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A complete effective Hamiltonian for relativistic corrections at orders mα6 and mα6(m/M ) in a one-electron
molecular system is derived from the nonrelativistic QED Lagrangian. It includes spin-independent corrections to
the energy levels and spin-spin scalar interactions contributing to the hyperfine splitting, both of which had been
studied previously. In addition, corrections to electron spin-orbit and spin-spin tensor interactions are obtained.
This allows the improvement of the hyperfine structure theory in hydrogen molecular ions. Improved values of
the spin-orbit hyperfine coefficient are calculated for a few transitions of current experimental interest.
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I. INTRODUCTION

High-resolution spectroscopy of the hydrogen molecular
ions H+

2 and HD+ may contribute significantly to the determi-
nation of fundamental constants such as the proton-electron
mass ratio mp/me [1]. A pure rotational transition in HD+

has recently been measured with a relative uncertainty of
1.3 × 10−11 [2]. The experimental accuracy of rovibrational
transition frequencies is expected to reach a few parts per
trillion in the near future by using spectroscopy in the Lamb-
Dicke regime [2–4] or in a Doppler-free geometry [5,6].
While information on fundamental constants is obtained from
comparison of spin-averaged transition frequencies with the-
oretical predictions, the hyperfine splitting of rovibrational
lines also allows for precise tests of theory.

So far, the hyperfine structure of H+
2 and HD+ has been

calculated within the Breit-Pauli approximation [7,8], taking
into account the anomalous magnetic moment of the electron.
All terms at orders mα4 and mα5 are included, so that the
theoretical accuracy of the hyperfine coefficients is of order
α2 ≈ 5 × 10−5. Higher-order corrections to the largest coeffi-
cients, i.e., the spin-spin Fermi contact interaction, were later
calculated in Refs. [9,10], which allowed us to get excellent
agreement with available rf spectroscopy data in H+

2 [11]
at the level of ≈1 ppm. The following step to improve the
hyperfine structure theory is to evaluate higher-order correc-
tions to the next largest coefficients, i.e., the electron spin-
orbit and spin-spin tensor interaction, starting with relativistic
corrections at the mα6 order.

*Corresponding author: karr@lkb.upmc.fr

With this aim, we derive in the present work the complete
effective Hamiltonian for the hydrogen molecular ions at
the mα6 and mα6(m/M ) orders, following the nonrelativistic
QED (NRQED) approach [12–15]. Then, we use it to calcu-
late numerically the corrections to the electron spin-orbit in-
teraction for a few transitions studied in ongoing experiments.
This paper is organized as follows: in Secs. II and III, we
recall the expression of the NRQED Lagrangian and associ-
ated interaction vertices. We then systematically derive the
effective potentials, which are organized in three categories:
tree-level interactions involving the exchange of a Coulomb
or transverse photon (Sec. IV), terms due to retardation in
the transverse photon exchange (Sec. V), and finally those
coming from a seagull diagram with simultaneous exchange
of two photons (Sec. VI). In Sec. VII, we collect our results to
write the total effective Hamiltonian, separating the different
types of interactions: spin-independent, electronic spin-orbit,
spin-spin scalar, and tensor interactions. Finally, in Sec. VIII
we present numerical calculations of the spin-orbit interaction
coefficient.

II. NONRELATIVISTIC QED LAGRANGIAN

Natural (Lorentz-Heaviside) units (h̄ = c = 1) are used
throughout. We assume that e is the electron’s charge and
thus is negative, the elementary charge is then denoted
by |e|.

We use the Coulomb gauge for photons, and electrons
are described by two-component Pauli spinors. We take the
NRQED Lagrangian for the electron in the gauge-invariant
form [12–15], including all the terms involved in bound-state
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energy corrections up to the mα6 order:

Lmain = ψ∗
e

(
i∂t −eA0 + D2

2m
+ D4

8m3
+ D6

16m5
+ · · ·

)
ψe + ψ∗

e

(
cF

e

2m
σ · B + cD

e

8m2
(D · E−E · D) + cS

ie

8m2
σ ·(D×E−E×D)

+ cW1

e

8m3
{D2, σB} + 3ie

16m4
{D2, σ · (D×E−E×D)}− 3e

64m4
{D2, [∇, E]}− 5e

128m4
[D2, (D · E + E · D)]− e2

8m3
E2

)
ψe,

(1)

where D = ∇ − ieA. The contact terms required in the
NRQED theory [12–14] are not considered here, because they
do not play any role in the spin-orbit and spin-spin tensor in-
teractions which are our main focus in the following. Here and
in what follows we use the notation: {X,Y } = XY + Y ∗X ∗,
[X,Y ] = XY − Y X where the star denotes a Hermitian con-
jugate. The coupling constants ci are determined by requiring
that scattering amplitudes in QED and NRQED agree up to a
chosen order in α and in v2/c2. Performing this matching at
tree level, which is enough for the work presented here, one
gets cF = cD = cS = cW1 = 1.

As shown in more detail in Ref. [15], the effective Hamil-
tonian Heff , which stems from the Lagrangian, is equivalent to
the Foldy-Wouthuysen Hamiltonian HFW derived in Ref. [16]
[see Eq. (23)]. It may be obtained from HFW through the
canonical transformation eiS (H − i∂t )e−iS , where [16]

S = e

8m2
σ · (A × π − π × A), π = p − eA,

where p = −i∇ is the electron’s impulse. Heavy particles of
mass Ma charge Za and impulses Pa with a = 1, 2 are treated
within the leading-order interaction Hamiltonian:

HI = −Za|e|
(

Pa

2Ma
A + A

Pa

2Ma

)
− μa · B + Z2

a e2

2Ma
A2. (2)

The magnetic moments of particles are expressed as follows:

μe = 2μeμBse = − (1 + ae)|e|
m

se,

μa = μaμN
I
I
, μN = |e|

2mp
,

where μe and μa are dimensionless quantities measured in
Bohr and nuclear magnetons, respectively.

We consider corrections to the bound states of a one-
electron molecular system such as H+

2 or HD+. The zero-
order approximation is the nonrelativistic Schrödinger equa-
tion with the Hamiltonian

H0 = P2
1

2M1
+ P2

2

2M2
+ p2

e

2m
+ V,

V = −Z1α

r1
− Z2α

r2
+ Z1Z2α

R
. (3)

Here ra = re−Ra, with a = (1, 2), is the electron’s position
with respect to the nucleus a, and R = R2−R1 is the inter-
nuclear vector. It is assumed that Ma � m. We also assume
that the Hamiltonian is written in the center-of-mass (center-
of-inertia) frame, which implies pe+P1+P2 = 0.

The potentials A0 and A are related to electric- and
magnetic-field strengths as follows:

E = −∇A0 − ∂A
∂t

, B = ∇ × A.

We define E‖ = −∇A0 and E⊥ = − ∂A
∂t , while B is always

transverse. It is worth noting that E‖ corresponds to an in-
stantaneous interaction, while A propagates in time with the
velocity of light.

To determine which terms are needed at a given order, it
is useful to know the nominal order of expectation values of
various operators for a wave function of the nonrelativistic
bound system. One gets [13]

〈p〉 ∼ m(v/c), 〈∂t 〉 ∼ m(v/c)2, 〈eA0〉 ∼ m(v/c)2,

〈eA〉 ∼ m(v/c)3,
〈
eE‖

〉 ∼ m2(v/c)3, 〈eB〉 ∼ m2(v/c)4,

where v is the typical velocity of the bound electron.
The photon propagator in the Coulomb gauge is

Gμν =
{

G00 = 1
q2 , — the Coulomb photon propagator

Gi j = δi j−qiq j/q2

q2
0−q2+iε

, — the transverse photon propagator.
(4)

We use Feynman’s time-ordered perturbation formalism [17], whereby the change of energy of a bound system due to
exchange of one photon is expressed as

�E =
∫

d4q

(2π )4i
Gμν (q)〈ψ0|Vμ(2)eiqra

1

E0 − q0 − H0
e−iqrbVν (1)|ψ0〉, (5)

where V (1) and V (2) are some NRQED vertices for the electron or nucleus, ψ0 and E0 are respectively the nonrelativistic
bound-state wave function and energy for the Hamiltonian (3), and ra, rb the position operators of the particles involved. This
formula dates back from the original work by Feynman [18] (Sec. II) and appears in a slightly modified form in Refs. [19,20].
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III. NONRELATIVISTIC QED VERTICES

It is convenient to translate the NRQED Lagrangian [Eq. (1)] in terms of NRQED vertices and “Feynman” rules, as done in
Fig. 3 of Ref. [13]. Here, we list the vertices contributing to the mα6 and mα6(m/M ) orders, and give their expressions both
in momentum and coordinate space, which are connected to each other by a three-dimensional (3D) Fourier transformation.
In momentum space we use p and p′ as momenta of the incident and scattered electron, respectively, and q = p′−p is the
transferred momentum. In Eqs. (6)–(9), expressions are written in momentum space in the first column, and in coordinate space
in the second column.

We first give the tree-level vertices related to the electron line:

1. e

(
3q2(p′2 + p2)

64m4
+ 5(p′2 − p2)2

128m4

)
A0 − 3e

64m4
{p2, [�A0]} + 5e

128m4
[p2, [p2, A0]],

2. −e

(
i
3σ[q × p](p′2 + p2)

32m4

)
A0

3e

32m4
{p2, σ · [E‖ × p]},

3. e
(p′2 + p2)(p′ + p)

8m3
A

e

8m3
{p2, p · A + A · p},

4. e
i[σ × q](p′2 + p2)

8m3
A

e

8m3
{p2, σ · B},

5. −e
p′ + p

2m
A −e

( p
2m

A + A
p

2m

)
,

6. −e
i

2m
[σ × q] · A − e

2m
σ · B,

7. e
iq0[σ × (p′ + p)]

8m2
A − e

8m2
σ · (p × ∂t A − ∂t A × p).

(6)

The last one appears only in the retardation contribution; see
Sec V B. For nuclei, the following tree-level vertices come
into play:

1N. Za|e|A0 Za|e|A0,

2N. −Za|e|Pa + P′
a

2Ma
A −Za|e|

(
Pa

2Ma
A + A

Pa

2Ma

)
,

3N. i
[
μa × q

] · A −μa · B.

(7)
The seagull-type vertices for the electron are

8. e2 iq1 × σ

4m2
A0(q1)A(q2) − e2

8m2
σ(A × E − E × A),

9. −e2 qi
1qi

2

8m3
A0(q1)A0(q2)

e2

8m3
E2,

10. e2 δi j

2m
A(q1)A(q2)

e2

2m
A2.

(8)
Note that two-transverse-photon vertex 10 only contributes at
the (m/M )2 order and thus will not be used in the following.
However, the corresponding vertex for nuclei should be in-
cluded:

4N. Z2
a e2 δi j

2Ma
A(q1) · A(q2)

Z2
a e2

2Ma
A2. (9)

In the following, we obtain from these vertices the ef-
fective potentials at orders mα6 and mα6(m/M ) (both spin-
independent and spin-dependent) by systematic application of
the nonrelativistic Rayleigh-Schrödinger perturbation theory.
For each term, we mention which vertices are involved by
referring to the numbering given above. It is understood that

all terms should be summed over the nuclear index a (a =
1, 2, and b = 3 − a).

IV. TREE-LEVEL INTERACTIONS

We first consider the tree-level diagrams involving the
exchange of one photon between the electron and a nucleus.
The derivation of effective potentials is straightforward in
this case (one such example is given in Ref. [15]). For the
transformation from momentum to coordinate space, useful
integrals can be found in Appendix A. Two terms come from
a Coulomb photon exchange (vertices 1-1N and 2-1N):

U1a = − 3

64m4

{
p2

e,
[
�V

]} + 5

128m4

[
p2

e,
[
p2

e,V
]]

,

U1b = − 3Zaα

32m4

{
p2

e,
1

r3
a

[ra × pe] · σe

}
. (10)

The square brackets around quantities imply that derivatives
act only within the bracket, thus [�V ] in the first line cor-
responds to the Laplacian of the Coulomb potential i.e., a
sum of δ-function operators. The transverse photon exchange
produces four terms (3-2N, 3-3N, 4-2N, and 4-3N):

U2a = − Zaα

8m2

{
p2

e,
pi

e

m

(
δi j

ra
+ ri

ar j
a

r3
a

)
P j

a

Ma

}
,

U2b = Zaα

8m3Ma

{
p2

e,
1

r3
a

[ra × Pa] · σe

}
,

U2c = − α

4m3

{
p2

e,
1

r3
a

[ra × pe]
μa

|e|
}
,

U2d = 1

4m2

{
p2

e,

[
8π

3
μeμaδ

3(ra)

− r2
aμeμa − 3(μera)(μara)

r5
a

]}
. (11)
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V. RETARDATION IN THE SINGLE TRANSVERSE PHOTON EXCHANGE

According to Eq. (5), the energy correction due to a single transverse photon exchange between the electron and a nucleus is

�E = 1

(2π )4

∫
d4q

q2 + iε

(
δi j − qiq j

q2

)

× 〈ψ0|V i(2)eiqre
1

E0 − q0 − H0
e−iqRaV j (1)|ψ0〉, (12)

where V (1) and V (2) are some NRQED vertices from Sec. III, Eqs. (6) and (7).

A. Dipole and Fermi vertices

Let us consider first the contribution from the leading-order vertices: 5 and 6 for the electron, 2N and 3N for the nucleus,

U (5+)
3 = − e

(2π )3

∫
dq
2q

(
δi j − qiq j

q2

){(
pe

m
+ i[σe × q]

2m

)i[
eiqre

(
1

E0 − q − H0
+ 1

q

)
e−iqRa

−
(

1

E0 − q − H0
+ 1

q

)](
−Za|e| Pa

Ma
+ i[μa × q]

) j}
+

(
eiqre ↔ e−iqre

e−iqRa ↔ eiqRa

)
, (13)

where (5+) means orders mα5 and higher. The term 1/q in parentheses of Eq. (13) corresponds to the subtracted leading mα4-order
contribution to the Breit-Pauli interaction [21], and the mα5 order is removed by subtracting the term corresponding to the q = 0
limit. We use the retardation expansion

1

E0 − q − H0
+ 1

q
= H0 − E0

q2
− (H0 − E0)2

q3
+ · · · (14)

for transverse photon momenta q∼ (v/c) � (H0−E0)∼ (v/c)2 (the contribution from smaller momenta is suppressed after the
subtractions). Here, the first term corresponds to a contribution of order mα5 [21], and the second term contributes to order mα6.
Then,

U (6)
3 = e

(2π )3

∫
dq
2q4

(
δi j − qiq j

q2

){(
pe

m
+ i[σe × q]

2m

)i

× [eiqre (H0 − E0)2e−iqRa − (H0 − E0)2]

(
−Za|e| Pa

Ma
+ i[μa × q]

) j}
+

(
eiqre ↔ e−iqre

e−iqRa ↔ eiqRa

)
. (15)

From the relationship (with a = 1, 2 and b = 3 − a)

Ra = − m

M
ra ∓ Mb

M
R,

where M = M1 + M2 + m, and ∓ means a minus sign for a = 1 and plus for a = 2, one gets

[H0, e−iqRa ] = e−iqRa E0 O
( m

M

)
.

As a result,

eiqre (H0 − E0)2e−iqRa = eiqra (H0 − E0)2 + eiqre [H0, e−iqRa ](H0 − E0) + eiqre (H0 − E0)[H0, e−iqRa ]

≈ eiqra (H0 − E0)2 = (H0 − E0)eiqra (H0 − E0) + [eiqra , H0](H0 − E0). (16)

In the second line, we have kept only the leading-order term in (m/M ).
Using this relationship, one immediately sees that the terms of Eq. (15) involving the nuclear magnetic moment give zero

contribution when applied to the zero-order state |ψ0〉. These terms thus contribute only at higher orders in m/M [mα6(m/M )2

and above] and will not be considered here. The remaining terms can be separated into a spin-independent term and a term
contributing to the spin-orbit interaction.

For the spin-independent part we have

U3a = Zae2

mMa

1

(2π )3

∫
dq
2q4

(
δi j − qiq j

q2

)
× pi

e{(H0 − E0)(eiqra − 1)(H0 − E0) + [eiqra − 1, H0](H0 − E0)

+ (H0 − E0)(e−iqra − 1)(H0 − E0) + [e−iqra − 1, H0](H0 − E0)}P j
a ,
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and after integration we finally obtain [by using the third line of Eq. (A2)]:

U3a = Zaα

16mMa

{[
pi

e,V
] ri

ar j
a − 3r2

aδ
i j

ra

[
V, P j

a

] + pi
e

[
ri

ar j
a − 3r2

aδ
i j

ra
,

p2
e

2m

][
V, P j

a

]} + (H.c.)

= Z2
a α3

8mMa

[
Z1ri

1

r3
1

+ Z2ri
2

r3
2

]
ri

ar j
a − 3r2

aδ
i j

ra

[
− r j

a

r3
a

± ZbR j

R3

]

+ Z2
a α2

8m2Ma

[
p2

e

r2
a

− 3
ra(rape)pe

ra

]
∓ Z2

a Zbα
2

8m2Ma

[
(Rra)p2

e

R3ra
− (Rra)ra(rape)pe

R3r3
a

− 2
R(rape)pe

R3ra

]
. (17)

Here we have used

[V, Pa] = i

(
−Zaαra

r3
a

± ZaZbαR
R3

)
.

Contributions from the R/R3 terms can be assumed to be small, since at small R the wave function is exponentially small due to
the strong Coulomb barrier. Then the interaction may be simplified to

U3a = α3

4m

[
Z3

1

M1

1

r3
1

+ Z3
2

M2

1

r3
2

+ Z2
1 Z2

M1

(r1r2)

r2
1r3

2

+ Z1Z2
2

M2

(r1r2)

r3
1r2

2

]

+ Z2
1 α2

8m2M1

[
1

r4
1

+ pe
1

r2
1

pe − 3
(per1)(r1pe)

r4
1

]
+ Z2

2 α2

8m2M2

[
1

r4
2

+ pe
1

r2
2

pe − 3
(per2)(r2pe)

r4
2

]
. (18)

The electron spin-orbit term is

U3b = Zae2

2mMa

1

(2π )3

∫
dq
2q4

i[σe × q]{[eiqra − 1, H0](H0 − E0) + [e−iqra − 1, H0](H0 − E0)}Pa.

After Fourier transform:

U3b = − Zaα

16m2Ma

[
p2

e,

[
ra

ra
× σe

]]
[V, Pa] + (H.c.),

and using the commutators[
P2

a ,
r j

a

ra

]
= 2r j

a

r3
a

− 2i

ra
P j

a + 2ir j
a

r3
a

(raPa),

[
PaPb,

r j
a

ra

]
= − i

ra
P j

b + ir j
a

r3
a

(raPb),

one gets

U3b = Z2
a α2

4m2Ma

[
1

r4
a

[ra × pe] ∓ Zb

raR3
[R × pe] ∓ Zb

r3
aR3

[ra × R](rape)

]
· σe = Z2

1 α2

4m2M1

1

r4
1

[r1 × pe] · σe + Z2
2 α2

4m2M2

1

r4
2

[r2 × pe] · σe

−Z2
1 Z2α

2

4m2M1

1

r1R3
[R × pe] · σe + Z2

2 Z1α
2

4m2M2

1

r2R3
[R × pe] · σe + Z2

1 Z2α
2

4m2M1

[r1 × r2]

r3
1R3

(r1pe) · σe − Z2
2 Z1α

2

4m2M2

[r1 × r2]

r3
2R3

(r2pe) · σe.

(19)

Similarly to the U3a term, one can neglect the last two lines in the above expression.

B. Time derivative vertex

Now we consider a retardation term where the electron interacts via the time derivative vertex [number 7 in Eq. (6)] while the
nucleus interacts via the lowest-order vertices [dipole (2N) or Fermi (3N)].

U (5+)
3c = (−i)

(2π )4

∫
d4q

q2
0 − q2 + iε

(
δi j − qiq j

q2

)[
ieq0

8m2
(pe + p′

e) × σe

]i

×
{

eiqre
1

E0 − q0 − H0 + iε
e−iqRa

}(
−Zae

Pa

Ma
+ i[μa × q]

) j

+
(

eiqre ↔ e−iqre

e−iqR ↔ eiqR

)
, (20)

The first step is integration over q0. Using integration in the complex plane one gets

U (5+)
3c = ie

16m2

∫
d3q

(2π )3

(
δi j − qiq j

q2

)
[(pe + p′

e) × σe]i

×
{

eiqre
1

E0 − q − H0
e−iqRa

}(
−Zae

Pa

Ma
+ i[μa × q]

) j

+
(

eiqre ↔ e−iqre

e−iqRa ↔ eiqRa

)
, (21)
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The time derivative vertex is of nominal order (v/c)3 ∼ α3. The first term in the expansion of 1/(E0 − H0 − q) [i.e., −1/q, see
Eq. (14)] would produce a contribution of order mα5, but this contribution vanishes due to cancellation between both terms of
Eq. (21). The mα6-order term corresponds to the next term, (H0 − E0)/q2. Using the relation eiqre (H0−E0)e−iqRa ≈ eiqra (H0−
E0), similar to Eq. (16), one gets that the term involving the nuclear magnetic moment only contributes at the (m/M )2 order and
may thus be ignored. The remaining term is

U (6)
3c ≈ − iZae2

8Mam2

∫
d3q

(2π )3

1

q2

(
δi j − qiq j

q2

)
× {

[pe × σe]ieiqra (H0 − E0)P j
a + [pe × σe]ie−iqra (H0 − E0)P j

a

}

= − iZae2

8Mam2

∫
d3q

(2π )3

1

q2

(
δi j − qiq j

q2

)
× {

[pe × σe]i(eiqra − 1)
[
H0, P j

a

] + [pe × σe]i(e−iqra − 1)
[
H0, P j

a

]}
. (22)

After Fourier transform,

U3c = − iZaα

8Mam2
[pe × σe]i 1

2ra

(
δi j + ri

ar j
a

r2
a

)[
V, P j

a

] + (H.c.) = − Z2
1 α2

4M1m2

1

r4
1

[r1 × pe] · σe − Z2
2 α2

4M2m2

1

r4
2

[r2 × pe] · σe

+Z2
1 Z2α

2

8M1m2

1

r1R3
[R × pe] · σe − Z2

2 Z1α
2

8M2m2

1

r2R3
[R × pe] · σe + Z2

1 Z2α
2

8M1m2

(r1R)

r3
1R3

[r1 × pe] · σe − Z2
2 Z1α

2

8M2m2

(r2R)

r3
2R3

[r2 × pe] · σe.

(23)

Once more, the last two lines in the above expression may be neglected. Comparing Eq. (19) with Eq. (23), we see that the
leading terms cancel out, so that U3b + U3c is negligibly small. We thus ignore these two terms when writing the total effective
Hamiltonian in Sec. VII.

VI. SEAGULL-TYPE INTERACTIONS

It remains to consider the contributions arising from seagull-type vertices, Eqs. (8) and (9). All the interactions in momentum
space are the convolution of two functions, which represent either the electric-field strength E or magnetic-field potential A. In
coordinate space, they are directly given by a product (scalar or vector) of the same functions converted to the coordinate space.

The corresponding expressions for the electric-field strength of a point-like Coulomb source and for the magnetic-field
potential produced by the moving charge and magnetic moment of a nucleus are

eE = Zae2 iq
q2

⇒ −Zaα
ra

r3
a

,

eA1 = − e

q2

(
δi j − qiq j

q2

)(
−Za|e| Pa

Ma

)
⇒ − Zaα

2Ma

(
δi j

ra
+ ri

ar j
a

r3
a

)
P j

a ,

eA2 =
[
− e

q2

(
δi j − qiq j

q2

)]
(−i[μa × (−q)]) = ie

q2
[q × μa] ⇒ − e

r3
a

[ra × μa],

and the potential produced by the electron at the location of a nucleus is

|e|ZaAa =
[
−|e|Za

q2

(
δi j − qiq j

q2

)](
−e

pe

m
+ i

e[σe × (−q)]

2m

)
⇒ −Zaα

2m

(
δi j

ra
+ ri

ar j
a

r3
a

)
pj

e − Zaα

2m

1

r3
a

[ra × σe].

The first seagull-type contribution is a double Coulomb photon exchange diagram (vertices 7-1N-1N):

U4 = e2E2

8m3
= α2

8m3

[
Z1r1

r3
1

+ Z2r2

r3
2

]2

. (24)

The next terms stem from the seagull vertex with one Coulomb and one transverse photon (vertices 8-1N-2N and 8-1N-3N):

U5a = σe

4m2

⎡
⎢⎣

[
−Zbα

ri
b

r3
b

]
×

{
− Zaα

2Ma

(
δi j

ra
+ ri

ar j
a

r3
a

)
P j

a

}]
,

U5b = σe

4m2

[[
−Zbα

rb

r3
b

]
×

(
− e

r3
a

[ra × μa]

)]
= −αZb

2m

1

r3
b

[rb × μe]
1

r3
a

[ra × μa],
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or, finally,

U5a = Z2
1 α2

8m2M1

1

r4
1

[r1 × P1] · σe + Z2
2 α2

8m2M2

1

r4
2

[r2 × P2] · σe + Z1Z2α
2

8m2M1

1

r1r3
2

[r2 × P1] · σe + Z1Z2α
2

8m2M2

1

r3
1r2

[r1 × P2] · σe

− Z1Z2α
2

8m2M1

1

r3
1r3

2

[r1 × r2](r1P1) · σe + Z1Z2α
2

8m2M2

1

r3
1r3

2

[r1 × r2](r2P2) · σe,

U5b = − α

6m

[
Z1

r2
1μeμ1 − 3(μer1)(μ1r1)

r6
1

+ Z2
r2

2μeμ2 − 3(μer2)(μ2r2)

r6
2

+ 2Z1μeμ1

r4
1

+ 2Z2μeμ2

r4
2

]

− α

6m

[
Z2

(r1r2)μeμ1 − 3(μer1)(μ1r2)

r3
1r3

2

+ Z1
(r1r2)μeμ2 − 3(μer2)(μ2r1)

r3
1r3

2

+ 2Z2(r1r2)μeμ1

r3
1r3

2

+ 2Z1(r1r2)μeμ2

r3
1r3

2

]
. (25)

The last contribution to consider is a double transverse photon exchange with the top on a nucleus and two legs on an electron
(vertices 4N-5-5, 4N-5-6, and 4N-6-6):

U6a = Z2
1 α2

8m2M1

[
pe

1

r2
1

pe + 3
(per1)(r1pe)

r4
1

]
+ Z2

2 α2

8m2M2

[
pe

1

r2
2

pe + 3
(per2)(r2pe)

r4
2

]
,

U6b = − Z2
1 α2

4m2M1

1

r4
1

[r1 × pe] · σe − Z2
2 α2

4m2M2

1

r4
2

[r2 × pe] · σe ,

U6c = Z2
1 α2

4m2M1

1

r4
1

+ Z2
2 α2

4m2M2

1

r4
2

. (26)

VII. EFFECTIVE HAMILTONIAN

In this section, we collect the results obtained in Secs.
IV–VI to build the complete effective Hamiltonian at orders
mα6 and mα6(m/M ), including as well the second-order terms
contributing to these orders. In doing so, we separate the
different types of interactions: spin-independent, spin-orbit,
spin-spin scalar, and tensor interactions. Before that, we re-
call the expression of the effective Hamiltonian for leading-
order relativistic corrections, i.e., the Breit-Pauli Hamiltonian,
which comes into play in the second-order terms.

Spin-orbit interactions require a specific discussion. For-
mally, the leading electronic spin-orbit interaction Hso [see
Eq. (27) below] contains terms of order mα4 (electronic
spin-orbit) and mα4(m/M ) (electronic spin-nuclear orbit).
However, assuming one considers a σ electronic state, the
electronic spin-orbit coupling gives a zero contribution in the
Born-Oppenheimer approach. The nonzero value of this term
is due to nonadiabatic effects, so that it is actually smaller
by a factor ≈(m/M ) with respect to its nominal order, and

thus of the same order as the electronic spin-nuclear orbit
coupling. The same thing occurs in the relativistic correc-
tions, i.e., spin-orbit terms that are nominally of order mα6

are of comparable magnitude to the “recoil” [mα6(m/M )]
terms. We thus make no distinction between nonrecoil or
recoil contributions whenever the spin-orbit interaction is
involved.

For the same reasons, the nuclear spin-orbit interaction
HsoN [last line in Eq. (27)], in which the first term is of
nominal order mα4(m/M ), has an actual contribution of order
mα4(m/M )2. Relativistic corrections to this interaction [e.g.,
the effective potential U2c, Eq. (11)], are of order mα6(m/M )2.
That is why we will not consider the nuclear spin-orbit inter-
action in the following.

A. Leading-order (mα4) relativistic corrections

We include here all terms of the Breit-Pauli Hamiltonian
at orders mα4 and mα4(m/M ) (the electron’s anomalous mag-
netic moment is not taken into account here):

H (4) = HB + Hret + Hso + Hss + HsoN , (27)

HB = − p4
e

8m3
+ [�eV ]

8m2
,

Hret = Z1

2

pi
e

m

(
δi j

r1
+ ri

1r j
1

r3
1

)
P j

1

M1
+ Z2

2

pi
e

m

(
δi j

r2
+ ri

2r j
2

r3
2

)
P j

2

M2
,

Hso = Za(1 + 2ae)

2m2

[ra × pe]

r3
a

se − Za(1 + ae)

mMa

[ra × Pa]

r3
a

se,

Hss =
[
μeμa

r3
a

− 3
(μera)(μara)

r5
a

]
− 8πα

3
μeμaδ(ra),

HsoN = 1

m

[ra × pe]

r3
a

μa − 1

Ma

[
1 − ZmpIa

Maμa

]
[ra × Pa]

r3
a

μa. (28)
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B. Spin-independent interaction: Leading term and recoil

The nonrecoil effective Hamiltonian is

H (6)
no-spin = p6

e

16m5
+ U1a + U4 = p6

e

16m5
− 3

64m4

{
p2

e,�V
} + 5

128m4

{
p4

e,V
} − 5

64m4

(
p2

eV p2
e

) + 1

8m3
E2. (29)

The second-order contribution is

�E2nd-order
no-spin = 〈HBQ(E0 − H0)−1QHB〉. (30)

The above expressions coincide with previous results [22,23]. These corrections have been evaluated numerically for the
hydrogen molecular ions in Refs. [24,25]. It should be noted that both the first-order and second-order contributions contain
divergences, which need to be canceled out [23].

The recoil effective Hamiltonian is

H (6)
rec = U2a + U3a + U6a + U6c ,

U2a = − Z1

8m2

{
p2

e,
pi

e

m

(
δi j

r1
+ ri

1r j
1

r3
1

)
P j

1

M1

}
− Z2

8m2

{
p2

e,
pi

e

m

(
δi j

r2
+ ri

2r j
2

r3
2

)
P j

2

M2

}
,

U3a = 1

4m

[
Z3

1

M1

1

r3
1

+ Z3
2

M2

1

r3
2

+ Z2
1 Z2

M1

(r1r2)

r2
1r3

2

+ Z1Z2
2

M2

(r1r2)

r3
1r2

2

]

+ Z2
1

8m2M1

[
1

r4
1

+ pe
1

r2
1

pe − 3
(per1)(r1pe)

r4
1

]
+ Z2

2

8m2M2

[
1

r4
2

+ pe
1

r2
2

pe − 3
(per2)(r2pe)

r4
2

]
,

U6a = Z2
1

8m2M1

[
pe

1

r2
1

pe + 3
(per1)(r1pe)

r4
2

]
+ Z2

2

8m2M2

[
pe

1

r2
2

pe + 3
(per2)(r2pe)

r4
2

]
,

U6c = Z2
1

4m2M1

1

r4
1

+ Z2
2

4m2M2

1

r4
2

. (31)

The second-order contribution is

�E2nd-order
rec = �Eret + �E (0)

so-so,

�Eret = 2〈HBQ(E0 − H0)−1QHret〉,
�E (0)

so-so = 〈HsoQ(E0 − H0)−1QHso〉(0), (32)

where A(0) denotes the scalar part of an operator A (Hso being a vector operator, the second-order term has contributions of rank
0, 1, and 2); see Appendix B, Eq. (B3) for details.

It should be noted that �E (0)
so-so was considered together with nonrecoil terms in Refs. [23,24]. For the reasons explained

above, we prefer to include it in the recoil part.
The effective Hamiltonian (31) is actually incomplete because it does not include contributions from the contact terms of the

NRQED Lagrangian [12,13,16]. A complete consideration of the recoil effective Hamiltonian for the hydrogen molecular ions,
including contact terms and explicit cancellation of divergences, can be found in Ref. [26]. Our results coincide with those of
that reference: the potentials U2a, U3a, and U6a respectively appear in the terms denoted δH4 [Eq. (42)], δH6 [(Eq. (50)], and δH5

[Eq. (45)]. In the case of U3a, this is best seen by comparing the first line of Eq. (17) with Eq. (50) of Ref. [26], where a prefactor
zaze should be added.

C. Spin-spin scalar interaction

The effective Hamiltonian for this interaction is

H (0)
ss(6) = U (0)

2d + U (0)
5b ,

U (0)
2d = 1

4m2

{
p2

e,

[
8π

3
δ3(ra)

]}
μeμa,

U (0)
5b = − 1

3m

[
Z1

μeμ1

r4
1

+ Z2
μeμ2

r4
2

+ Z2(r1r2)μeμ1

r3
1r3

2

+ Z1(r1r2)μeμ2)

r3
1r3

2

]
, (33)

and the second-order contribution is

�E (0)2nd-order

ss = 2
〈
HBQ(E0 − H0)−1QH (0)

ss

〉
. (34)

Again, the first-order and second-order terms contain divergences which have to be canceled out. This was done in Refs. [9,10]
for hydrogen molecular ions, and the resulting corrections to the spin-spin contact interaction were evaluated numerically.
Beyond the relativistic corrections considered here [of order (Zα)2EF , where EF is the Fermi splitting], there is a one-loop
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radiative contribution at the same order [α(Zα)EF ] [27,28]. Other contributions to spin-spin scalar interactions include
higher-order QED corrections (see Refs. [27,28] and references therein) and effects involving the nuclear structure such as
the Zemach [29] and recoil [30,31] corrections, and were taken into account in Refs. [9,10].

D. Electron spin-orbit interaction

As explained above, for this interaction we make no distinction between nonrecoil and recoil contributions. The effective
Hamiltonian is

H (6)
so = U1b + U2b + U5a + U6b,

U1b = − 3Z1

16m4

{
p2

e,
1

r3
1

[r1 × pe]

}
se − 3Z2

16m4

{
p2

e,
1

r3
2

[r2 × pe]

}
se,

U2b = Z1

4m3M1

{
p2

e,
1

r3
1

[r1 × P1]

}
se + Z2

4m3M2

{
p2

e,
1

r3
2

[r2 × P2]

}
se,

U5a = Z2
1

4m2M1

1

r4
1

[r1 × P1]se + Z2
2

4m2M2

1

r4
2

[r2 × P2]se + Z1Z2

4m2M1

1

r1r3
2

[r2 × P1]se + Z1Z2

4m2M2

1

r3
1r2

[r1 × P2]se

− Z1Z2

4m2M1

1

r3
1r3

2

[r1 × r2](r1P1)se + Z1Z2

4m2M2

1

r3
1r3

2

[r1 × r2](r2P2)se,

U6b = − Z2
1

2m2M1

1

r4
1

[r1 × pe]se − Z2
2

2m2M2

1

r4
2

[r2 × pe]se. (35)

The second-order contributions is

�E2nd-order
so = �Eso + �Eso-ret + �E (1)

so-so,

�Eso = 2〈HsoQ(E0 − H0)−1QHB〉,
�Eso-ret = 2〈HsoQ(E0 − H0)−1QHret〉,
�E (1)

so-so = 〈HsoQ(E0 − H0)−1QHso〉(1). (36)

It is worth noting that both first- and second-order terms are finite and do not require regularization. The spin-orbit interaction at
this order was partially considered in Ref. [32] for the antiprotonic helium atom, but all terms were not included in that work. It
should also be mentioned that the only other correction to the spin-orbit interaction at the mα6 order corresponds to the effect of
the electron’s anomalous magnetic moment [28] and was therefore already included in Ref. [7].

E. Spin-spin tensor interaction

The effective Hamiltonian for spin-spin tensor interaction is

H (2)
ss(6) = U (2)

2d + U (2)
5b ,

U (2)
2d = 1

4m2

{
p2

e,

[
− r2

aμeμa − 3(μera)(μara)

r5
a

]}
,

U (2)
5b = − 1

6m

[
Z1

r2
1μeμ1 − 3(μer1)(μ1r1)

r6
1

+ Z2
r2

2μeμ2 − 3(μer2)(μ2r2)

r6
2

]

− 1

6m

[
Z2

(r1r2)μeμ1 − 3(μer1)(μ1r2)

r3
1r3

2

+ Z1
(r1r2)μeμ2 − 3(μer2)(μ2r1)

r3
1r3

2

]
. (37)

The second-order contribution is

�E (2)2nd-order

ss = �E (2)
ss + �Eso-ss + �E (2)

so-soN
,

�E (2)
ss = 2

〈
H (2)

ss Q(E0 − H0)−1QHB
〉
,

�E (2)
so-ss = 2

〈
H (2)

ss Q(E0 − H0)−1QHso
〉(2)

,

�E (2)
so-soN

= 2〈HsoQ(E0 − H0)−1QHsoN 〉(2). (38)

Here also, all terms are finite and do not require regularization.
The only other correction to the spin-spin tensor interaction at

this order is the effect of the electron’s anomalous magnetic
moment.

VIII. NUMERICAL RESULTS AND CONCLUSION

The results of Secs. VII D and VII E can be used to
calculate relativistic corrections to the electron spin-orbit
and spin-spin tensor interaction coefficients of the hyperfine
Hamiltonian in a one-electron molecular system. Here, we
present corrections to the spin-orbit coefficient in both H+

2 [8]
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and HD+ [7] for a few transitions studied in recent or ongoing
experiments [2,4,6,33].

Our calculations rely on the “exponential” variational ex-
pansion [34], where the wave function for a state of total or-
bital angular momentum L and parity � = (−1)L is expanded
in the following way:


π
LM (R, r1) =

∑
l1+l2=L

Y l1l2
LM (R̂, r̂1)GLπ

l1l2 (R, r1, r2),

Y l1l2
LM (R̂, r̂1) = Rl1 rl2

1 {Yl1 (R̂) ⊗ Yl2 (r̂1)}LM,

GLπ
l1l2 (R, r1, r2) =

N∑
n=1

{CnRe[e−αnR−βnr1−γnr2 ]

+ DnIm[e−αnR−βnr1−γnr2 ]}. (39)

The complex exponents αn, βn, γn are generated in a pseudo-
random way. Matrix elements of all operators are calculated
analytically; general methods of such calculations may be
found, e.g., in Refs. [35–37]. The matrix elements are reduced
to finite sums of radial integrals of the general form

�l,m,n(α, β, γ )

=
∫ ∞

0
dR

∫ ∞

0
dr1

∫ R+r1

|R−r1|
dr2Rlrm

1 rn
2e−αR−βr1−γ r2 , (40)

which are then calculated by using recurrence relations.
From the numerical point of view, the calculation of first-

order terms (U1b, U2b, and U5a) is straightforward; we used
N = 2000–3000 which was more than sufficient to get four
significant digits.

Second-order contributions pose more difficult problems
[32], especially the singular term �Eso and the (less singular)
term �E (1)

so-so. In the case of �Eso, the intermediate wave
function ψ (1) defined by

(E0 − H0)ψ (1) = (HB − 〈HB〉)ψ0 (41)

behaves like 1/r1 (1/r2) at small electron-nucleus distances.
The regular trial functions (39) would thus result in very
slow convergence. To reduce this singularity, we use the
transformation described in Ref. [32]:

H ′
B = HB − (E0 − H0)U − U (E0 − H0), (42)

where

U = c1

r1
+ c2

r2
, ci = μi(2μi − me)

4m3
e

Zi. (43)

Here, 1/μi = 1/me + 1/Mi. The second-order term may then
be rewritten as follows:

〈HsoQ(E0 − H0)−1QHB〉
= 〈HsoQ(E0 − H0)−1QH ′

B〉 + 〈UHso〉 − 〈U 〉〈Hso〉. (44)

With HB being replaced by H ′
B in Eq. (41), the first-order wave

function is now less singular and behaves like ln(r1) [ln(r2)] at
small distances. In the numerical evaluation, we use a “mul-
tilayer” basis set, where the first subsets (between two and
four) approximate the regular part of the intermediate wave
function, and eight others subsets contain growing exponents
βn (γn) up to 104 in order to reproduce the ln(r1) [ln(r2)]
behavior at small distances; see an illustrative example in
Table I. The total size of the intermediate basis set is typically

TABLE I. Variational parameters used in the calculation of
singular second-order terms for the (L = 1, v = 0) state of HD+.
[A1, A2] ([A′

1, A′
2]) are the intervals in which the real (imaginary)

parts of exponents αn [see Eq. (39)] are generated, and [B1, B2]
([C1,C2]) are the intervals for the real parts of βn (γn). An indicative
number Ni of basis functions in each subset is given the last column.
The total basis size in this example is N = 11 000.

Subset [A1, A2] [A′
1, A′

2] [B1, B2] [C1,C2] Ni

1 [5.1,5.5] [0.8,15.2] [0.00,1.80] [0.00,1.65] 1830
2 [5.1,5.2] [−0.6, 6.3] [0.00,1.56] [0.00,1.59] 1170
3 [5.1,5.5] [−0.6, 15.2] [1.80,10.0] [0.00,1.65] 1290
4 [5.1,5.5] [−0.6, 15.2] [0.00,1.80] [1.65,10.0] 1290
5 [5.1,5.5] [−0.6, 15.2] [10.0, 102] [0.00,1.65] 1070
6 [5.1,5.5] [−0.6, 15.2] [0.00,1.80] [10.0, 102] 1070
7 [5.1,5.5] [−0.6, 15.2] [102, 103] [0.00,1.65] 900
8 [5.1,5.5] [−0.6, 15.2] [0.00,1.80] [102, 103] 900
9 [5.1,5.5] [−0.6, 15.2] [103, 104] [0.00,1.65] 740
10 [5.1,5.5] [−0.6, 15.2] [0.00,1.80] [103, 104] 740

around N ≈ 10 000. The convergence will be analyzed in
more detail in a future presentation focusing on numerical
results.

The �E (1)
so-so contribution is obtained from Eq. (B3) of the

Appendix. The spin operator U1 appearing in that equation is
given in Sec. B 2. For the orbital operator T1, the calculation
is separated into three terms a0, a−, a+ corresponding to the
possible values of the angular momentum L′ of intermediate
states, L′ = L, L ± 1, see Eq. (B5) for definitions. The total
contribution is given by Eq. (B6) (with k1 = k2 = k = 1).
Since the first-order wave function (41) with Hso on the right-
hand side is also singular at small electron-nucleus distances,
we use a similar multilayer basis set as for the �Eso contri-
bution. An intermediate basis size up to N ∼ 20 000 was used
for the (L = 3, v = 9) state of HD+.

Our numerical results are given in Tables II (for H+
2 )

and III (for HD+). From a study of convergence as a
function of N , we estimate the numerical uncertainty of �Eso

and �Eso-so to about 1 Hz. For the other contributions, all
digits are significant. The total uncertainty of the spin-orbit
interaction coefficient (denoted ce in H+

2 and E1 in HD+)
is dominated by the yet unevaluated radiative correction of
order mα7 ln(α) [38,39]. A tentative order of magnitude is
α3 ln(α)ce ≈ 100 Hz, but our preliminary calculations indi-
cate that this correction is actually as large as 300–400 Hz.
The calculation of this contribution is thus essential for fur-
ther improvement of theoretical predictions of the hyperfine
structure, and will be addressed in a forthcoming publication.

In conclusion, we have derived the complete effective
Hamiltonian at the mα6 and mα6(m/M ) for hydrogen molec-
ular ions. The spin-independent and spin-spin scalar inter-
action terms were found to agree with previous calculations
[9,24,26]. We then exploited this effective Hamiltonian to
calculate corrections to the electronic spin-orbit hyperfine
coefficient for a few states involved in experimentally studied
transitions in H+

2 and HD+. The theoretical uncertainty has
been reduced by more than a factor of three, from about
α2ce ≈ 1.5 kHz to about 300–400 Hz. The next steps are
the calculation of radiative corrections at the next order and
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TABLE II. Relativistic corrections to the spin-orbit interaction coefficient ce for rovibrational states of H+
2 (in kHz). The leading-order

(Breit-Pauli) value of ce (Ref. [8]) is given in column two. Columns three to eight are the first-order and second-order contributions listed in
Eqs. (35) and (36), respectively. The total correction is given in column nine. The last column is our new value of ce.

(L, v) c(BP)
e U1b U2b U5a �Eso �Eso-ret �E (1)

so-so �c(6)
e ce (this work)

(2,0) 42 162.530 1.542 −3.601 0.027 2.736 0.348 0.412 1.463 42 163.99
(2,1) 39 571.598 1.451 −3.440 0.036 2.579 0.327 0.388 1.341 39 572.94

of corrections to the spin-spin tensor interaction coefficients.
It will then become possible to perform precise comparison
with present and upcoming experimental data. Finally, the
effective Hamiltonian we have derived may also be used to
improve the hyperfine structure calculations in antiprotonic
helium [32,40].
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APPENDIX A: FOURIER INTEGRALS

In this Appendix, we summarize the three-dimensional
integrals that were used in our derivations for the Fourier
transformation from momentum to coordinate space. The
master integral is

4π

(2π )3

∫
d3q
q2

eiqr = 1

r
, (A1)

and other useful integrals are

4π

(2π )3

∫
dq
q2

(
δi j − qiq j

q2

)
eiqr = 1

2

[
δi j

r
+ rir j

r3

]
,

4π

(2π )3

∫
dq
q4

(eiqr − 1) = − r

2
,

4π

(2π )3

∫
dq
q4

(
δi j − qiq j

q2

)
(eiqr − 1) = 1

8r
(rir j − 3r2δi j ),

4π

(2π )3

∫
dq
q2

[a × q][b × q] eiqr = −
[

(ab)

r3
− 3

(ar)(br)

r5

]
+ 8π

3
(ab)δ(r). (A2)

APPENDIX B: ALGEBRA OF ANGULAR MOMENTA FOR THE SECOND-ORDER CONTRIBUTIONS

A second-order contribution to the hyperfine splitting of a rovibrational state (v, L) may be written in the general form

�E = 〈vLSJM|(Sk1
a · Ok1

a

)
Q(E0 − H0)−1Q

(
Ok2

b · Sk2
b

)|vLS′JM〉, (B1)

where Sa, Sb, Oa, Ob are some irreducible orbital tensor operators, with Sa, Sb acting in the spin space and Oa, Ob in the orbital
space. |vLSJM〉 is a pure hyperfine state, with S the total spin, and J = L + S is the total angular momentum.

The goal of this Appendix is to show how such quantities can be decomposed into irreducible tensor components, which are
expressed as the scalar product of an irreducible orbital tensor operator with an irreducible spin operator of the same rank. Then,
we give the expressions of the spin operators and of the orbital reduced matrix elements.

1. Decomposition into irreducible tensor components

Let us introduce the irreducible tensor operators

T k
M = {

Ok1
a ⊗ Q(E0 − H0)−1QOk2

b

}
kM , U k

M = {
Sk1

a ⊗ Sk2
b

}
kM .

TABLE III. Same as Table II, but for the spin-orbit coefficient E1 in HD+. The Breit-Pauli value in column two was obtained from Ref. [7].

(L, v) E (BP)
1 U1b U2b U5a �Eso �Eso-ret �E (1)

so-so �E (6)
1 E1 (this work)

(1,0) 31 984.645 1.170 −2.736 0.021 2.087 0.263 0.313 1.118 31 985.76
(1,6) 22 643.474 0.834 −2.097 0.044 1.509 0.181 0.219 0.689 22 644.16
(3,0) 31 627.353 1.156 −2.694 0.019 2.043 0.260 0.308 1.093 31 628.45
(3,9) 18 270.577 0.680 −1.732 0.043 1.161 0.146 0.182 0.481 18 271.06
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Then, using the relationship [see Ref. [41], Chapter 3, Sec. 3.3.2, Eq. (11)]

{{
Ak1 ⊗ Bk1

}
0 ⊗ {

Ck2 ⊗ Dk2

}
0
}

00 =
∑

k

�k

�k1k2

{{
Ak1 ⊗ Ck2

}
k ⊗ {

Bk1 ⊗ Dk2

}
k
}

00,

where �n1n2,... = √
(2n1 + 1)(2n2 + 1) · · ·, one gets(

Sk1
a · Ok1

a

)
Q(E0 − H0)−1Q

(
Ok2

b · Sk2
b

)
= (−1)k1+k2�k1k2

{{
Sk1

a ⊗ Ok1
a
}

0 ⊗ {
Q(E0 − H0)−1QOk2

b · Sk2
b
}

0
}

00

= (−1)k1+k2
∑

k

�k{Tk ⊗ Uk}00 =
∑

k

(−1)k1+k2+k (Tk · Uk ). (B2)

As a result,

�E =
∑

k

�E (k), �E (k) = (−1)k1+k2+k〈vLSJM|(Tk · Uk )|vLS′JM〉= (−1)k1+k2+k 〈vL‖Tk‖vL〉
〈L‖Lk‖L〉 〈vLSJM|(Lk · Uk )|vLS′JM〉 ,

(B3)

where L0 = I , L1 = L, L2 = {L ⊗ L}2μ, etc.

2. Irreducible spin operators

(a) With the electron spin-orbit Hamiltonian Hso on both sides:

U0 = {se ⊗ se}00 = − 1√
3

s2
e = −

√
3

4
,

U1 = {se ⊗ se}1μ = − 1√
2

se,

U2 ≡ 0.

(b) With the electron spin-orbit Hamiltonian Hso and the nuclear spin-orbit Hamiltonian HsoN :

U0 = {se ⊗ Ia}00 = − 1√
3

(se · Ia),

U1 = {se ⊗ Ia}1μ = i√
2

[se × Ia],

U2 = {se ⊗ Ia}2μ =
√

3

2

[
1

2

(
si

eI j
a + s j

eI j
a

) − δi j

3
(se · Ia)

]
2μ

.

(c) With the electron spin-orbit Hamiltonian Hso and the tensor spin-spin Hamiltonian H (2)
ss :

Let us define

S(2)
ss = {se ⊗ Ia}2μ.

We then get

U1 = {se ⊗ Sss}1μ = {se ⊗ {se ⊗ Ia}2}1μ

=
√

5

3
{{se ⊗ se}0 ⊗ Ia}1μ +

√
15

6
{{se ⊗ se}1 ⊗ Ia}1μ = −

√
15

12
Ia − i

√
15

12
[se × Ia],

U2 = {se ⊗ Sss}2μ = −1

2

√
3

2
S(2)

ss ,

U3 ≡ 0.

3. Orbital reduced matrix elements

For the operator T k acting on spatial degrees of freedom, one separates the calculation into different terms corresponding
to the possible values of the angular momentum L′ of intermediate states, L′ = L, L ± 1 [since min(k1, k2) = 1 in all the cases
under consideration here]. The reduced matrix element of a given component L′ may then be expressed as [see Ref. [41], Chapter
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13, Sec. 13.1.3, Eq. (10)]

〈vL‖Tk(L′ )‖vL〉 = (−1)k�k

{
k1 k2 k
L L L′

} ∑
n �=0

〈
vL

∥∥Ok1
a

∥∥vnL′〉〈vnL′∥∥Ok2
b

∥∥vL
〉

E0 − En
. (B4)

Let us define

a− = − 1

�2
L

∑
n �=0

〈
vL

∥∥Ok1
a

∥∥vnL − 1
〉〈
vnL − 1

∥∥Ok2
b

∥∥vL
〉

E0 − En
,

a0 = 1

�2
L

∑
n �=0

〈
vL

∥∥Ok1
a

∥∥vnL
〉〈
vnL

∥∥Ok2
b

∥∥vL
〉

E0 − En
,

a+ = − 1

�2
L

∑
n �=0

〈
vL

∥∥Ok1
a

∥∥vnL + 1
〉〈
vnL + 1

∥∥Ok2
b

∥∥vL
〉

E0 − En
. (B5)

The prefactor of the spin operator Lk · Uk in Eq. (B3) is given by

(−1)k1+k2+k 〈vL‖Tk‖vL〉
〈L‖Lk‖L〉 = (−1)k1+k2

�2
L�k

〈L‖Lk‖L〉
[
−

{
k1 k2 k
L L L − 1

}
a− +

{
k1 k2 k
L L L

}
a0 −

{
k1 k2 k
L L L + 1

}
a+

]
.

(B6)
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