

is not constant. This means that one is faced with a squared
sinusoidal function in the exponent and preexponent. These
can be handled straightforwardly by a Fourier decomposition.
To this end, let us define the functions �l,n via

cosh φei(−ζl sin φ+β sin 2φ) =
∞∑

n=−∞
�h,ne−inφ, (15)

where

ζl = sξ

tηp
� · ε1, β = sξ 2

8tηp
. (16)

We then find that �h,n = ∑∞
m=−∞ Jm(β )Fh,m,n(ζl ), with

F0,m,n = J2m+n(ζl ),

F1,m,n = 1
2 [J2m+n+1(ζl ) + J2m+n−1(ζl )],

F2,m,n = 1
4 [J2m+n+2(ζl ) + 2 J2m+n(ζl ) + J2m+n−2(ζl )].

where Jn(ζl ) is the Bessel function. Unlike for the pulsed
background case, there is no need to introduce an explicit
regularization (being infinite in extent, there is no place where
the monochromatic background disappears). Finally, we find
P j = ∑∞

n=−∞ P j,n, where

P j,n = αNφ

η2
p

∫ 1

0
ds

∫
d2r⊥ s

t
δ(c + 2β − n)

×
[

(� · ε j �0,n − δ1 jξ �1,n)2

− (
�2,n�0,n − �2

1,n

) s2ξ 2

4t

]
, (17)

and we label Nφ = δ(x)|x→0 ≡ ∫
dφ/2π as the number of

laser cycles, which is formally infinite, but which we subse-
quently set equal to a finite value for the purpose of compari-
son with the pulsed result. The δ function

δ(c + 2β − n) = δ

[
s

2ηpt

(
1 + ξ 2

2
+ �2

⊥

)
− n

]
(18)

fixes n > 0 (where n is often interpreted as the net number of
absorbed laser photons) and also gives the kinematic range of

the nth harmonic [4], 0 < s < sl,n, where

sl,n = 2nηp

2nηp + 1 + ξ 2/2
. (19)

1. Linearly polarized angular spectrum

Integrating out s in Eq. (17) gives the angular dependency

P j,n = αNφ

nη2
p

∫
d2r⊥ L2

n

(1 + Ln)2

[
(� · ε j�0,n − δ1 jξ�1,n)2

− (
�2,n�0,n − �2

1,n

) L2
nξ

2

4(1 + Ln)

]
, (20)

where

Ln = 2nηp

(�⊥)2 + 1 + ξ 2/2
(21)

and the arguments of the � functions have become

ζl → ζl,n = ξ Ln

ηp
� · ε1, β → βn = ξ 2 Ln

8ηp
.

2. Linearly polarized light-front momentum spectrum

If Eq. (18) is used to integrate out the perpendicular photon
momentum instead, we acquire

P j,n = αNφ

ηp

∫ sl,n

0
ds

∫ π

−π

dθr

[
(�n · ε j�0,n − δ j,1ξ�1,n)2

− (
�2,n�0,n − �2

1,n

) s2ξ 2

4t

]
, (22)

where �n · ε1 = −|�⊥
n | cos θr , �n · ε2 = −|�⊥

n | sin θr , and we
define |�⊥

n | = √
2nηp(sl,n − s)/(s sl,n). The argument ζl of the

� functions becomes

ζl → ζl,n = − s ξ

tηp
|�⊥

n | cos θr .

IV. CIRCULARLY POLARIZED PHOTON

In this section, we consider the background to be a circu-
larly polarized field,

a(φ) = mξg(φ)[ε1 cos(φ) + ε2 sin(φ)], (23)

which has a right-handed polarization,

ε+ = 1√
2

(ε1 + iε2).

The derivation is very similar to the linearly polarized case.
Repeating the previous derivation and replacing the photon
polarization with ε±, we acquire the circularly polarized
photon-momentum spectrum:

d3P±
dsd2r⊥ = α

(2πηp)2

s

t

∫
dφ

∫
dφ′ei(φ−φ′ )

〈
k·πp
κ·q

〉
×1

2

[
s2

4t
� + �⊥(φ) · �⊥(φ′)

± i fs�
⊥(φ) × �⊥(φ′)

]
, (24)
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in which we define fs = 1 + s2/2t , and use the shorthand:
x⊥ · y⊥ = x1y1 + x2y2 and x⊥ × y⊥ = x1y2 − x2y1. We employ
here the same regularization as in the linear case: �⊥(φ) →
�⊥

reg.(φ). Performing the integration over the transverse mo-
mentum, we acquire the light-front momentum spectrum:

P± = α

2πηp

∫ 1

0
ds

∫
dϕ

(∫ ∞

0

dθ

θ
K± − π

2

)
, (25)

where

K± =
[

1 − 1

2
fs� ± i fs

(
b − b∗)] sin

(
sθμ

2tηp

)
, (26)

where b = [a(φ′) − 〈a〉] · ε1 [a(φ) − 〈a〉] · ε2/m2 and b∗ =
[a(φ) − 〈a〉] · ε1 [a(φ′) − 〈a〉] · ε2/m2. Summing over polar-
izations in Eq. (25) then recovers the same polarization-
averaged probability, P = P+ + P−, as in the linear polariza-
tion case, Eq. (11).

A. Photon-polarized NLC LCFA

With the same procedure as in the linear case, we acquire
the LCFA result for circular polarization:

d3P±
dsd2r⊥ = α

2πηp

∫
dϕ[(2y fs − z)Ai(y)

± 2 fs|ξ⊥(ϕ)|−1|�⊥(ϕ) × ξ⊥(ϕ)|√zAi′(y)], (27)

in which ξ⊥(ϕ) := a′⊥(ϕ)/m includes the field amplitude, the
direction, and the pulse envelope. In the same vein as the
linearly polarized case, we can integrate over the transverse
photon momenta to acquire the light-front momentum spec-
trum of the LCFA:

dP±
ds

= − α

2ηp

∫
dϕ

[
Ai1(z) + 2 fs

1

z
Ai′(z)

]
. (28)

For a constant crossed field background, when one integrates
over the transverse photon momentum, one is simultaneously
integrating over the trajectory of the electron since there
is a one-to-one mapping between the component of photon
momentum parallel to the background field and the electron’s
phase position [25]. Due to the symmetry of a circularly
polarized background, after this integration over the trajec-
tory, no information is retained about the polarization of the
background field. Therefore the spectrum in Eq. (28) is the
same for photons in different circularly polarized states (this is
not the case for the angularly resolved LCFA, for the same rea-
son). The probability changes due to scattering into different
polarization states: �P = P+ − P− = 0. However, we note
that, when the intensity of the linearly polarized laser field is
twice as large as the intensity of the circularly polarized laser
field, the total unpolarized probability is indeed the same for
linear and circular cases (P = P1 + P2 = P+ + P−).

B. Circularly polarized monochromatic field

The derivation is very similar to the linearly polarized
monochromatic case [where now g(φ) = 1 in Eq. (23)] with
the added simplification that a2 = −m2ξ 2 is a constant and
so only one Jacobi-Anger expansion is required for each
phase integration, resulting in an expression with products

of two Bessel functions (rather than products of four Bessel
functions as in the linear case). We find the probability
P± = ∑∞

n=−∞ P±,n, where

P±,n = αNφ

2η2
p

∫ 1

0
ds

∫
d2r⊥ s

t
δ(c + 4β − n)

× {
fsξ

2/2
(
J2

n+1 + J2
n−1 − 2J2

n

) − J2
n

± 2 fsξ
2[s(1 + ξ 2)/(ηpt ) − n]J ′

nJn/ζc
}
, (29)

and the argument of the Bessel functions Jn ≡ Jn(ζc) [J ′
n ≡

J ′
n(ζc)] is

ζc = ξ |�⊥| s

ηpt
.

The δ function again fixes the net number of absorbed laser
photons n > 0 and gives the kinematic range of the nth
harmonic, 0 < s < sc,n, where

sc,n = 2nηp

2nηp + 1 + ξ 2
, (30)

which is the linear case, Eq. (19), with the substitution
ξ 2/2 → ξ 2.

1. Circularly polarized angular spectrum

Evaluating the δ function by integrating over s, we obtain
the angular spectrum:

d2P±,n

drxdry
= αNφ

2η2
p

C2
n

(1 + Cn)2

1

n

× {
fsξ

2/2
(
J2

n+1 + J2
n−1 − 2J2

n

) − J2
n

± 2 fsξ
2[Cn(1 + ξ 2)/ηp − n] J ′

nJn/ζc,n
}
, (31)

where

Cn = 2n ηp

(�⊥)2 + 1 + ξ 2
,

and the argument of the Bessel functions becomes

ζc → ζc,n = ξ |�⊥|Cn/ηp.

2. Circularly polarized light-front momentum spectrum

Integrating the δ function over the transverse momentum
r⊥, we acquire the energy spectrum:

dP±,n

ds
= παNφ

ηp

{
fs

2
ξ 2

(
J2

n+1 + J2
n−1 − 2J2

n

) − J2
n

± 2 fsξ
2

(
s

t

1 + ξ 2

ηp
− n

)
1

ζc,n
J ′

nJn

}
, (32)

where the argument of the Bessel functions is replaced:

ζc → ζc,n = ξ |�⊥
n |

s

ηpt
, |�⊥

n | =
√

2nηp
sc,n − s

s sc,n
.

Summing over polarization states, we recover the unpolarized
formula [60].
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V. NUMERICAL CALCULATIONS

In this section, we consider an example scenario of a
head-on collision between an 8-GeV electron and an eight-
cycle (full width at half maximum, 11 fs) laser pulse with
intermediate intensity ξ = 1 and frequency ω0 = 1.55 eV. The
corresponding pulse envelope is g(φ) = cos2(φ/4σ ), with
|φ| < 2πσ and σ = 4, and the electron energy parameter
is ηp = 0.095. This choice of parameters is motivated by
upcoming high-energy experiments such as LUXE and E320.
In this parameter region, the scattered photons are colli-
mated in the electron incident direction with a very small
angular spread. We refer to ε1 and ε+ as “E -polarization”
states, because they are almost parallel to background fields
with polarization ε1 and ε+ in the linear and circular cases,
respectively [almost parallel, because photons are emitted
with finite (small) angles]. ε2 and ε− are then referred
to as “B-polarization” states, as they are (almost) parallel
to the magnetic field in each case. The polarization pu-
rity is defined as the fraction of the E -polarized photons:
P = P1/P in the linear case and P = P+/P in the circu-
lar case. For the nth order of harmonic, the polarization
purity is Pn = P1,n/(P1,n + P2,n) in the linear case and
Pn = P+,n/(P+,n + P−,n) in the circular case.

A. Linearly polarized background

Figure 1 shows the energy spectra of the polarized photons
and the behavior of the polarization purity for different values
of s in the linear background field. As shown in Fig. 1(a),
the relative values of the polarized spectra depend sensitively
on the photon light-front momentum s: in the low-energy
limit s → 0, the photons are unpolarized (P = 0.5) as shown
in Fig. 1(b). However, in the high-energy region, starting
around the Compton edge [vertical black line in Fig. 1(a), the
kinematic bound of the first harmonic sl,1], photons are more
likely to be scattered into the E -polarization state, reaching a
high purity >90%.

An evident harmonic structure can be observed in the pho-
tons’ energy spectra in Fig. 1(a) for the eight-cycle laser pulse.
The harmonic structure corresponds to the multipeak structure
in the polarization purity [red solid line in Fig. 1(b)]. To
illustrate this, we plot the polarization purity (blue dash-dotted
line) from a monochromatic background, which broadly
agrees with the pulsed result. We can also see that the highest
purity (about 95%) results from the first harmonic, which is
dominant in the E -polarization state and becomes purely E -
polarized at the Compton edge. For higher-order harmonics,
the polarization purity becomes smaller, and in the low light-
front momentum region it can even display a dominance of
B-polarized photons where P < 0.5, for P2,3 in Fig. 1(b).

In Fig. 2, we show the angular spectra of the polarized
photons, d2P/drxdry, for the same parameters as in Fig. 1.
[Only photons with 0 < s < 0.4 have been included as higher
values of s are strongly suppressed for these parameters, as
shown in Fig. 1(a)]. We observe that E -polarized photons are
tightly collimated with the incident electron propagation di-
rection (r⊥ = 0) with an angular spread: 2|r⊥|/γp ∼ 2ξ/γp ≈
0.13 mrad. This is much narrower than the B-polarized
photons’ distribution, and with the peak value 1 order of
magnitude larger than that of the B-polarized photons. We
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0
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0.7
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0.9

1

(b)

FIG. 1. (a) Polarized energy spectra: Exact QED results and
LCFA results. The black vertical solid line denotes the upper limit
of the first harmonic sl,1 from Eq. (19). (b) Polarization purity:
Exact QED results, LCFA results, and monochromatic results. The
markers denote the polarization purity of the first three harmonics
Pn. Head-on collision is considered with the following parameters:
ξ = 1 and ω0 = 1.55 eV.

also see that the B-polarized photons are scattered in a four-
peak quadrupole distribution, while the E -polarized photons
are scattered into the typical dipole-radiation distribution. In
order to compare with the monochromatic results, we pick a
scaling factor Nφ by replacing the integration over the phase
with an integral over the pulse envelope, Nφ = ∫

dφ/2π →∫
dφ g(φ)/2π = 4. In Figs. 2(c) and 2(d), we see good quan-

titative agreement with the pulsed results and also that the
multipole structure is clearly reproduced.

The significant difference in the angular distribution of
the polarized photons results in the particular structure in
the distribution of the photon polarization purity shown in
Fig. 3(a). Around the electron incident direction, |r⊥| < 0.5
corresponding to the photon angular spread of ∼0.064 mrad,
we can achieve an almost purely E -polarized (P > 96%)
photon beam, and for a broader angular spread of ∼0.1 mrad,
photons are emitted with the polarization purity of 85%. Here
we want to emphasize that because high-energy photons are
tightly collimated in the electron incident direction, a highly
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FIG. 2. Angular distribution d2P/drxdry of the linearly polar-
ized photons. Left column: E polarization. Right column: B polar-
ization. Upper panels (a) and (b): Exact QED calculation for a pulse.
Central panels (c) and (d): QED calculation for a monochromatic
field. We take Nφ = 4. Bottom panels (e) and (f): The LCFA results.
The axes rx,y are dimensionless and relate directly to the scattering
angle of the photon [see Eq. (5)]. The parameters are the same as
those used in Fig. 1.

E -polarized γ -ray can be generated if we exclude the photons
with a large scattering angle [66].

For comparison, we also show the corresponding LCFA
results in Figs. 1, 2, and 3. As expected [29], in this
intermediate-energy region, LCFA cannot reproduce the har-
monic structure in the spectra and therefore cannot be used
in this regime to give an accurate prediction of the purity of
the emitted photons. As shown in Fig. 1, for lower-energy

FIG. 3. Angular distribution of the polarization purity P in a
linearly polarized background. (a) The exact QED calculation for a
pulse. (b) The LCFA results. The parameters are the same as those
used in Fig. 1.
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FIG. 4. (a) Polarized energy spectra: Exact QED results and
LCFA results. The black vertical solid line denotes the upper limit
of the first harmonic s1 from Eq. (30). (b) Polarization purity: Exact
QED results, LCFA results, and monochromatic results. The markers
denote the polarization purity of the first three harmonics Pn. The
parameters are the same as those as in Fig. 1.

photons, s → 0, the LCFA prediction for dP/ds diverges, as
is well known, and hence it overestimates the polarization
purity. For higher-energy photons, the LCFA result averages
through the harmonic structure. We can also see that the
angularly resolved LCFA result shows large deviations from
the exact QED calculations shown in Fig. 2. The LCFA
broadens the angular distribution of E -polarized photons and
merges the four-peak structure in the distribution of the B-
polarized photons into a double-peak structure. Therefore,
the LCFA predicts a significantly different polarization purity
distribution in Fig. 3. As the LCFA result overestimates the
peak value of the photon distribution, especially for the B-
polarized photons, the value of the polarization purity in the y
direction (perpendicular to the field polarization direction) is
underestimated.

B. Circularly polarized background

Figure 4(a) shows the energy spectra of the circularly
polarized photons in a circularly polarized background field.
Unlike in a linearly polarized background, the lower-energy
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FIG. 5. Angular distribution d2P/drxdry of the circularly polar-
ized photons. Left column: E polarization. Right column: B polariza-
tion. Upper panels (a) and (b): Exact calculation for a pulse. Central
panels (c) and (d): Calculation for a monochromatic field (Nφ = 4).
Bottom panels (e) and (f): The LCFA results. Photons are included
in the range 0 < s < 0.4, and the parameters are the same as those in
Fig. 4.

photons, s → 0, are purely B-polarized, P → 0, whereas
higher-energy photons, with s � sc,1 [sc,1 is the Compton
edge, vertical black line in Fig. 4(a)], are highly polarized in
the E -polarization state. Thus the polarization purity increases
from P = 0 at the low-energy limit up to P > 70% in the
higher-energy region as shown in Fig. 4(b). This tendency can
be explained via the monochromatic result, which as shown
in Fig 4(b) (black dash-dotted line), matches well with the
pulse result (red solid line). This change in the polarization
purity as s is increased from 0 can be explained mathemati-
cally. From Eq. (32), the perturbative expansion relation for
a small argument of the Bessel function, Jn(ζ ) ∼ ζ n, can
be used to show that in the s → 0 limit for the nth order
of harmonic gives dP±,n/ds ∼ 2 fsξ0(n2 ∓ n2)ζ 2n−2

c,n , whereas
in the s → sc,n limit, dP±,n/ds ∼ 2 fsξ0(n2 ± n2)ζ 2n−2

c,n . Thus
the harmonics are purely B-polarized (Pn = 0) at s → 0 and
purely E -polarized (Pn = 1) at the harmonic bound s → sc,n,
as also shown in Fig 4(b). Furthermore, the low polarization
purity of each harmonic at s � sc,n reduces the purity of
the sum of all the harmonics and finally results in the lower
polarization purity at larger s in the circular case than in the
linear case.

In Fig. 5, we present the angular distribution of the po-
larized photons. As shown, the azimuthal symmetry is main-
tained in an eight-cycle pulse. Similar to the linear case, the E -

FIG. 6. Angular distribution of the polarization purity in the
circularly polarized background. (a) The exact QED calculation for
a pulse. (b) The LCFA results. The parameters are the same as those
used in Fig. 4.

polarized photons are more collimated in the electron incident
direction with an angular spread of 2|r⊥|/γp ∼ 2ξ/γp ≈ 0.13
mrad, and the distribution peak value is 1 order of magnitude
larger than that of the B-polarized photons. In Fig. 6, we plot
how the polarization purity depends on the scattering angle.
We observe that the photons scattered with the smallest angle
have the highest purity. For the current parameters, within
an angular spread of < 0.077 mrad the scattered photons
are almost purely E -polarized with P > 96%, and within an
angular spread of ∼0.1 mrad they have a purity of P ∼ 88%.
Alternatively, we could concentrate on large-angle scattering
and find that, for angles >0.33 mrad, photons are highly
B-polarized (P < 5%) instead.

In Figs. 4, 5, and 6, we also show the LCFA results
for comparison. Away from the center of the distribution in
Fig. 6, the LCFA predicts a polarization purity of 0.5, which is
equal to the ratio one acquires after integrating out transverse
photon momenta, and shows that the LCFA cannot resolve
the polarization state of wide-angle scattering. In the center
of the distribution, we see that the LCFA predicts a narrower
peak than the QED result, suggesting that the actual situation
is more favorable in this regime than simulations based on the
LCFA would predict. Because the LCFA result overestimates
the value of the B-polarized photon distribution, the peak
value of the polarization purity in Fig. 6 is underestimated to
be less than the exact QED value: P < 96%.

VI. CLASSICAL ANALYSIS

In Figs. 2(a) and 2(d), we observe the multipole-radiation
structure in the angular spectra of the polarized photons.
To show this structure more clearly, we present the angular
distribution of the first three harmonics in Fig. 7. As shown,
the angular distributions of the different harmonics display
different orders of multipole radiation [67].

In order to interpret the origin of the orbital-type shapes in
the angular spectra, which persist when the quantum param-
eter χp � 1, we perform a classical calculation of nonlinear
Thomson scattering. The classical analog of the differential
probability of photon emission, d3Pcl.

/dk3, is given by the
energy of the emitted field in units of frequency:

d3Pcl.

dk3
= 1

k0

d3P0

dk3
,
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FIG. 7. Angular spectra d2P j,n/drxdry of the first three harmon-
ics in the linearly polarized monochromatic field: ξ = 1 and ηp =
0.095 (8-GeV electrons). Left column: E polarization. Right column:
B polarization. Upper panels: First harmonic. Central panels: Second
harmonic. Bottom panels: Third harmonic.

where Pμ is the four-momentum of the field emitted by
the electron through interaction with the electromagnetic
background. Proceeding from Coleman [68], we write

Pcl. = 2

(2π )3

∫
d4k ȷ̃∗

λ (k )̃ȷλ(k)θ (k0)δ(k2), (33)

where ȷ̃ = ∫
d4x j(x) exp[ik · x] and we use a definition for

the classical current of jμ(x) = e
∫

δ(4)[x − x′(s)]π ′μ(τ ) dτ ,
where τ is the proper time, related to the external-field phase
by dτ/dϕ = (mηp)−1. This then leads to

Pcl. = α

π2η2
p

∫
ds d2k⊥

2 s
dϕ dϕ′ π (ϕ) · π (ϕ′)eik·[x(ϕ)−x(ϕ′ )].

(34)
At this point, we decompose the trajectory using the basis
introduced in Eq. (2) and the derivation is then very similar
to the QED version. The total probability can be written as
Pcl. = Pcl.

1 + Pcl.
2 , where Pcl.

j = ∑
n Pcl.

j,n and

Pcl.
j = 2α

ηp

∫
dϕ

2π

∫
sdsd2r⊥δ(c̃ + 2β̃s − n)

×{
δ j,2(r · ε2)2�2

0,n + δ j,1
[
(r · ε1)2�2

0,n

+ 2mξ r · ε1 �1,n�0,n + ξ 2�2
1,n

]}
, (35)

where the arguments of the �l,n functions are now

α̃s = ξ s

ηp
r · ε, β̃s = ξ 2s

8ηp
.

We note that energy-momentum conservation is different in
the classical case, because the electron experiences no recoil
classically. This is reflected by the modified δ-function argu-
ment:

δ(c̃ + 2β̃s − n) = δ

[
s

2ηp

(
1 + ξ 2

2
+ (r⊥)2

)
− n

]
,

which on comparison with the quantum version Eq. (18) has
been modified by a replacement s/(1 − s) → s. (Recalling
that the scattered electron energy parameter ηq = ηp(1 − s),
we see that setting 1 − s → 1 is equivalent to neglecting the
electron recoil). There is also an extra term in the classical
integrand which originates from the e± directions, of the form[

1 + (r⊥)2
]
�2

0,n − 2ξ r · ε1�0,n�1,n + ξ 2�0,n�2,n,

but this disappears, because it is a boundary term in the
integration over φ and φ′ (it is proportional to k · π , which
occurs in the exponent).

One immediate consequence arises in the angular spectrum
when s is integrated over in Eq. (36):

Pcl.
j = 2α

ηp

∫
dϕ

2π

∫ 2π

0

dθr

2π

∫ ∞

rn

dr rs∗
n

{
δ j,2(r⊥ · ε2)2�2

0,n

+ δ j,1
[
(r⊥ · ε1)2�2

0,n−2mξ r⊥ · ε1 �1,n�0,n+ξ 2�2
1,n

]}
,

(36)

where s∗
n = y∗

n from Eq. (21). However, because there is no
electron recoil in the classical description, s∗

n � 1, whereas
the equivalent QED parameter, y∗

n , is unbounded. This means
that there exists a classical “angular edge” in analogy with the
Compton edge [4] but in the angular spectrum:

rn = θ (un)
√

un, un = 2nηp − 1 − ξ 2/2. (37)

Therefore, the smoothing of the angular harmonic edges is a
quantum effect.

Upon comparison with the quantum version for the total
probability, Eq. (22), we note two further differences. First,
the decomposition that we have made to the electron’s trajec-
tory, by projecting the instantaneous electron momentum onto
the directions ε1,2, matches the decomposition in the quantum
case, ε1,2 of the photon polarization. This mainly originates
from the choice of polarization basis, in which p · ε1 = r · ε1

and p · ε2 = r · ε2. We see thereby the mapping between the
classical electron’s motion and the polarization of the emitted
photon in the QED case. The second difference, is that there
are terms from QED that are absent in the classical formula,
in particular the term

−2(mξ )2 s2

4(1 − s)

[
�2,n�0,n − �2

1,n

]
.

This term is of purely quantum origin, which is made mani-
fest when we recall that s = ηk/ηp = κ · k/κ · p ∝ h̄, and so
when we take the limit of h̄ → 0 of the quantum expression,
this term disappears. (Incidentally, the other terms survive,
because we have the combination η−1

p

∫
ds, which survives

in the limit of h̄ → 0.)
The angular harmonic spectrum of photons emitted with

polarization perpendicular to the field resembles the spherical
harmonic decomposition of the Green’s function of the wave
equation from classical electrodynamics [67]. A connection
to this expansion can be made by noting that the leading term
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dictating the shape of the angular harmonics is given by �2
0,n,

where

�0,n =
∞∑

t=−∞
Jt

(
ξ 2s

8ηp

)
J2t+n

(
ξ s r cos θ

ηp

)
. (38)

For the lowest harmonics, s � 1 and our analysis leads to the
highest polarization purities when ξ/ηp is not too large, so the
Bessel arguments are, in general, small. It turns out that the
limit [69]

Jn(z) = lim
m→∞ mnP−n

m

(
cos

z

m

)
, (39)

where P−n
m are the associated Legendre polynomials, is al-

ready well approximated for a small argument |z| � 1 at
m = 1. Then we see that the leading term can be approximated
by

�0,n =
∞∑

t=−∞
Jt

(
ξ 2s

8ηp

)
P−(2t+n)

1

[
1 −

(
ξ s r cos θ

ηp

)2
]
. (40)

Upon comparison with the form of the spherical harmonics,

Y m
l (θ, φ) = NeimφPm

l (cos θ ), (41)

and noting that P−m
l ∝ Pm

l , we see that each higher-harmonic
n is associated with a higher value of the index m.

VII. CONCLUSION

We investigated the polarization of a photon generated by
nonlinear Compton scattering of an electron in a plane-wave
background. Our analysis considers the generation of linearly
polarized and circularly polarized photons in correspondingly
polarized background fields. We considered a finite pulse,
a monochromatic background, and the locally constant field
approximation (LCFA) for each polarization case. The light-
front momentum and angularly resolved spectra for each case
were presented.

Motivated by the upcoming high-energy experiments
LUXE at DESY and E320 at FACET-II, we focused attention
on having a plane-wave laser pulse of intermediate-intensity
parameter ξ = 1. We found that the harmonic structure of the
photon spectrum is reflected in the polarization purity of the
scattered photons. The angular spectrum of emitted photons
is substantially different for photons polarized parallel to
the electric field (E -polarized) to the angular spectrum of
photons polarized parallel to the magnetic field (B-polarized),
in both linearly and circularly polarized cases. By performing
a classical calculation for the equivalent process of nonlinear
Thomson scattering, we identified an explanation for the
different angular distribution of different photon polarization
states due to the motion of the electron in a plane-wave
background in the electric- and magnetic-field directions.

Approaches based on the LCFA (which is the main method
by which quantum effects are included in numerical simula-
tions of high-intensity laser-matter interactions) cannot repro-
duce the structure of the angular distributions at intermediate
intensities. In particular, for the linearly polarized case, the
multipole structure is beyond local approaches, and for the
circularly polarized case, the spherical harmonic structure
is beyond local approaches. The LCFA approach is thus

0.2 0.4 0.6

-20

-10

0

10

20 (a)

0.2 0.4 0.6

-20

-10

0

10

20 (b)

FIG. 8. Relative error (dP j/ds − dPlcfa
j /ds)/(dP j/ds) in the

energy spectra of each LCFA result dPlcfa
j /ds compared with the

corresponding monochromatic result dP j/ds in the region 0.01 <

s < 0.6. The parameters are ξ = 8 and ηp = 0.095.

incapable of describing the angular distribution of the photon
polarization purity in the parameter regime of interest in high-
energy experiments at intermediate field intensity. The LCFA
also performs poorly at predicting the yield of photons with
a given polarization in the low-energy part of the spectrum as
well as around the first harmonic (the Compton edge), which
is an identified experimental observable of interest [20].

This naturally raises the question as to whether one should
use the polarized LCFA or the unpolarized LCFA to de-
scribe the dynamics of QED cascades. To answer this, we
would first point out that QED cascades driven by the laser
field are necessarily in the high-intensity regime, whereas in
the current paper, we are concerned with the intermediate
intensity regime of ξ ∼ O(1). Therefore, the error in the
different LCFAs will be reduced. Second, in each link of the
cascade it is usually assumed to be a good approximation
that this emission is forward; i.e., the angular spread we have
calculated here for each polarization case is not resolved. In
Fig. 8, we compare the relative error in the energy spectra of
each polarized LCFA with the unpolarized LCFA, for ξ = 8
and ηp = 0.095.

As one can see, in the linearly polarized case, the relative
error of the LCFAs is very similar and rather low (at small
s, the relative error can be about a factor 20% larger, but this
is not usually the parameter range of interest in cascades). In
a circularly polarized background, although the difference in
the error grows with s, it remains rather small over the en-
tire spectrum at around 5%. Therefore, the photon-polarized
LCFA describes QED cascade dynamics to a level of accuracy
similar to that of the unpolarized LCFA.

We finish by highlighting that, at intermediate intensities,
the significant difference in the angular and energy depen-
dency of E - and B-polarized photons lends itself to the possi-
bility of generating highly brilliant, highly polarized sources
of γ photons, as explored in Ref. [66].
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