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Size-dependent velocity distributions and temperatures of metal clusters in a helium carrier gas
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Combining a laser vaporization cluster source, a velocity scan system, and a time-of-flight mass spectrometer,
we measured velocity distributions of few-atom cobalt clusters (Con, n = 6–60) suspended in a helium carrier
gas and expanded into vacuum. The velocity distributions provide information about the cluster size dependence
of the translational temperature, flow velocity, and velocity slip with respect to the helium carrier gas. The system
of clusters in a carrier gas is found to violate the equipartition theorem. Although the clusters in the expansion
do not thermalize with the helium gas, they do experience significant, size-dependent internal cooling. While
expanding into vacuum, the clusters collide, at least a couple of hundred times, superelastically with the carrier
gas, thereby transferring internal vibrational energy into self-acceleration and increasing the flow velocity of the
gas as a whole. It is also demonstrated that the proposed velocity distribution measurements can be used to test
whether a source produces thermalized clusters.
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I. INTRODUCTION

Many gas-phase physical techniques for the production of
atomic clusters exist. Irrespective of the method of choice,
the production of clusters, which are particles composed of
a few atoms to a few hundreds of atoms, follows a similar
approach [1]. Material ejected from a bulk target forms a
vapor plume, which in a first step is cooled via three-body
collisions involving a noble carrier gas atom, often He, such
that atoms of interest aggregate into clusters. Subsequently,
expansion from the high-pressure region inside the source
into vacuum creates a molecular beam of clusters [2]. The
temperature of clusters produced by gas-phase physical tech-
niques is typically not well known [3]. Inside the source, the
condensation energy causes strong internal heating of small
clusters with a limited heat capacity, which makes it difficult
to thermalize an entire cluster distribution. The formation
of larger clusters requires more condensation events. Larger
clusters are likely formed later in the expansion, where there
are fewer collisions with the carrier gas. In this case they
are hotter than smaller clusters [4]. Moreover, the clusters
cool via collisions with the carrier gas in the expansion, but
the expansion conditions depend on the particle size [5].
In addition, the number of collisions decreases continuously
while expanding into vacuum. In such systems, energy can
no longer be effectively equilibrated between the different
degrees of freedom, meaning that temperature is not a well-
defined concept and loses its usual meaning. Instead, effective
temperatures are sometimes employed corresponding to the
different quantum states (i.e., Trot, Tvib, etc.) [4].

Although the temperature of clusters in a molecular beam
is difficult to control, it is a crucial for the interpretation
of many experiments. This is particularly true for reactivity
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experiments, where the reaction rates are dependent on the
initial temperature of the clusters [6–8]. Variation of cluster
temperature with size can cause confusion if properties such
as reactivity are compared for clusters of different sizes [9].
Knowledge about the temperature of clusters in a molec-
ular beam is also crucial for the interpretation of electric-
and magnetic-deflection experiments [10–13]. Inconsistencies
between magnetic moments for cobalt clusters obtained by
beam-deflection experiments in different groups likely origi-
nate from difficulties to control the internal temperature of the
clusters [14]. The common practice is to assume that clusters
are thermalized to the source, which has been shown to be
the case for temperatures above 30 K if the dwell time in
the source is sufficiently long [15,16]. After expansion the
vibrational temperature is assumed to remain at the source
temperature since vibrational degrees of freedom are not
efficiently cooled [17], while the rotational temperature is re-
duced [11,12]. Size dependencies are usually ignored. Clearly,
a better control over the size-dependent cluster temperature
would be beneficial.

Given the difficulties in thermalizing clusters, a method
to check whether these assumptions are valid would be a
significant improvement over current practice. Several meth-
ods to gain information about cluster temperature have been
proposed, as summarized by Makarov in two review pa-
pers [18,19]. Most techniques are experimentally challenging
and not available in common cluster setups. Milani and de
Heer [20] used argon tagging to obtain relative information
of the temperature, but they also had to rely on simple gas
dynamics to predict the absolute temperatures.

In the current work we study the collisions of clusters
with helium carrier in an expansion and measure the size-
dependent velocity distribution of the clusters in the molecular
beam. A methodology is proposed, allowing (1) to test ther-
malization of the clusters in the source, (2) to determine the
amount of internal energy released to the carrier gas, and (3)
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FIG. 1. Time line of the experiment. Controlling tchop and texc effectively provides control over tt f f and vx . By measuring the cluster
abundances at different times, the velocity distributions are recorded. The high-pressure regime is depicted in red, the interacting regime in
orange, and the free-flight regime in yellow.

to estimate the number of collisions the clusters underwent
during expansion. We demonstrate that the equipartition the-
orem, which assumes that energy is shared equally among
all degrees of freedom, loses its validity in cluster beams if
the particles are significantly bigger than a few atoms. This
particularly holds for the translational temperature, which we
find to barely change from its value in the source. At the
same time we find that a significant amount of energy is
released from the clusters in the expansion, which can only
be attributed to a reduction in the internal temperatures.

II. EXPERIMENTS

A. Experimental setup

A broad size range of cobalt clusters is produced in a laser
vaporization source. The cluster source consists of a copper
source block, which contains the formation channel, and a
11-cm-long copper extension tube with a diameter of 3 mm.
The open end of the extension tube serves as a nozzle. Atoms
are evaporated from a bulk target by focusing the second
harmonic of a pulsed Nd-YAG laser. A short pulse of helium
gas carries the evaporated atoms into the extension tube. Dur-
ing this process, the evaporated metal atoms collide with the
helium atoms, loose kinetic energy, and cluster together via
three-body Co-Co-He collisions. After the growth process, the
clusters are cooled by the more frequent two-body collisions
with He gas, which in itself thermalizes with the walls of the
source block. After formation, the clusters are released into
the vacuum.

The temperature of the source is controlled by the combi-
nation of a cold finger (Coolpower 10 MD, Leybold GmbH)
and resistive heating. The cold finger is connected to the
source via a copper braid that spans the entire length of the
extension tube. Two temperature sensors monitor the temper-
ature of the source; one is mounted on top of the source block
(TS,Block) and the other at the end of the extension tube (TS,Ext).

The cluster beam experiences an expansion, cooling down
the translational temperature. The centerline of the gas expan-
sion is selected by a skimmer. At this point the clusters have
reached free flight at constant velocity. A chopper wheel with
a small hole, rotating at 200 Hz, is located 35 cm after the

skimmer. The chopper restricts the cluster beam passage to
a fixed time. When the neutral clusters reach the extraction
zone, located 1.34 m downstream, they are ionized by an
excimer laser (6.42 eV photons), and their mass distribution is
probed by time-of-flight mass spectrometry. The excimer laser
is expanded (fluence <2.3 mJ cm−2) to avoid multiple photon
absorption and fragmentation of post-ionized clusters. The en-
ergy of a single photon is for the studied cobalt clusters below
the sum of the ionization and the dissociation energy [21,22].

B. Velocity scan method and velocity distributions

The time line of the experiment, illustrated in Fig. 1, can
be split up into three regimes: (i) the high-pressure regime,
where the clusters are inside the extension tube of the source
(in red); (ii) the interacting regime, where the clusters have
entered the vacuum chamber but are still colliding with the
helium gas (in orange); and (iii) the free-flight regime, where
the clusters travel at a constant velocity and the velocity
distribution is frozen (in yellow). The last two regimes form
the expansion. The time between the vaporization due to the
laser firing and the start of the free-flight regime is defined
as the time to free flight tt f f . We estimate that this regime
starts about one centimeter behind the nozzle [23]. In other
studies one uses the residence time in the source instead of
tt f f [24]; however, this ignores the time spent in the interacting
regime, where a constant velocity is not yet achieved. Because
the chopper wheel is located about 35 cm behind this point
(36 cm behind the nozzle), the relative error on its position
is small. An estimate for tt f f can be made, assuming a con-
stant velocity from the start of the free-flight regime to the
chopper wheel.

Although the experiment produces clusters having a range
of tt f f values, a combination of control over the moments
in time that the chopper wheel opens, tchop, and that the
ionization laser fires, texc, allows selecting only clusters with a
well defined tt f f . The combination of tchop and texc defines the
velocity vx:

vx = L2

texc − tchop
, (1)
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where L2 = 1.344 m is the distance between the chopper
wheel and extraction zone. Therefore we can select clusters
with a fixed vx and count their abundance.

By recording the abundance of clusters of a certain size and
vx at a fixed tt f f , one obtains the cluster-size-dependent ve-
locity distribution. To control tt f f , the distance L1 = 0.346 m
between the chopper wheel and the source nozzle is used.
Although it is not exactly known where between the nozzle
and the chopper the free flight starts, the distance between
the nozzle and skimmer is short enough to create a smaller
uncertainty than the one created by the nonzero duration of the
chopper-wheel opening. The location where the particles start
their free flight is called the quitting surface q. The moment
in time that the particles start their free flight is called tq in
reference to t0:

tq = tchop − L1

vx
. (2)

This allows determining tt f f :

tt f f = tq − tvap, (3)

where tvap is the moment the vaporization laser fires. This ends
up with the following relation:

tt f f =
(

1 + L1

L2

)
tchop − L1

L2
texc − tvap. (4)

Formulas (1) and (4) allow us to calculate vx and tt f f for any
combination of tvap, texc and tchop.

A selection of the measured x-velocity distributions of Con

clusters are provided in Fig. 2. They are measured by scanning
vx, while keeping tt f f = 556 μs constant. The experiment
was performed for measured source temperatures of TS,Block =
79 K and TS,Ext = 71 K. The wall of the formation channel at
the inside of the source may be slightly warmer due to the
introduction of room-temperature carrier gas and due to the
power of the vaporization lasers.

III. A GAS IN MOTION

A. Thermodynamics of molecular beams

The thermodynamics of molecular-beam expansions of
atoms and small molecules is known from gas dynamics
investigations in the seventies and eighties [25–29]. Molecular
beams were created by expanding particles from a source into
a vacuum chamber. The experimental observations could well
be described by the sudden freeze model. This model assumes
a high collision regime when the particles leave the source, but
due to expansion “suddenly” there are no collisions anymore,
and the particles in the molecular beam find themselves in
free flight. This is different from traditional continuous flow
equations, which require sufficient collisions. An extended
description can be found in a book by Hans Pauly [30].

Accelerating heavy particles in a beam dominated by
a light carrier gas was described already in 1955 by
Becker [31,32]. Becker used a very dilute solution of heavy
particles suspended in a light carrier gas. The heavy particles
were accelerated by collisions with the light carrier gas and
finally approached the flow velocity of the light carrier gas.
However, the coupling between the two turned out to be
incomplete and a small mismatch in velocity between the

FIG. 2. Measured x-velocity distributions for Con clusters with
n = 15, 20, 25, 30, 35, 40, 45, 50. The red line represents a helium
distribution at S = 25. The overlap is shaded in red and gradually
becomes less as the mass increases. For every vx a reference mass
spectrum at 595 m/s was measured to monitor cluster production,
hence also the large number of data points around that value. The y
axis represents the intensity of a cluster mass in the mass spectrum,
divided by the sum over all masses in the corresponding reference at
595 m/s. The green lines are the product of the helium distribution
and the fitted velocity distributions.

light and heavy gas was observed [33]. This mismatch became
known as the velocity slip. In He-Ne mixtures, with the
mass of neon being an order of magnitude larger than that
of helium, the velocity slip was never larger than 20% [34].
These understandings became textbook material [30] and the
results were, without solid motivation, extrapolated to clusters
in a molecular beam.

The behavior of clusters in a carrier gas is, however, dis-
tinct from that of molecular-beam expansions of gas mixtures
of atoms or small molecules due to the large number of
vibrational degrees in a cluster. If the velocity slip between the
heavy clusters and the carrier gas is large, the clusters do not
thermalize with the helium during the expansion. Obtaining
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information about cluster temperature in a molecular beam
is more complicated than for atoms or small molecules for
two reasons: First, clusters possess four temperatures, two
translational, one in the direction of the beam and one per-
pendicular to it, and two internal temperatures, the rotational
and vibrational temperatures. The second complication is that
it is hard to quantify the vibrational and rotational cooling in
the expansion. Experiments regarding delayed ionization rates
suggested the internal vibrational temperature not to cool for
clusters [17].

B. Velocity distribution of a gas in an expansion

The velocity of a one-dimensional gas can be described by
the Maxwellian distribution [35]

f (vx )dvx ∝ exp

(
−mvx

2

2kTx

)
dvx = exp

(
− vx

2

vw,x
2

)
dvx, (5)

where

vw,x =
√

2kTx

m
(6)

is introduced as the width of the distribution, with Tx be-
ing the translational temperature. If there are enough colli-
sions between the particles, the equipartition theorem can be
applied, T = Tx = Ty = Tz, and one obtains the commonly
known Maxwell-Boltzmann speed distribution. However, this
description is invalid in a molecular-beam expansion in the
x direction, where the gas rapidly becomes dilute and the
resulting collision rate is so low that Tx �= Ty = Tz. Therefore,
one has to treat every direction separately using Eq. (5). The
average velocity in Eq. (5) is vx = 0, which is only true
if the observer is in the same frame of reference as the gas.
If the gas flows from one location to another, like in this
experiment, the observer is usually not in the same frame of
reference, and the gas can be accelerating as a whole. The
acceleration takes place irrespective of the spread in velocity
for a distribution of identical particles, which is associated
with its temperature. Therefore it makes sense to introduce
a flow velocity �w ≡ v. Here, the x axis is taken as the central
axis in the experiment, meaning �w = (w, 0, 0). For a flowing
gas, Eq. (5) can be rewritten as

f (vx )dvx ∝ exp

(
− (vx − w)2

vw,x
2

)
dvx. (7)

The speed ratio, defined as S = w/vw, is related to
the Mach number M by S = √

γ /2M, with being γ the
specific-heat ratio. For heavy particles such as clusters, γ ≈ 1
and S

√
1/2M [30]. Since vw is a measure of the chaotic

temperature-related velocity and the flow velocity w is a mea-
sure of the non-chaotic non-temperature-related systematic
flow, the speed ratio is a measure of how nonchaotic the
motion of the gas is. A normal chaotic gas in a chamber at
rest has S = 0, while a strongly directional gas has S � 1.

C. Sudden freeze model

To clarify what happens in a gas expansion, two extremes
are considered: continuous flow and collision free expansion.
In the latter case, each particle is in free flight and moves along
a straight line. In a vacuum environment this is elementary

decompression, which is well known to result in a decrease
of the temperature without decreasing the total energy of the
system. Decompression leads in its essence to a smaller num-
ber of particles per unit volume, thus decreasing the spread
of the kinetic energy. As temperature is a local property, the
lower temperature is the result of the more narrow velocity
distribution, as the range of velocities that allow particles to
reach each local point in space becomes narrower the further
the particles move.

In the case of the expanding beam traveling in the x
direction, the cooling can be understood by tracking the paths
of particles and considering vw,z, the width of the velocity
distribution perpendicular to the beam. After traveling a dis-
tance x, the range of velocities that can make it to a certain z
position reduces, causing a narrower vz velocity distribution.
If the particles move in straight lines and originate from a
nozzle opening with size d , the velocity perpendicular to the
beam is constrained: wz − wxd/2x < vz < wz + wxd/2x, or
vw,z < wxd/x. Here, wx is the flow velocity in the direction
of the beam, and wz(z) is the perpendicular flow velocity
required to reach a z position. The measurements are per-
formed on the axis of the beam, i.e., z = 0, where wz = 0,
and wx = w. This implies vw,z and therefore Tz decreases with
distance x.

The main difference between the molecular beam in the
collision-free expansion and an expanding ideal gas is that
the decompression happens only in the z and y directions.
In the collision-free scenario, Tx, the translational temperature
in the direction of the beam, remains constant because there is
no decompression in that direction.

The situation is very different in an interacting regime,
where a gas can be described by continuous flow equations.
As long as the pressure is high enough there is only one
temperature Tx = Tz = T and the rapidly decreasing Tz is
thermalizing with Tx through collisions. The description of
such an expansion into a vacuum is more complicated [27,30],
as kinetic energy from the x direction is transferred to the
z direction. However, the gas will become more and more
dilute, meaning that the collision rate decreases rapidly with
distance from the source. At some point, the number of
collisions is so low that the continuous flow breaks down.
Eventually, the particles will enter the collision-free regime.
The velocity profile in the parallel direction is now frozen at
a fixed temperature Tx, while the perpendicular temperature
Tz continues to cool along the beam axis. Splitting up the
expansion in two regimes, continuous flow and free flight,
with an abrupt transition between both at the quitting surface,
is known as the sudden freeze model [25–27,30]. In this
model Tz = Tx up to the quitting surface, and after the quitting
surface Tx is constant (or “suddenly frozen”), while Tz con-
tinues to decrease. For gases with few vibrational degrees of
freedom, the sudden freeze model was used to predict velocity
distributions based on known temperatures [25–27,30]. We
follow the inverse approach and use the velocity distribution
to obtain information about the temperature.

Considering the supersonic expansion, the anisotropic
Maxwellian velocity distribution is used:

f (vx, vz ) ∝ exp

(
−m(vx − w)2

2kBTx
− mvz

2

2kBTz

)
. (8)
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Since only vx is scanned in the experiment, the z direction
can be integrated out, resulting in Eq. (7), where Tx is con-
stant after the quitting surface. Because of the frozen value,
measuring Tx at any point after the quitting surface allows
determination of the temperature at the quitting surface, Tq.

IV. CLUSTERS IN A CARRIER GAS

A. Experimental cluster-velocity distributions

The experiment does not deal with a single gas but with
a mixture of a majority of helium and a minority of clusters.
The gas dynamics of atoms or molecules inside a carrier gas
was so far only studied for particles that are maximally a
few times heavier than the carrier gas atoms [30,34]. In that
case, the flow velocity of the heavy particles is approximately
equal to that of the carrier gas, aside from a limited velocity
slip [30,34]. The velocity slip is larger if the mass ratio of the
heavy particles to the carrier gas atoms increases. This can
also be seen in Fig. 2. In this figure the red line represents a
prediction for the vx distribution of the helium. It can be seen
that the vx distribution of the clusters slips more as the mass
of the clusters increases.

The origin of the velocity slip can be understood by
considering the acceleration process during expansion. Due
to its light mass, helium reaches much higher velocities
than the heavy species would reach without the helium gas.
Therefore, collisions are not random, but favor acceleration of
the heavy species in the direction of the expansion. Only if
cluster and He would reach the same velocity, the collisions
become chaotic, both accelerating and decelerating, which is
a requirement to change the width of the velocity distribution.
Thermalization of the two gases requires the two velocity
distributions to overlap. Since the collision rate is rapidly
decreasing during the expansion, the velocity distribution of
the heavy species cannot fully acquire the flow velocity of the
carrying helium gas, which is the origin of velocity slip [30].

In Sec. IV E it will be shown that the velocity slip of mid-
sized clusters (here defined as m � 1000 u) is so significant
that their velocity distribution has essentially no overlap with
that of the helium: hereafter referred to as a fully slipped
beam. In a fully slipped beam no translational cooling of the
clusters occurs because of the lack of chaotic collisions. Their
translational temperature remains at the value the clusters had
upon leaving the source. Fitting of Eq. (7) to the measured
velocity distribution yields for each cluster size the width
vw,x and the flow velocity wclus (see fits in Fig. 2). The mass
dependence of the fitted values is presented in Fig. 3. The
general trends are in line with the above qualitative arguments,
i.e., for large sizes vw,x decreases as 1/

√
m, while it becomes

constant at small cluster sizes. According to Eq. (6), the
measured vw,x values in Fig. 3(a) can be used to calculate
the translational temperature at the quitting surface, Tq,clus.
The cluster-size dependence of Tq,clus is presented in Fig. 4.
The flow velocities wclus in Fig. 3(b) decrease with size,
corresponding to an increasing velocity slip.

Blackbody radiation from vacuum chambers at room tem-
perature can in principle heat up the cold clusters [36], but
that effect can be ignored here since the vibrational photon
absorption and emission rate of a cold cluster is expected

FIG. 3. (a) Width of the velocity distribution, vw , and (b) flow
velocity, wclus, of Con clusters as a function of their mass for tt f f =
556 μs. The dashed line in panel (a) is a fit with a 1/

√
m model to

the n > 20 data, from which the source temperature is found to be
TS,clus = (85.9 ± 1.1) K. In panel (b) the velocity distribution of the
helium gas (red line on the right) for a speed ratio of S = 25 is added
as comparison. The solid line is the elastic model (12) fit to the first
10 data points.

to be around 10−2–10−1 s−1 [37]. This rate is too low to be
significant on the timescale of the experiment (about 1 ms).

A more quantitative interpretation of the data is provided in
the following sections. A mathematical description of the ve-
locity slip is worked out in Sec. IV B. Section IV C relates the
measured velocity slip to changes of the internal (vibrational
and rotational) energy of the clusters. Section IV D discusses
the number of cluster-helium collisions. Finally, Sec. IV E
describes that, for heavy clusters, the translational temperature
at the quitting surface is the same as that obtained in the
source, which is a fingerprint to identify a well-thermalized
source.

B. Flow velocity

To quantify the flow velocity of clusters and the slip
compared with the helium flow velocity, one has to consider
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FIG. 4. Translational temperature Tq,clus. It demonstrates how
larger clusters do not change their translational temperature in the
expansion but remain constant at the source temperature. Smaller
clusters do experience translational cooling. The solid line is a
working function as a guide to the eye [38].

the momentum transfer from helium to the clusters. Due to
the difference in flow velocity, there are more accelerating
than decelerating collisions, thus there is a net number of N
collisions accelerating the clusters. The cluster flow velocity
after N collisions is given by

wclus(N ) = wHe

[
1 − exp

(
−N

mHe

mHe + mclus
(CR + 1)

)]
. (9)

See Appendix A for a derivation of Eq. (9). It assumes
a rapid acceleration of the helium to its final flow velocity.
Since the cluster-cluster collision rate during the expansion
is negligible, all acceleration of the clusters is caused by
collisions with the helium, thus wclus(N = 0) = 0 is assumed.
CR represents the coefficient of restitution and is defined as

CR ≡
∣∣∣∣ vclus,after − vHe,after

vHe,before − vclus,before

∣∣∣∣. (10)

The subscripts “before” and “after” indicate if it concerns
velocities before or after the collision, respectively. If CR > 1,
energy is being released in the collision, known as superelastic
collisions. If CR < 1, energy is being absorbed, known as
inelastic collisions. CR = 1 is an elastic collision.

Random collisions are just as often accelerating as deceler-
ating, affecting the width of the distribution only. Independent
of the He gas density nHe(x), the net number of accelerating
collisions at the quitting surface scales with the cross section
of the cluster and is given by N = Nq,net ∝ σ ∝ mclus

2/3, or
Nq,net = Amclus

2/3. This formula is the result of a finite number
of helium atoms moving through a cluster cloud. A is a
proportionality constant that depends on the pressure, the
diameter of the extension channel and its nozzle, and the
detailed geometry of the cluster. Combined with Eq. (10), this
yields the final cluster flow velocity after the quitting surface:

wclus,f = wHe

[
1 − exp

(
−A

mclus
2/3mHe

mHe + mclus
(CR + 1)

)]

≈ wHe[1 − exp(−Amclus
−1/3mHe(CR + 1))]. (11)

FIG. 5. Relative flow velocities of the clusters, wclus,el/wHe, as
a function of the mass of the cluster, mclus/mCo1 , assuming an
elastic model for different values of the collision-related parameter
A [Eq. (11)]. A is given in units of mCo1

−2/3. If A goes up, the number
of collisions goes up, and the cluster flow velocity approaches the
helium flow velocity. For larger masses a larger number of collisions
is required for the velocity slip to vanish.

Assuming elastic collisions, Eq. (11) simplifies to

wclus,el,f ≈ wHe[1 − exp(−2Amclus
−1/3mHe)]. (12)

A similar relation was found in Ref. [39]. The dependence
of wclus,el,f on mclus, as given by Eq. (12), is plotted in Fig. 5
for different values of A. The chosen value for A was doubled
until the function is similar to that of A → ∞, to illustrate
the behavior of the function for different values of A. The
smaller A and the higher the mass of the clusters, the larger
the velocity slip.

The curves in Fig. 5 can be compared with the measured
flow velocity wclus of the Con clusters in Fig. 3. While the
flow velocities of the smallest size follow the elastic model
[solid line is a fit by Eq. (12)], the larger clusters are moving
faster than expected based on the elastic model. This at first
sight surprising result can only be explained if the collisions
are not elastic but superelastic, CR > 1. The higher kinetic
energy after the collision comes from the internal temperature
(Tvib and Trot) of the cluster, which implies that the internal
temperature of the colliding cluster decreases. Only when the
clusters’ internal temperature reaches the low temperature of
the expanded helium carrier gas do the collisions become
elastic. This is discussed in more detail in Sec. IV C.

Since Nq,net scales with mclus
2/3 and the heat capacity with

mclus, the heat capacity increases proportionally more with
the number of atoms in the cluster. Thus larger clusters cool
slower and Eq. (12) cannot be applied. Due to this slower
cooling, larger clusters have a larger average CR. For small
clusters, superelastic energy release is less important (CR is
close to one) and the scaling constant A can be obtained by
fitting Eq. (12) to small clusters. However, for larger clusters
one needs to use Eq. (11) and assume a mass-dependent
coefficient of restitution, CR(mclus). This is consistent with
work in literature regarding delayed ionization rates, where
it was found that little vibrational cooling occurs in metal
clusters [17].

022806-6



SIZE-DEPENDENT VELOCITY DISTRIBUTIONS AND … PHYSICAL REVIEW A 102, 022806 (2020)

FIG. 6. (a) The minimal number of collisions, Nq,net , during the
expansion as a function of the cluster size. This information is
retrieved from the fit with the elastic model (12) on the data in Fig. 3.
The area where this corresponds to the total number of collisions is
shaded. (b) Coefficient of restitution CR obtained from the data in
Fig. 3 by using Eq. (13).

C. Coefficient of restitution and energy release

Figure 3(b) allows the coefficient of restitution to be de-
termined. Extrapolating the elastic curve for wclus,el,f fit to
the flow velocities measured for the smallest clusters and
comparing it with the measured values for the clusters’ flow
velocity, wclus,f, it is possible to determine CR from

CR = 2
ln

(
1 − wclus,f

wHe

)
ln

(
1 − wclus,el,f

wHe

) − 1. (13)

Equation (13) was derived by combining Eqs. (9) and (12),
assuming the net number of collisions in the elastic curve
Nq,net (mclus) = Amclus

2/3 to be a good approximation, and tak-
ing wHe and wclus,el,f from the elastic curve fit to the smallest
clusters. From this fit with the elastic model it is possible
to determine the net number of accelerating collisions, as
displayed in Fig. 6(a). This figure is discussed in more detail
in Sec. IV D. From the difference between the elastic model
and the experimental data, it is possible to determine the

FIG. 7. EReleased determined for the same dataset as in Fig. 3.
Larger clusters release more energy, which is logical given their
larger heat capacity.

average coefficient of restitution CR, via Eq. (13), as plotted
in Fig. 6(b).

The coefficient of restitution is related to a difference in
kinetic energy before and after collision. The kinetic-energy
difference is given by

�Ek = Ek,after − Ek,before

= m

2
(vclus,before − vHe,before )2

(
CR

2 − 1
)

≈ m

2
[wclus(N ) − wHe]2

(
CR

2 − 1
)
, (14)

with m ≡ mclusmHe
mclus+mHe

and �Ek is indeed zero if CR = 1 [40].
Since wclus(N ) is a function of net number of collision
experienced so far N , the energy transfer changes during
the acceleration process. Opposed to the helium atoms, the
clusters have internal temperatures, Tvib and Trot. If CR > 1
(CR < 1), the internal temperature decreases (increases) during
the collisions.

The energy lost in the collisions from the internal energy
results in translational energy gain. Due to conservation of
momentum, this results in self-acceleration of the cluster
via the collision with helium. The final flow velocity of the
clusters will thus be higher after a superelastic collision than
after an elastic collision, which implies a smaller velocity slip.
Summing over all collisions and accounting for the change in
flow velocity in every collision, the total energy released by
the cluster can be determined (see Appendix B for derivation):

Ereleased = mclus(CR − 1)

×
{

wclus,fwHe + wHe
2

4

[
1 −

(
wclus,f

wHe
+ 1

)2
]}

.

(15)

Part of Ereleased will result in self-acceleration of the cluster,
thus reducing the flow velocity difference and the momen-
tum transfer compared with the fully elastic case. From the
coefficient of restitution and the flow velocities it is possible
to determine the amount of internal energy released by the
cluster during the expansion. This is presented in Fig. 7 for
the measured cobalt clusters. The figure shows that the clus-
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ters are internally cooling in the expansion. We note that the
actual energy being released may be smaller because it cannot
be excluded that, during growth in the source, the particles
already accelerate.

D. Number of collisions

To gain further insight in the origin of the released energy,
we discuss the number of collisions a cluster undergoes in the
expanding gas and the role of velocity slip in this respect. The
two-body collision rate of atoms in a monatomic gas at rest
(or if all particles have the same flow velocity, like the helium
gas), is given by [30]

Z =
√

2nHeσ v̄, (16)

and the number of collisions dNrest experienced by a helium
atom traversing a path dx by

dNrest =
√

2nHe(x)σ
v̄(x)

w(x)
dx. (17)

The gas density nHe may depend on the position x, σ is the

geometric cross section of the particle, and v̄ ≡
√

8kT
πm is its

mean velocity.
This description does not hold for the more complex case

of a cluster (mclus � mHe) moving in a gas of helium. In
the case that clusters and helium form a gas at rest (or have
the same flow velocity), the collision rate of a cluster with
the helium, Zclus, is given by (see derivation in Appendix C):

Zclus = 2
√

2kB√
π

4

√
TclusTHe

mclusmHe
nHeσclus. (18)

Here the subscripts “clus” and “He” refer to a single cluster
and the carrier-gas atom, respectively, the temperature is the
translational temperature, and nHe is the particle density for
the helium gas. Zclus scales with mclus

5/12 if one accounts for
σclus ∝ n2/3, which is valid for (nearly) spherical particles.
The number of collisions the cluster undergoes traversing a
path dx is given by

dNrest = Zclus
dx

wclus(x)
. (19)

Equations (18) and (19) only hold if the gasses are at rest in
a frame of reference; that is, if the clusters and helium have
equal flow velocity so the average net N is zero and only the
width of the distribution is affected. This might be the case in
the high-pressure regime in the extension tube of the source,
but not during expansion, where there is velocity slip, hence
a significant difference in flow velocity. The different cluster
and helium velocity distributions cause a great reduction of
the number of collisions the cluster undergoes with respect
to Eq. (19). Furthermore the aforementioned net number of
accelerating collisions Nq,net = Am2/3 needs to be added to
obtain the total number of collisions of the cluster. In the case
of fully slipped clusters (m � 1000 u), Eq. (19) is reduced to
zero, because there is no overlap with the helium velocity dis-
tribution, and the total number of collisions becomes equal to
Nq,net. This corresponds to the red shaded area in Fig. 6(a). It
shows that, during the expansion, clusters typically experience
a couple of hundred collisions with the helium gas. By using

mathematical methods it is possible to determine the number
of collisions needed to thermalize the internal vibrational
degrees of freedom of a cluster with its surrounding gas, as
was done for example by Westergren et al. [5]. They found
typical numbers on the order of 3000 collisions, which are not
achieved for the fully slipped clusters during the collision-rich
regime in the expansion. For the smaller clusters, thermaliza-
tion may be better (cf. Figs. 2 and 4) because of the additional
random collisions, but we cannot quantify the amount based
on the available information.

Two conclusions can be drawn: (1) the number of collisions
is insufficient to thermalize the vibrational degrees of the
clusters with the cold helium gas during the expansion, but (2)
the number is large enough to cause internal cooling during
the expansion. Since the cooling of Tvib is limited [17], a large
amount should be attributed to the cooling of Trot. The amount
of cooling of Trot is unknown and source dependent.

E. Temperature from source to quitting surface

The measured velocity distributions contain for every mass
information about both the flow velocity and the translational
temperature, which is clear if one rewrites Eq. (7) as

fq,clus(vx,clus)dvx,clus ∝ exp

(
−mclus(vx,clus − A)2

2kBB

)
dvx,clus,

(20)

with A = wclus,f and B = Tq,clus, the translational temperature
of the clusters in free flight after the quitting surface q.
fq,clus(vx,clus)dvx,clus with A = wclus,f differs from the distribu-
tion in the source before expansion, where A = 0 and B =
TS,clus(m), with TS,clus being the temperature of the clusters
at the moment they leave the source. Depending on the
thermalization in the source, TS,clus may be larger than the
temperature of the body of the source, which can be measured
by a temperature sensor.

During expansion, chaotic collisions with the rapidly cool-
ing helium can lower the clusters’ translational temperature.
However, in the fully slipped regime all collisions are sys-
tematically accelerating and the distribution cannot change
shape, only shift, resulting in A = wclus,f and B = TS,clus. So,
with increasing velocity slip Tq,clus → TS,clus, and in the fully
slipped regime Tq,clus = TS,clus. To determine whether a cluster
is in the fully slipped regime, one has to compare its velocity
distribution with that of the helium carrier gas. The He flow
velocity can be estimated from the fit of Eq. (12) in Fig. 3(b)
and is found to be wHe = (632.5 ± 1.7) m/s. The speed
ratio of the monatomic He gas can be estimated to be about
S ≈ 25 by using the approach discussed in Ref. [30] with as
input parameters the stagnation pressure, nozzle diameter, and
source temperature. The higher the mass of the particles in
the helium carrier gas, the lower their flow velocity and thus
the larger the velocity slip (see Sec. IV B). This means that,
from a large enough mass onwards, the heavy clusters will
find themselves in the fully slipped regime.

The fingerprint of thermalization can be defined as
dTS,clus/dm = 0. Large particles are fully slipped, so this
means that thermalization corresponds to dTq,clus/dm → 0 for
large m, with Tq,clus converging to a constant. All clusters
smaller than the mass where the converging has occurred
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must have a lower temperature because they are cooled by
the expanding helium. Full translational thermalization inside
the source can only happen if all clusters experience elastic
collisions during their time inside of the source, which can
only happen if the internal temperature is already equal to
the translational temperature of the gas it was colliding with
inside the source. Therefore, the only source capable of giving
the described fingerprint is a thermalized source.

The widths of the velocity distribution, vw, are plotted in
Fig. 3. It is clear that, for large clusters, vw is not affected by
the expansion and still corresponds to the source temperature.
It follows a vw ∝ 1/

√
m model corresponding to a constant

temperature in Eq. (6), as proven by the fit in the figure.
Figure 4 confirms that the larger clusters indeed find them-
selves in the fully slipped regime, and still have the tempera-
ture of the source. Smaller clusters deviate from this behavior
and have a narrower velocity distribution as the one predicted
based on the source temperature, which demonstrates that they
indeed cool in the expansion.

Complementary information is obtained from the mass
dependence of the flow velocity, in Fig. 3(b), large clusters
do not achieve the flow velocity needed to have a distribution
overlapping with the helium, therefore their collisions are
not chaotic and no translational cooling by the helium takes
place. However, the flow velocity is much bigger than the
elastic case, indicating that the internal degrees of freedom,
Tvib and Trot are being cooled by interactions with the helium.
The proportionality constant from the 1/

√
m model is directly

related to the source temperature and gives TS,clus = (85.9 ±
1.1) K. This value must be compared with the temperature
sensors, which read a gradient going from TS,Ext = 71 K to
TS,Block = 79 K. This difference of a few kelvin is plausible,
the temperature sensor is placed outside of the source, while
the inside is heated due to convection of the helium gas and
the heat produced by the vaporization lasers. To prove that the
conclusions are also valid at other temperatures, the experi-
ment was repeated at a higher source temperature. The results
are presented in Appendix D and indeed show comparable
behavior for TS,clus = (216 ± 4) K. Based on these examples,
it is concluded that the source is producing a thermalized
cluster distribution. Source thermalization is by no means
a given, an example of a nonthermalized source as well as
the velocity distributions at different time to free flights in a
nonthermalized source can be found in Ref. [38].

V. CONCLUSION

We have presented a technique to measure the size-
dependent velocity distributions of clusters carried by helium
gas in a molecular beam. The measured velocity distributions
of Con (n < 20) clusters demonstrate that the translational
temperature of larger clusters Con (n � 20) remains at the
temperature of the source, while smaller clusters undergo
a significant translational cooling in the beam. This could
be attributed to random collisions of the smaller clusters
with the cold helium gas due to their partially overlapping
velocity distributions. The cluster’s flow velocity is also size
dependent, while the flow velocity of the smaller clusters
approaches that of the helium gas, the larger clusters have a
larger velocity slip. However, the velocity slip is smaller than

would be expected for elastic collisions, which implies that
the cluster-helium collisions are superelastic.

Average restitution coefficients CR of cluster-helium col-
lisions are obtained by fitting an elastic model to the flow
velocity of the smallest clusters and comparing the actual
flow velocity to that predicted by the elastic model. All larger
clusters have CR values above one, which, in combination
with theoretical models [5] and the starting temperature upon
leaving the source, provides information about the cooling of
the cluster’s internal temperatures. A significant amount of
internal energy is taken away from the clusters, resulting in
an increased flow velocity, i.e., the clusters self-accelerate via
collisions with the helium. The clusters’ vibrational and rota-
tional degrees of freedom cool during the expansion because
of a significant number of collisions with the helium gas but
do not achieve full thermalization. We did not quantify the
internal temperatures of the clusters, because the number of
collisions is not precisely known.

The analysis of the size-dependent velocity distributions
allows us to determine whether clusters are thermalized when
they leave the source. Indeed, if all large clusters have the
same translational temperature as the temperature of the
source, and the smaller clusters experiencing translational
cooling during the expansion have a consistently lower tem-
perature, it can be assumed that all clusters had the same tem-
perature upon leaving the source. The proposed method can
be used in different gas-phase setups, where researchers want
to know if the produced clusters or molecules are thermalized
with the source.
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APPENDIX A: DERIVATION OF EQ. (9)

If a cluster with velocity v2 is hit by a helium atom with
velocity v1, the change in velocity is given by (see Ref. [40])

�v2 = v′
2 − v2 = CRm1(v1 − v2) + m1v1 + m2v2

m1 + m2
− v2.

(A1)

This can be rewritten as

�v2 = m1

m1 + m2
(CR + 1)(v1 − v2). (A2)

If one assumes that the effect of a single collision is small, this
corresponds to

dv2

dN
= m1

m1 + m2
(CR + 1)(v1 − v2), (A3)

which can be rewritten as∫
dv2

v1 − v2
= m1

m1 + m2
(CR + 1)

∫
dN, (A4)

− ln (v1 − v2) = m1

m1 + m2
(CR + 1)N + k. (A5)

022806-9



JOHAN VAN DER TOL AND EWALD JANSSENS PHYSICAL REVIEW A 102, 022806 (2020)

By defining v2,0 = v2(0) as the cluster velocity before any
collision and approximating the distribution of helium to be
narrow enough to assume v1 ≈ wHe, this leads to

v2(N )=wHe+(v2,0 − wHe) exp

(
−N

mHe

mHe+mclus
(CR+1)

)
.

(A6)

The assumption of a narrow helium velocity distribution,
v1 ≈ wHe, means that N only takes into account the net
number of accelerating collisions.

The flow velocity corresponds to the center of the distri-
bution. Assuming the center of the distribution before accel-
eration to be at zero velocity, one can find the center of the
distribution after acceleration by replacing v2,0 in (A6) by

zero, and v2(N ) by wclus(N ), finding

wclus(N ) = wHe

[
1 − exp

(
−N

mHe

mHe + mclus
(CR + 1)

)]
.

(A7)

APPENDIX B: DERIVATION OF EQ. (15)

Equation (14) relates the cluster flow velocity in the elastic
case with the real cluster flow velocity and the coefficient of
restitution CR:

CR = 2
ln

(
1 − wclus,f

wHe

)
ln

(
1 − wclus,el,f

wHe

) − 1. (B1)

By definition, the coefficient of restitution is also related to the
kinetic energy before and after a collision. The N th collision
will release an energy given by [see Eq. (11)]

�E = m

2
[wclus(N ) − wHe]2

(
CR

2 − 1
)
. (B2)

Thus, the total energy released after Nq,net collisions is

Ereleased =
Nq,net∑

0

�Ek =m
(
CR

2 − 1
)

2

⎛
⎝Nq,netwHe

2 − 2wHe

Nq,net∑
0

wclus(N ) +
Nq,net∑

0

wclus(N )2

⎞
⎠. (B3)

Using the approximations
Nq,net∑

0

wclus(N ) ≈
∫ Nq,net

0
wclus(N )dN, (B4)

Nq,net∑
0

wclus(N )2 ≈
∫ Nq,net

0
wclus(N )2dN, (B5)

one obtains by using Eq. (A7)

−2wHe

∫ Nq,net

0
wclus(N )dN = −2wHe

2
∫ Nq,net

0

(
1 − e−N mHe

mHe+mclus
(CR+1))dN = −2Nq,netwHe

2 + 2
wHewclus,f

mHe
mHe+mclus

(CR + 1)
, (B6)

and ∫ Nq,net

0
wclus(N )2dN = Nq,netwHe

2 + wHe
2

2 mHe
mHe+mclus

(CR + 1)

[
1 −

(
wclus,f

wHe
+ 1

)2
]
. (B7)

Here wclus,f ≡ wclus(Nq,net ). Combining Eqs. (B3), (B6), and (B7) it is found that

Ereleased = mclus(CR − 1)

{
wclus,fwHe + wHe

2

4

[
1 −

(
wclus,f

wHe
+ 1

)2
]}

. (B8)

APPENDIX C: DERIVATION OF EQ. (18)

To find the collision rate of a pure gas, a common method is
to describe the single gas as two gasses moving through each
other, with the masses of particles in both gases being identi-
cal [30]. First, a few typical velocities need to be defined:

vw =
√

2kBT

m
, (C1)

v̄ =
√

8kBT

πm
= 2√

π
vw, (C2)

where vw is the one-dimensional width of the velocity dis-
tribution of a gas, as well as the most probable speed when

taking the length in three dimensions. v̄ is the average speed
over all dimensions.

The collision mean-free path of a particle (e.g., a cluster)
that moves in another gas (e.g., helium) is given by [30]

�̄clus = 1

nHeσclusGa0
, (C3)

where nHe is the helium gas density, and σclus is the cluster’s
collision cross section. Furthermore,

Ga0(s, y) = �

(
α + 3

2

)(
1 + 1

y2

)α

,

with α = s − 3

2s − 2
and y = vw,clus

vw,He
. (C4)
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FIG. 8. Velocity distribution measurement of Con clusters at a
higher source temperature. (a) Width of velocity distribution vw and
(b) cluster flow velocity wclus as a function of the cluster mass. The
proportionality constant in panel (a) gives a source temperature of
TS,clus = (216 ± 4) K.

Here s is the exponent for the interaction potential, which for
a hard-sphere model s → ∞ is

Ga0(∞, y) =
√

1 + 1

y
, (C5)

since α → 1/2 and �(2) = 1. For a monatomic pure gas, one
can simply replace the cluster by a helium atom. In that case
y = 1 and Ga0(s, y) = √

2. If one has a mixture of two gasses
containing atoms of a different mass, like clusters in helium,
the equation cannot be simplified.

However, in a mixture of a heavy (clusters) species with
an extremely light gas (helium) the equations can be solved.
Since vw ∝ 1/

√
m for clusters, it is possible to make an

approximation: y � 1 and 1/y � 1 (for example if mclus =
1000 u and mHe = 4 u, than y ≈ 0.06), which gives

Ga0 =
√

vw,He

vw,clus
. (C6)

One obtains for the two-body collision rate of clusters with
helium,

Zclus = v̄clus

�̄clus
= 2√

π

√
vw,clusvw,HenHeσclus, (C7)

which can be compared with the collision rate in a pure gas
Z = √

2σ v̄n. By using Eqs. (C1), (C7) can be written as

Zclus = 2
√

2kB√
π

4

√
TclusTHe

mclusmHe
nHeσclus. (C8)

APPENDIX D: VELOCITY DISTRIBUTION AT A HIGHER
SOURCE TEMPERATURE

The experiment was repeated at a higher source temper-
ature, yielding a temperature of the clusters at the moment
they leave the source of TS,clus = (216 ± 4) K. The results are
presented in Fig. 8 and show a comparable behavior as those
in Fig. 3.
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