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Analytically projected, rotationally symmetric, explicitly correlated
Gaussian functions with one-axis-shifted centers
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An explicitly correlated functional form for expanding the wave function of an N-particle system with arbitrary
angular momentum and parity is presented. We develop the projection-based approach, numerically exploited
in our previous work [J. Muolo, E. Mátyus, and M. Reiher, J. Chem. Phys. 149, 184105 (2018)], to explicitly
correlated Gaussian functions with one-axis-shifted centers and derive the matrix elements for the Hamiltonian
and the angular momentum operators by analytically solving the integral projection operator. Variational few-
body calculations without assuming the Born-Oppenheimer approximation are presented for several rotationally
excited states of three- and four-particle systems. We show how the formalism can be used as a unified framework
for high-accuracy calculations of properties of small atoms and molecules.
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I. INTRODUCTION

Highly accurate bound states of the Schrödinger equation
for small atoms and molecules can be constructed by expand-
ing the wave function in terms of basis functions depend-
ing explicitly on interparticle distances [1–18]. Nonseparable
functions with respect to the particle coordinates are tailored
to describe particle-particle correlations, especially to accu-
rately reproduce the exact wave function for infinitesimally
short distances and in the long-range limit. Furthermore, they
allow for a unified treatment of different kinds of particles,
e.g., of electrons and nuclei. Within this framework, two-
and three-electron atoms can be very accurately calculated
employing Hylleraas-type functions [12,19–23] that explicitly
include powers of the interelectronic distances ri j = |ri −
r j |. However, the difficulties of the analytical calculation of
their matrix elements prevent application of this approach
to larger systems [24–26]. Generality with respect to the
particle number and accessible analytical Hamiltonian matrix
elements are achievable through powers of the quadratic form
of the interparticle distances that define explicitly correlated
Gaussian-type (ECG) functions [1,2]. Plain explicitly corre-
lated Gaussian (pECG) functions for Np interacting particles,

φ
pECG
I = exp

⎡
⎣−

Np∑
i< j=1

AI i jri · r j

⎤
⎦, (1)

are the simplest functions of this type and have been suc-
cessfully employed to describe a number of diverse phys-
ical systems, from small atoms and molecules to light nu-
clei, hadrons, quantum dots, and Efimov systems [15,17,27].
pECG functions are also manifestly spherically symmetric,
i.e., invariant under rotation, as they are eigenfunctions of
the total angular momentum squared operator with eigenvalue
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zero. Additional and important higher angular momentum
contributions originate from the cross terms of the exponential
part, i.e., exp(−AI i jri · r j ), which, when expanded into a
power series, contain terms of the form

(ri · r j )
n =

∑
2k+l=n

4π (2k + l )!

2kk!(2k + 2l + 1)!!
|ri|2k|r j |2k

×
l∑

m=−l

Ylm(ri )Ylm(r j ), (2)

which are associated with different solid spherical harmonics
Ylm for the coordinates ri and r j .

Although these advantages made ECG-type functions very
popular in high-accuracy calculations [3,5,11,13,14,28], the
spherical symmetry limits the applicability of plain ECGs to
ground rotational states only. Different approaches [27,29]
have been developed to extend ECGs to nonspherical prob-
lems, i.e., for calculating states with nonzero total spatial
angular momentum quantum numbers N .

In general, the ECGs are being multiplied with a non-
spherical function, θNMN (r), of the collective position vectors
r that for one particle in a central potential would just reduce
to a solid spherical harmonic, Y (r1). The generalization to
the Np-particle case is a vector-coupled product of the solid
spherical harmonics of the relative coordinates,

θNMN (r) =
∑

κ={m1,m2,...,mNp }
Cκ

Np∏
i=1

Ylimi (ri ), (3)

where Cκ is a product of Clebsch-Gordan coefficients,

Cκ = 〈l1m1l2m2|L12m1 + m2〉
× 〈L12m1 + m2l3m3|L123m1 + m2 + m3〉
· · · 〈L12...Np−1m1 + m2 + · · · + mNp−1lNpmNp |NMN 〉,

(4)
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that couples the orbital angular momenta sequentially to the
specified total quantum numbers (N , MN ). Since the angular
momentum of the relative motion is not a conserved quantity,
it is important for an accurate description to include several
sets of orbital angular momenta (l1, l2, . . . , lNp ; L12, L123, . . .)
weighted by Cκ . Equation (3) is a partial-wave expansion
whose direct implementation is cumbersome since the matrix
elements for this choice of θNMN (r) will become very com-
plicated. Moreover the algebraic complexity of the integral
matrix elements is not invariant with respect to the number of
particles, and hence, analytical expressions must be derived
for each different system.

One viable alternative to the full partial-wave decomposi-
tion is to consider only limited coupling schemes “specializ-
ing” the basis functions for a given N while the relative matrix
elements are explicitly derived. For example, Refs. [30–34]
focused on ECG functions specifically tailored for N = 1
states considering the sets of orbital angular momenta (l1 =
0, . . . , li = 1, . . . , lNp = 0). References [35–38] tackled N =
2 states analogously with lowest-order angular momentum
couplings.

Alternatively, representations of θNMN (r), including the ori-
entation of a global vector v formed as a linear combination of
all particle coordinates {ri}, have been successfully employed
in high-accuracy calculations of properties of small atoms and
molecules [15,39]. This approach is based on an equivalence
condition between the global vector representation of θNMN (r)
and the partial-wave expansion for a given orientation of
the global vector. Under the assumption of a smooth energy
landscape in parameter space, the global vector orientation
can be recovered variationally through the minimization of the
energy with respect to its real-valued parameters. Although
this approach is appealing because it yields analytical matrix
elements for quantum-mechanical operators that are form
invariant with respect to the angular momentum quantum
numbers N and MN and the number of particles Np, the
variational optimization of the global vector parameters is
difficult and not every θNMN (r) can be represented. These
alternative formulations are strictly derived from the partial-
wave expansion as a result of having truncated or variationally
approximated Eq. (3).

In this work, we extend our numerical projection scheme
onto irreducible representations of the rotational-inversion
O(3) group presented in our previous work [40], focusing on
a special case where the integral projector can now be solved
analytically. In Ref. [40], we considered explicitly correlated
Gaussian functions with centers shifted by a vector in the
three-dimensional Euclidean space, s ∈ R3. Numerically exact
eigenfunctions of the squared total spatial angular momentum
operator N̂

2
and the parity operator p̂ were then constructed

with explicit projection onto the corresponding eigenspace.
We relied on numerical quadrature schemes for the calculation
of integral matrix elements which introduced noticeable com-
putational cost in the variational iterative steps. In practice,
numerical projection precludes large basis sets from being
optimized variationally and limits the applicability of the
developed formalism. Here, we consider solving exactly the
projection operator for a subset of floating ECG functions hav-
ing shifted centers along only one axis. We devise analytical

integral matrix elements for projected functions for the over-
lap, kinetic, Coulomb, and angular momentum operators. We
illustrate the validity of this functional form by studying
the first three rotational states of the dihydrogen molecular
ion H2

+ = {p+, p+, e−} treated explicitly as a three-particle
system and the dihydrogen molecule H2 = {p+, p+, e−, e−}
treated explicitly as a four-particle system.

II. THEORY

We consider a nonrelativistic Coulombic Hamiltonian for
Np particles,

Ĥlab = −∇T
r M∇r +

Np∑
i=1

Np∑
j>i

qiq j∣∣ri − r j

∣∣ , (5)

with the position vector ri of the ith particle in the laboratory-
fixed Cartesian coordinates (LFCC), its mass mi, and its
charge qi. ∇r is the gradient with respect to ri, and M is an
Np × Np matrix with elements Mi j = δi j/2mi.

As we are interested in bound states, the motion of the
center of mass (CM) can be discarded. This is usually realized
by a linear transformation of the coordinates,

Uxr = (
x1, x2, . . . , xNp−1, xCM

)T
, (6)

in which the xCM = ∑Np

i=1 miri/(
∑Np

i=1 mi ) are the center-of-
mass Cartesian coordinates and x ≡ (x1, . . . , xNp−1) denotes
the translationally invariant Cartesian coordinates (TICC) cor-
responding to the internal coordinates of the system generated
through the relative tranformation matrix Ux. A transforma-
tion of the Hamiltonian in Eq. (5) separates the kinetic energy
term for the center of mass from the internal Hamiltonian
[27,41]:

Ĥint = −∇T
x μ∇x +

Np−1∑
i=1

Np−1∑
j>i

qiq j

|( f i j ⊗ 13)x| , (7)

where

μ = U −T
x MUx (8)

and

( f i j )k = (
U −1

x

)
ik − (

U −1
x

)
jk . (9)

This separation of the center-of-mass coordinate requires
transforming both the Hamiltonian and the state function and
has been exploited in practice [14,15].

By contrast, here we solely transform the basis functions in
a given TICC set without transforming quantum-mechanical
operators following the method described in our previous
work [42,43]. In this approach, the matrix-element calcu-
lations are carried out naturally in the LFCC set and the
center-of-mass contamination is rigorously subtracted from
the expectation values. While handling state functions in a
TICC set is very appealing because of the restriction of the
parameter space to only Np − 1 internal coordinates, we avoid
the difficulties arising from matrix elements for transformed
operators and instead retain the algebraically simpler and
intuitive LFCC set for the integral evaluation. We employ
the heavy-particle-centered, the center-of-mass-centered, and
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Jacobian Cartesian coordinate sets, allowing the basis func-
tions to cycle through these TICC representations in order
to describe efficiently different “groupings” of particles (e.g.,
pairs and triples of particles).

III. BASIS FUNCTIONS

Given the total spin quantum number and its projection
on the z-axis S and Ms, respectively, the wave function
representation is expanded as a linear combination of (anti-
)symmetrized floating explicitly correlated Gaussian (FECG)
functions:

�(r) =
Nb∑

I=1

cI χS,MS
I Ŷ φFECG

I

(
r; A(r)

I , s(r)
I

)
, (10)

where cI are the expansion coefficients, χS,MS
I are spin func-

tions, and Ŷ is the Young operator that accounts for the ap-
propriate permutation symmetry of sets of identical particles
as described by Kinghorn [44]. FECGs have the following
general form:

φFECG
I

(
r; A(r)

I , s(r)
I

) = exp
[−(

r − s(r)
I

)T (
A(r)

I ⊗ 13
)(

r − s(r)
I

)]
.

(11)

Here, A(r)
I is an Np × Np symmetric matrix of which the

1
2 Np(Np + 1) elements are variational parameters, with the
subscript I indicating that the matrix is unique for each basis
function and the superscript indicating that the variational
parameters refer to the LFCC set. It is r(A(r)

I ⊗ 13)r > 0 ∀ r ∈
R3Np ; that is, A(r)

I must be positive definite to ensure square
integrability of the φ

[FECG]
I basis function. A necessary and

sufficient condition for a symmetric real matrix to be pos-
itive definite is that all eigenvalues must be positive. Here
r − s(r)

I stands for a set of vectors {r1 − s(r)
I 1 , . . . , rNp − s(r)

I Np
}

that correspond to shifted particle coordinates with the 3Np-
dimensional vector s(r)

I composed of parameters to be opti-
mized in a variational procedure.

Note that the floating spherical Gaussian orbitals approach
introduced by Frost in 1967 [45] is based on one-particle
functions (orbitals) and is therefore a limiting case of our
approach for diagonal (and not dense) Gaussian parameter

matrices AI . In fact, this special case reduces our FECG basis
functions to a product of exponential functions, each of which
being spherically symmetric about its origin. By contrast,
FECG basis functions with dense AI Gaussian parameter
matrices include partial-waves contribution from many higher
angular momentum states (see the Introduction).

In the following sections we explicitly work out the integral
matrix elements in the simple LFCC frame.

IV. PROJECTION TECHNIQUE

The FECGs in Eq. (11) define Gaussian functions with
shifted centers to allow for suitable deformations of the ansatz
for the all-particle wave function that are predominantly
needed for polyatomic systems [27,43]. A general FECG
function is, however, neither an eigenfunction of the squared
total angular momentum operator N2 nor an eigenfunction
of the space-inversion operator p̂. As the rotation-inversion
symmetry must be restored variationally in the limit of a
complete basis set, these basis functions give rise to poor
energy convergence.

To alleviate this problem, we recently proposed an integral
projection operator, P̂[N,p]

MN
[40], to ensure the correct spatial

rotation-inversion symmetry corresponding to N and MN , the
total spatial angular momentum quantum numbers, and the
parity quantum number p:

P̂[N,p]
MN

= P̂[N]
MN MN

P̂[p]
CI

, (12)

with

P̂[N]
M1M2

=
∫

d�

4π3
D[N]

M1M2
(�)∗R̂(�) (13)

and

P̂[p]
CI

= Ê + p · Î, (14)

where Ê is the identity operator, Î is the spatial inversion
operator, and D[N]

M1M2
is the element of the N th Wigner D

matrix,

D[N]
M1M2

= exp(−iM1α) d [N]
M1M2

(β ) exp(−iM2γ ), (15)

with the Wigner (small) d matrix being

d [N]
M1M2

(β ) = [
(N + M1)!(N − M1)!(N + M2)!(N − M2)!

] 1
2

×
∑

s

⎡
⎢⎣ (−1)M1−M2+s

(
cos β

2

)2N+M2−M1−2s(
sin β

2

)M1−M2+2s

(N + M2 − s)!s!(M1 − M2 + s)!(N − M1 − s)!

⎤
⎥⎦. (16)

R̂(�) is the quantum-mechanical rotation operator over the Euler angles � ≡ {α, β, γ } [46],

R̂(α, β, γ ) = exp(−iαNz ) exp(−iβNy) exp(−iγ Nz ). (17)

The effect of the projector operator in Eq. (12) on a state |N MN 〉 is

P̂[N1]
M1M2

|N2M2〉 = |N1M1〉 δN1N2 δM1M2 , (18)

with |NMN 〉 being angular momentum eigenstates. Note that our original implementation [40] of the projection scheme was
purely numerical, which we overcome in this work for the special case of projection on one spatial axis, for which an analytical
expression can be derived.
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The form of the rotation operators in Eq. (17) is not a convenient operational definition because they require an explicit
expression of the angular momentum components Ni that is not entirely straightforward in our all-particle explicitly correlated
formulation. Nonetheless, exactly the same symmetry operation will be realized if we rotate the physical system itself or if we
rotate the coordinate axis in the opposite direction:

R̂(�)φFECG
I

(
r; A(r)

I , s(r)
I

)
= φFECG

I

(
U (�)−1 r; A(r)

I , s(r)
I

)

= exp

[
−
(
U (�)−1 r − s(r)

I

)T(
Ā(r)

I ⊗ 13

)(
U (�)−1r − s(r)

I

)]

= exp

[
−
(

r − U (�)s(r)
I

)T(
Ā(r)

I ⊗ Ũ (�)−T Ũ (�)−1
)(

r − U (�)s(r)
I

)]

= φFECG
I

(
r; A(r)

I ,U (�)s(r)
I

)
, (19)

where U (�) = 1Np ⊗ Ũ (�) represents the coordinate transformation generalized to a system of Np particles with

Ũ (�) =
⎛
⎝cos α cos β cos γ − sin α sin γ − cos γ sin α − cos α cos β sin γ − cos α sin β

cos β cos γ sin α + cos α sin γ cos α cos γ − cos β sin α sin γ − sin α sin β

cos γ sin β sin β sin γ cos β

⎞
⎠. (20)

The properties of the rotation operator are summarized in
four commutation relations:

[R̂(�), Ĥ ] = 0, (21)

[R̂(�), N̂2] = 0, (22)

[R̂(�), N̂z] 	= 0, (23)

[R̂(�), p̂ ] = 0. (24)

Furthermore, the P̂[N]
MN MN

projection operator is idempotent and
Hermitian: (

P̂[N]
MN MN

)2 = P̂[N]
MN MN

(25)(
P̂[N]

MN MN

)† = P̂[N]
MN MN

. (26)

Properties in Eqs. (21)–(26) are employed in the remain-
der of this work for the calculation of quantum-mechanical
expectation values.

V. MATRIX ELEMENTS

In this section, we present analytically projected FECGs
matrix elements for important operators in the special case
of unidimensional shift vectors, that is, employing sI shift
vectors of the form

s(r)
I = u(r)

I ⊗ ez, (27)

where u(r)
I is a vector of length Np and ez = (0, 0, 1)T . From

this choice of the s(r)
I vectors we obtain the fundamental

relation

eT
z Ũ (�)ez = cos β. (28)

Equation (28) is employed throughout this work to derive
analytical matrix elements for the overlap, kinetic, Coulomb,
and angular momentum operators. For the matrix element
of these operators we start from the analytical expressions
derived for plain FECGs by Cafiero and Adamowicz [47].

Conversely, angular momentum matrix elements are derived
from the analytical expressions for plain FECGs presented
in our previous work [40]. The unprojected and analyti-
cally projected z-shifted floating explicitly correlated Gaus-
sian functions are abbreviated with zFECGs and apzFECGs,
respectively.

Given a quantum-mechanical operator Ô commuting with
the projector operator, the matrix element IJ for apzFECGs
reads as follows:

OapzFECG
IJ[N,MN ,p] = 〈

φ
apzFECG
I[N,MN ,p]

∣∣Ô∣∣φapzFECG
J[N,MN ,p]

〉
= 〈

φzFECG
I

∣∣Ô∣∣P̂[N,p]
MN

φzFECG
J

〉
, (29)

where the Hermiticity and idempotency of the projection oper-
ator, Eqs. (25) and (26), were exploited to simplify the integral
expression. In the following, analytical matrix elements for a
variety of quantum-mechanical operators are derived. For the
sake of brevity, the projection onto the parity states P̂[p]

CI
is

omitted.

A. Overlap integral

The matrix elements of the identity operator for plain
FECGs are given by [47]〈

φFECG
I

∣∣φFECG
J

〉 = S̃IJ exp
[
2s(r)T

I A(r)
I A(r)−1

IJ A(r)
J s(r)

J

]
, (30)

where A(r)
IJ = A(r)

I + A(r)
J and

S̃IJ =
⎛
⎝ πNp∣∣∣Ā(r)

I + Ā(r)
J

∣∣∣
⎞
⎠

3
2

exp
[ − s(r)T

I A(r)
I s(r)

I − s(r)T

J A(r)
J s(r)

J

]

× exp
[ + s(r)T

I A(r)
I A(r)−1

IJ A(r)
I s(r)

I + s(r)T

J A(r)
J A(r)T

IJ A(r)
J s(r)

J

]
.

(31)

In Eq. (30) we have separated S̃IJ , the term unaffected by
the action of the rotation operator on the shift vector s(r)

J .
The remaining term must be investigated since it involves the
angular integration over the Euler angles. For apzFECGs the
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overlap matrix element reads

SapzFECG
IJ[N,MN ,p] = 〈

φzFECG
I

(
r; A(r)

I , s(r)
I

)∣∣P̂[N,p]
MN

φzFECG
J

(
r; A(r)

J , s(r)
J

)〉
, (32)

and writing explicitly the projection operator leads to

SapzFECG
IJ[N,MN ,p] =

∫
d�

4π3
D[N]

MN MN
(�)∗

〈
φI
(
r; A(r)

I , s(r)
I

)∣∣φJ
(
r; A(r)

J ,U (�)s(r)
J

)〉
, (33)

where we again drop the projector onto the parity state for the sake of brevity. Because S̃IJ is invariant under the action of P̂[N,p]
MN

,
Eq. (33) can be written as

SapzFECG
IJ[N,MN ,p] = S̃IJ ϒN

MN
, (34)

with

ϒN
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗ exp

[
2 s(r)T

I A(r)
I A(r)−1

IJ A(r)
J U (�)s(r)

J

]
. (35)

Since U (�) = 1Np ⊗ Ũ (�), we have

U (�)s(r)
J = u(r)

J ⊗ Ũ (�)ez, (36)

where Eq. (27) and the definition of U (�) in Eq. (20) have been exploited.
Considering Eqs. (27), (36), and (28) and that A(r)

K = Ā(r)
K ⊗ 13 with K ∈ {I, J, IJ}, we have

exp
[
2 s(r)T

I A(r)
I A(r)−1

IJ A(r)
J U (�)s(r)

J

] = exp
[
C eT

z Ũ (�)ez
] = exp[C cos β], (37)

with C given as

C = 2 u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
J u(r)

J . (38)

Finally, the angular integration reduces to

ϒN
MN

= 1

4π3

∫ 2π

0
dα

∫ π

0
dβ

∫ 2π

0
dγ sin(β )D[N]∗

MN MN
(�) exp [C cos(β )]. (39)

To analytically solve the triple integration over Euler angles, we first note that the elements D[N]
00 (β ) of the Wigner D matrices

corresponding to MN = 0 are polynomials of cos β of degree N with coefficients a[N]
μ (e.g., a[0]

0 = 1, a[1]
0 = 0, a[1]

1 = 1),

D[N]
00 (�) = D[N]

00 (β ) =
N∑

μ=0

a[N]
μ (cos β )μ. (40)

Therefore, for apzFECGs with MN = 0, the integration over α and γ Euler angles is trivial and Eq. (39) becomes

ϒN
0 = 1

π

N∑
μ=0

∫ π

0
dβ sin(β )[cos(β )]μ exp [C cos(β )]. (41)

Furthermore, since apzFECG functions do not depend on Euler angles α and γ , the integration of the D[N]∗
MN MN

(�) yields zero for
every N ∈ N0 and MN 	= 0. The results of the integration over the Euler angle β in Eq. (41) for the spherically symmetric ground
state as well as the two lowest rotationally excited states are then written as

ϒN
MN

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

πC
sinh(C), N = 0 , MN = 0,

2

πC
cosh(C) − 2

πC2
sinh(C), N = 1 , MN = 0,

2

πC3
[(C2 + 3) sinh(C) − 3C cosh(C)], N = 2 , MN = 0,

0, ∀N ∈ N0 , MN 	= 0.

(42)

For a list of ϒN
MN

up to N = 10, see the Appendix.
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B. Kinetic integral

The kinetic integral for plain FECGs reads [47]〈
φFECG

I

∣∣ − ∇T
r M∇r|φFECG

J

〉 = S̃IJ
[
4
(
s(r)

I − s(r)
J

)T
B
(
s(r)

I − s(r)
J

) + 6 Tr
(
MĀ(r)

J Ā(r)−1

IJ Ā(r)
I

)]
, (43)

where

B = 4 A(r)
J A(r)−1

IJ A(r)
I MA(r)

J A(r)−1

IJ A(r)
I . (44)

For apzFECGs it is

T apzFECG
IJ[N,MN ,p] = 〈

φzFECG
I

∣∣P̂[N,p]
MN

φzFECG
J

〉 = S̃IJ

N
MN

, (45)

where the angular integral is written as


N
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗ exp[C cos β]

[−s(r)T

I Bs(r)
I − s(r)T

J Bs(r)
J + 2s(r)T

I BU (�)s(r)
J + 6 Tr

(
MĀ(r)

J Ā(r)−1

IJ Ā(r)
I

)]
. (46)

We define

ω = −s(r)T

I Bs(r)
I − s(r)T

J Bs(r)
J + 6 Tr

(
MĀ(r)

J Ā(r)−1

IJ Ā(r)
I

)
(47)

and

σ = 2 u(r) T
I B̄u(r)

J , (48)

so that Eq. (46) can be cast in the compact form


N
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗ (ω + σ cos β ) exp [C cos β]. (49)

With Eq. (40), the integration over Euler angles can be reduced to the single integration over β for which these analytical results
follow:


N
MN

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

πC2
[sinh(C)(Cω − σ ) + Cσ cosh(C)], N = 0, MN = 0,

2

πC3
{sinh(C)

[(
C2 + 2

)
σ − Cω

] + C cosh(C)(Cω − 2σ )}, N = 1, MN = 0,

2

πC4
{sinh(C)[C(C2 + 3)ω − (4C2 + 9)σ ]

+C cosh(C)[(C2 + 9)σ − 3Cω]}, N = 2, MN = 0,

0, ∀N ∈ N0, MN 	= 0.

(50)

For a list of 
N
MN

up to N = 10, see the Appendix.

C. Coulomb integral

From Ref. [47] we retrieve the Coulomb matrix element for plain FECGs as follows:

〈
φFECG

I

∣∣∣∣∣ 1∣∣ri − r j

∣∣
∣∣∣∣∣φFECG

J

〉
= S̃IJ

(
1

ST Ji jS

) 1
2

erf

⎡
⎢⎣
⎛
⎝ ST Ji jS

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦, (51)

where the vector S is defined as

S = A(r)−1

IJ

(
A(r)

I s(r)
I + A(r)

J s(r)
J

)
(52)

and

Ji j =
{

Eii if i = j,
Eii + Ej j − Ei j − Eji if i 	= j,

(53)

with (Ei j )αβ
= δαβ being an Np × Np matrix.

We now define the matrix elements for apzFECG functions as

V apzFECG
IJ[N,MN ,p] =

〈
φzFECG

I

∣∣∣∣∣ 1∣∣ri − r j

∣∣
∣∣∣∣∣P̂[N,p]

MN
φzFECG

J

〉
= S̃IJ �N

MN
, (54)
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where

�N
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗eC cos β

(
1

S̃
T

Ji j S̃

) 1
2

erf

⎡
⎢⎣
⎛
⎝ S̃

T
Ji j S̃

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦. (55)

Here, we adopt the notation of Cafiero and Adamowicz [47] which is corrected in order to account for the rotated sJ vector

S̃ = A(r)−1

IJ

(
A(r)

I s(r)
I + A(r)

J U (�)s(r)
J

)
. (56)

In order to make β explicit and solve the angular integration, we consider the following substitution:

S̃
T

Ji j S̃ = τi j + 2 s(r)T

I A(r)
I A(r)−1

IJ Ji jA
(r)−1

IJ A(r)
J U (�)s(r)

J = τi j + Fi j
(
eT

z Ũ (�)ez
) = τi j + Fi j cos β, (57)

with

τi j = s(r)T

I A(r)
I A(r)−1

IJ Ji jA
(r)−1

IJ A(r)
I s(r)

I + s(r)T

J A(r)
J A(r)−1

IJ Ji jA
(r)−1

IJ A(r)
J s(r)

J , (58)

Fi j = 2u(r)T

I Ā(r)
I Ā(r)−1

IJ J̄i j Ā
(r)−1

IJ Ā(r)
J u(r)

J . (59)

The angular integration in Eq. (55) is now written as

�N
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗ eC cos β

(
1

τi j + Fi j cos β

) 1
2

erf

⎡
⎢⎣
⎛
⎝τi j + Fi j cos β

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦. (60)

While the integration with respect to α and γ is trivial, to integrate over β ∈ [0, π ), we change the variable y ≡ τi j + Fi j cos β

so that Eq. (60) becomes

�N
MN

= e
− τi jC

Fi j

πFi j

∫ τi j+Fi j

τi j−Fi j

dy D[N]
MN MN

(y) y− 1
2 e

C
Fi j

y
erf

⎡
⎢⎣
⎛
⎝ y

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦. (61)

To change the variable of the Wigner D matrix we recall Eq. (40), namely, that the elements D[N]
00 (β ) for any N are polynomials

of cos β of degree N . Therefore, after changing the variable, the zeroth diagonal element of the Wigner D matrix can be written
as

D[N]
00 (y) =

N∑
μ=0

a[N]
μ

(
y − τi j

Fi j

)μ

=
N∑

μ=0

μ∑
k=0

μ! a[N]
μ

(μ − k)!k!
, (62)

where in the second line the power of the binomial is written explicitly. By inserting Eq. (62), the polynomial form of the Wigner
D matrix, Eq. (61) reads

�N
0 = e

− τi jC

Fi j

πFi j

N∑
μ=0

μ∑
k=0

μ!a[N]
μ

(μ − k)!k!

(
− τi j

Fi j

)μ−k( 1

Fi j

)k ∫ τi j+Fi j

τi j−Fi j

dy y− 1
2 +k e

C
Fi j

y
erf

⎡
⎢⎣
⎛
⎝ y

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦, (63)

whereas expanding the exponential in a Taylor series yields

�N
0 = e

− τi jC

Fi j

πFi j

N∑
μ=0

μ∑
k=0

μ!a[N]
μ

(μ − k)!k!

(
− τi j

Fi j

)μ−k( 1

Fi j

)k ∞∑
n=0

1

n!

(
C

Fi j

)n ∫ τi j+Fi j

τi j−Fi j

dy y− 1
2 +k+n erf

⎡
⎢⎣
⎛
⎝ y

Tr
(

J̄i j Ā
(r)−1

IJ

)
⎞
⎠

1
2

⎤
⎥⎦. (64)

The integral over y possesses an analytical solution,

�N
0 = e

− τi jC

Fi j

πFi j

N∑
μ=0

μ∑
k=0

μ!a[N]
μ

(μ − k)!k!

(
− τi j

Fi j

)μ−k( 1

Fi j

)k ∞∑
n=0

2

(2k + 2n + 1)n!

(
C

Fi j

)n

×
[
− erf

(√
t2
)
(τi j − Fi j )

k+n+ 1
2 + erf

(√
t1
)
(Fi j + τi j )

k+n+ 1
2

+
Tr
(

J̄i j Ā
(r)−1

IJ

)k+n+ 1
2

√
π

(�(k + n + 1, t1) − �(k + n + 1, t2))

]
, (65)
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with

t1 = τi j + Fi j

Tr
(
J̄i j Ā

(r)−1

IJ

) , (66)

t2 = τi j − Fi j

Tr
(
J̄i j Ā

(r)−1

IJ

) . (67)

If the resulting series in Eq. (65) is considered separately for each term, the first two can be evaluated exactly in terms of the
lower incomplete Gamma function γ (n, b), while the latter is simplified according to the properties of the incomplete Gamma
functions

�N
0 = e

− τi j ·C
Fi j

πFi j

N∑
μ=0

μ∑
k=0

μ!a[N]
μ

(μ − k)!k!

(
− τi j

Fi j

)μ−k( 1

Fi j

)k[(
− C

Fi j

)−k− 1
2

erf
(√

t1
)
γ

(
k + 1

2
,−C(Fi j + τi j )

Fi j

)

−
(

− C

Fi j

)−k− 1
2

erf
(√

t2
)
γ

(
k + 1

2
,

C(Fi j − τi j )

Fi j

)
+ 2√

π

∞∑
n=0

�(k + n + 1, t1, t2)

n!(2k + 2n + 1)

(
C

Fi j

)n

Tr
(
J̄i j Ā

(r)−1

IJ

)k+n+ 1
2

]
, (68)

where the last remaining series converges factorially and only requires the generalized incomplete Gamma functions �(n, a, b),
with n ∈ N+, that can be efficiently calculated in closed form as

�(n, t1, t2) = �(n)

(
e−t1

n−1∑
k=0

t k
1

k!
− et2

n−1∑
k=0

t k
2

k!

)
. (69)

While Eq. (68) provides a general N formula toward the calculation of Coulomb matrix elements, a closed formula can be
obtained with the “differentiation under the integral” technique from Eq. (63):

�N
0 = e

− τi jC

Fi j

πFi j

N∑
μ=0

μ∑
k=0

μ!a[N]
μ

(μ − k)!k!

(
− τi j

Fi j

)μ−k( 1

Fi j

)k

2T
1
2 F k

i j

∂k

∂Ck

∫ √
(τi j+Fi j )/T

√
(τi j−Fi j )/T

dx e
CT
Fi j

x2

erf [x], (70)

where T = Tr(J̄i j Ā
(r)−1

IJ ), the integration variable is changed according to (y/T )
1
2 = x, and the kth derivative with respect to C is

considered. The integral in Eq. (70) possesses an analytical solution,∫ b

a
dx e−qx2

erf [x] = 2
√

π

q

[
T

(
a
√

2q,
1√
q

)
− T

(
b
√

2q,
1√
q

)]
, (71)

where T (h, x) is the Owen’s T function.

D. Squared total angular momentum expectation value

To solve 〈φzFECG
I |N̂2|φapzFECG

J 〉, the squared total angular momentum expectation value for projected zFECG functions, we
start from the matrix elements for FECGs derived in our previous work [40]:〈

φFECG
I

∣∣N̂2
∣∣φFECG

J

〉 = ε′
i jk

[
2
(
s(r)T

I ω
( j,k)T

I A(r)−1

IJ ω
( j,k)
J s(r)

J

) + 4
(
wT A(r)−1

IJ ω
( j,k)
J s(r)

J

)(
wT A(r)−1

IJ ω
( j,k)
I s(r)

I

)]
SFECG

IJ , (72)

where w = A(r)
I s(r)

I + A(r)
J s(r)

J , ε′
i jk is the Levi-Civita symbol for which only the negative entries are set to zero, and

ω
(x,y)
K = Ā(r)

K ⊗ (
Exy − Eyx

)
, with K ∈ {I, J}, (73)

with (Ei j )xy = δixδ jy. Note that the i, j, and k indices are summed with Einstein’s summation convention. We recall that for
apzFECG functions, the vector s(r)

K (K ∈ {I, J}) must obey the constraint introduced in Eq. (27) and s(r)
J is subject to the rotation

operator R̂(�) involving the transformation matrix U (�). Considering Eqs. (27), (36), (28), and (73) we have〈
φzFECG

I

∣∣N̂2
∣∣φapzFECG

J[N,MN ,p]

〉 = S̃IJ �N
MN

, (74)

where

�N
MN

= ε′
i jk

∫
d�

4π3
D[N]

MN MN
(�)∗ eC cos β

(
2
(
u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
J u(r)

J

)[
eT

z (Ejk − Ek j )
T (Ejk − Ek j )Ũ (�)ez

]
+ 4

{(
u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
J u(r)

J

)[
eT

z (Ejk − Ek j )Ũ (�)ez
] + (

u(r)T

J Ā(r)
J Ā(r)−1

IJ Ā(r)
J u(r)

J

)[
eT

z Ũ (�)T (Ejk − Ek j )Ũ (�)ez
]}

× {(
u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
I u(r)

I

)[
eT

z (Ejk − Ek j )ez
] + (

u(r)T

J Ā(r)
J Ā(r)−1

IJ Ā(r)
I u(r)

I

)[
eT

z Ũ (�)T (Ejk − Ek j )ez
]})

, (75)

where C has been defined in Eq. (38).
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Furthermore, provided that ( j, k) ∈ {(2, 3), (3, 1), (1, 2)}
(see Ref. [40] for a detailed demonstration), we have

eT
z (E23 − E32)T (E23 − E32)Ũ (�)ez = cos β, (76)

eT
z (E31 − E13)T (E31 − E13)Ũ (�)ez = cos β, (77)

eT
z (E23 − E32)Ũ (�)ez = + sin α sin β, (78)

eT
z (E31 − E13)Ũ (�)ez = − cos α sin β, (79)

eT
z Ũ (�)T (E23 − E32)Ũ (�)ez = 0, (80)

eT
z Ũ (�)T (E31 − E13)Ũ (�)ez = 0, (81)

eT
z (E23 − E32)ez = 0, (82)

eT
z (E31 − E13)ez = 0, (83)

eT
z Ũ (�)T (E23 − E32)ez = − sin α sin β, (84)

eT
z Ũ (�)T (E31 − E13)ez = + cos α sin β, (85)

while it can be shown that for ( j, k) = (1, 2) all these expres-
sions evaluate to zero.

Equation (75) can now be written as

�N
MN

=
∫

d�

4π3
D[N]

MN MN
(�)∗ exp[C cos β]

× [2(C cos β ) + (C sin α sin β )(−C sin α sin β )

+ (−C cos α sin β )(C cos α sin β )], (86)

and its analytical solution to the angular integration for N = 0,
1, and 2 yields

�N
MN

=

⎧⎪⎪⎨
⎪⎪⎩

0 if N = 0, MN = 0,

2ϒ1
0 if N = 1, MN = 0,

6ϒ2
0 if N = 2, MN = 0,

0 ∀ N ∈ N0, MN 	= 0,

(87)

where ϒN
MN

are the solutions of the overlap angular integration
given in Eq. (42). This is in accordance with the expected
eigenvalue for the squared total spatial angular momentum
N (N + 1) in Hartree atomic units. For a list of �N

MN
up to

N = 5, see the Appendix.

E. Projection of the angular momentum onto the z axis

We recall the 〈N̂z〉IJ matrix elements for FECG functions
[40]〈

φFECG
I

∣∣N̂z

∣∣φFECG
J

〉 = 2

i

(
wT A(r)−1

IJ ω
(1,2)
J s(r)

J

)〈φI |φ j〉. (88)

Here, we cannot simplify the expectation value for apzFECGs
since [R̂(�), N̂z] 	= 0. The term in parentheses then becomes

wT A(r)−1

IJ ω
(1,2)
J s(r)

J = s(r)T

I A(r)
I A(r)−1

IJ ω
(1,2)
J s(r)

J + s(r)T

J A(r)
J A(r)−1

IJ ω
(1,2)
J s(r)

J

= (
u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
J u(r)

J

)(
eT

z Ũ (�′)(E21 − E12)Ũ (�)ez
)

+ (
u(r)T

J Ā(r)
J Ā(r)−1

IJ Ā(r)
J u(r)

J

)(
eT

z Ũ (�)T (E21 − E12)Ũ (�)ez
) = 0. (89)

It follows from Eqs. (80) and (81) that the latter term is zero, i.e., eT
z Ũ (�)(E21 − E12)Ũ (�)ez = 0, while the former one is

eT
z Ũ (�′)(E21 − E12)Ũ (�)ez = cos α′ sin α sin β sin β ′ − cos α sin α′ sin β sin β ′. (90)

The resulting expectation value for apzFECG functions reads〈
φ

apzFECG
I[N,MN ,p]

∣∣N̂z

∣∣φapzFECG
J[N,MN ,p]

〉 = S̃IJ

∫
d�

4π3

∫
d�′

4π3
D[N]

MN MN
(�)∗D[N]

MN MN
(�′)∗ exp[C cos β]

× (
u(r)T

I Ā(r)
I Ā(r)−1

IJ Ā(r)
J u(r)

J

)
[sin(α − α′)(sin β )2(sin β ′)2], (91)

which evaluates to zero for every N , MN pair:〈
φ

apzFECG
I[N,MN ,p]

∣∣N̂z

∣∣φapzFECG
J[N,MN ,p]

〉 = 0 ∀ N | N = (0, 1, 2, . . .), MN = (−N, . . . ,+N ). (92)

This shows that apzFECG functions have zero projection of the total angular momentum on the z axis. The results in this
section can be expanded by noting that not only the expectation value of N̂z is zero but also the corresponding eigenvalue of the
apzFECG functions,

N̂zφ
apzFECG
I [N,MN ,p] = 0. (93)

The derivation of Eq. (93) follows from the definition of φ
apzFECG
I [N,MN ,p], N̂z, and P[N,p]

MN
:

N̂zφ
apzFECG
I [N,MN ,p] = N̂zP

[N,p]
MN

φzFECG
I

(
r; A(r)

I , s(r)
I

) = N̂z

∫
d�

4π3
D[N]

MN MN
(�)∗φzFECG

I

(
r; A(r)

I ,U (�)s(r)
I

)
= 2

i

∫
d�

4π3
D[N]

MN MN
(�)∗

[
rT ω

(x,y)
I U (�)s(r)

I

]
φzFECG

I

(
r; A(r)

I ,U (�)s(r)
I

)
, (94)
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and by noting that

U (�)s(r)
I = u(r)

I ⊗ Ũ (�)ez = u(r)
I ⊗

⎛
⎝ − cos α sin β

− sin α sin β cos β

cos β

⎞
⎠.

(95)

Since D[N]
MN MN

∝ exp(−iMNγ ) and the right-hand side of
Eq. (94) do not depend on γ , the integration over the Euler
angles yields zero for all MN 	= 0. This shows that Eq. (93) is
correct, and additionally, we have

φ
apzFECG
I [N,MN ,p] = P̂[N,p]

MN
φzFECG

I = 0 ∀ MN 	= 0, (96)

i.e., there is no component of φzFECG
I on the MN 	= 0

eigenspaces.

F. Elimination of center-of-mass contamination

Contributions from the center of mass are eliminated from
the expectation values according to the protocol devised in
Refs. [42,43]. First, the variational matrices A(r) and the
variational vectors s(r) are manipulated in a given TICC, A(x)

and s(x), respectively, and defined in block diagonal form:

Ā(r)
I =U T

x

(
A(x)

I 0
0 cA

)
Ux, (97)

s(r)
I = Ux

(
s(x)

I
cS

)
= Ux

(
u(x)

I
cSz

)
⊗ ez, (98)

where the Np − 1 × Np − 1 matrix A(x)
I and the Np − 1 vector

u(x)
I are related to the internal coordinates, while cA and cSz

are scalar parameters associated with the center of mass. Note
the superscript distinguishing the LFCC set {r} from a generic
TICC set {x}. Although the choice of zero for both cA and cSz

for all I ∈ {1, . . . , Nb} would systematically cancel center-of-
mass contributions from every expectation value, cA = 0 leads
to a singular matrix AI , which violates the square-integrable
and positive-definiteness requirements for the basis functions.

We note that the choice of cA = 1 and cSz = 0 implies
that every FECG, zFECG, or apzFECG function is exactly
factorizable into a spherical Gaussian centered at the origin
for the center-of-mass coordinate, and an FECG function
for the Np − 1 internal coordinates. In fact, the FECG in
(transformed) TICC coordinates {x} can be written as

φFECG
I = exp

[
−
(

x − s(x)
I

xCM − cS

)T(A(x)
I 0
0 cA

)(
x − s(x)

I
xCM − cS

)]

= exp
[−(

x − s(x)
I

)TA(x)
I

(
x − s(x)

I

)]
exp

[−x2
CM

]
.

(99)

We choose not to evaluate the integral matrix elements
with basis functions and operators in a (transformed) TICC
set. Instead, we carry out the integrations straightforwardly
in the simple LFCC set and correct a posteriori the resulting
expression by subtracting center-of-mass-dependent terms as
described in our previous work. Hence, elimination of center-
of-mass contaminations is equivalent to subtraction of the
residual cA terms [42,43].

We start detecting cA-dependent terms from the C factor.
To this aim, we transform it to the TICC sets {x} and {y}, for

the Ith and Jth basis functions, respectively,

C = 2u(r) T
I Ā(r)

I Ā(r)−1

IJ Ā(r)
J u(r)

J

= 2u(r) T
I

[
U T

x Ā(x)
I UxĀ(r)−1

IJ U T
y Ā(y)

I Uy
]
u(r)

J

= 2u(r) T
I

[
U T

x

(
A(x)

I 0
0 cA

)(
A−1

IJ 0
0 1

2cA

)(
A(y)

J 0
0 cA

)
Ux

]
u(r)

J

= 2
(

u(x)
I cSz

)(A(x)
I A−1

IJ A
(y)
J 0

0 cA
2

)(
u(y)

J
cSz

)
, (100)

where AIJ = AI + AJ . In the third step, the following math-
ematical relation is employed [43]:

UxĀ−1
IJ U T

y =
(
A−1

IJ 0
0 1

2cA

)
. (101)

From Eq. (100) it follows that the center-of-mass contribu-
tions to C are zero for cSz = 0. For this reason, since the
expectation value of the total angular momentum squared
operator depends solely on C terms, we conclude that it is
free of center-of-mass contaminations.

The only center-of-mass-dependent term arising in the
analytical kinetic energy integral with the favorable choice
cSz = 0 is the R term defined as

R = Tr
(
MA(r)

J A(r)−1

IJ A(r)
I

)
. (102)

The translational contamination can now be eliminated by
replacing

Rcorr. = R − 1
4 cAcM , (103)

with cM = ∑Np

i=0 mi being the total mass of the system. We
emphasize that minimization of the energy with respect to
translationally invariant parameters only excludes the center-
of-mass coordinate and, hence, reduces the original problem
for Np particles to a simpler optimization problem for Np − 1
pseudoparticles with lower complexity.

G. Numerical stability

We investigate the numerical stability of the analytical
matrix elements in finite-precision arithmetic. A naive imple-
mentation of the integral expressions results in ill-conditioned
overlap and Hamiltonian matrices because of the hyperbolic
functions. To restore numerical stability, we introduce normal-
ization for the basis functions, defined as

�
apzFECG
I [N,MN ,p] = P̂[N,p]

MN
φzFECG

I∣∣φapzFECG
I [N,MN ,p]

∣∣ , (104)

where the normalization factor is∣∣φ[N,MN ]
I

∣∣ = 〈
P̂[N,p]

MN
φ

apzFECG
I[N,MN ,p]

∣∣P̂[N,p]
MN

φ
apzFECG
I[N,MN ,p]

〉 1
2 . (105)

Matrix elements OapzFECG
IJ for a generic operator Ô are then

evaluated as〈
�

apzFECG
I[N,MN ,p]

∣∣Ô∣∣�apzFECG
J[N,MN ,p]

〉
=

〈
P̂[N,p]

MN
φzFECG

I[N,MN ,p]

∣∣Ô∣∣P̂[N,p]
MN

φzFECG
J[N,MN ,p]

〉
∣∣φapzFECG

I[N,MN ,p]

∣∣∣∣φapzFECG
J[N,MN ,p]

∣∣ . (106)
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TABLE I. Nonrelativistic energies of H2
+ = {p+, p+, e−}, compared with results from Ref. [53] in the last column. The calculations

include all possible Jacobi coordinates, the heavy-particle-centered, and the center-of-mass-centered coordinate sets. Here, �E = E (Ref.
[53]) − 〈Ĥ〉.

〈Ĥ〉/Eh (Nb = 400) η 〈Ĥ〉Ref./Eh (Nb = 4000) �E/nEh

N = 0 −0.597 139 062 111 10−9 −0.597 139 063 079 −0.968
N = 1 −0.596 873 736 772 10−9 −0.596 873 738 784 −2.012
N = 2 −0.596 345 204 133 10−9 −0.596 345 205 489 −1.356

Although the normalization of apzFECGs assures well-
conditioned representation matrices for the quantum mechan-
ical operators, extreme C values cause overflow of the hyper-
bolic sine and cosine functions as well as cancellation errors
in the kinetic energy terms because of the high powers of C.
To remedy these two sources of errors, we differentiate the
integral evaluation scheme for different orders of magnitude
of C by allowing higher-precision arithmetic to be employed
when needed. In particular, we detected possible sources of
numerical instabilities for |C| > 700 when working in double-
precision floating point arithmetic. However, quadruple pre-
cision suffices for achieving the desired accuracy for every
test calculations with unconstrained optimization of the vari-
ational parameters. While basis functions yielding |C| > 700
can also be discarded, we prefer the latter strategy to keep
the energy function continuous with respect to the variational
parameters.

The accuracy and convergence of special functions, i.e., the
hyperbolic sine and cosine functions and the generalized in-
complete Gamma functions, converge to 0.9 ε for every point
without the need to resort to higher-precision arithmetics. The
latter we implemented for the handling of particularly difficult
cases following Refs. [48,49].

Comparing apzFECGs for N = 0 and the spherically sym-
metric (simple) ECG functions, we note that the former re-
quire systematically less function evaluations to reach a given
accuracy. Simple ECG functions are plagued by problems of
linear dependence in the basis during energy optimization
of a polyatomic system. In diatomics, there exists a large
nuclear density at a distance to the origin in relative coordi-
nates. Simple ECG functions account for this by requiring
nearly overlapping terms in the linear combinations with
large matching linear coefficients of opposite sign. This near-
linear dependency in the basis complicates optimization and
yields numerically unstable eigensystems with ill-conditioned
Hamiltonian matrices. Conversely, we did not encounter such
severe near-linear dependencies with apzFECG functions be-
cause these functions can effectively separate the proton den-
sities along an axis.

VI. NUMERICAL RESULTS

The formulas derived we implemented in a C++ computer
program. These analytical expressions allow us to calcu-
late matrix elements reliably. Other sources of error such
as numerical integration or truncation of infinite series are
eliminated by our approach.

As test examples for the basis function presented in
this work we chose the dihydrogen molecular ion, H2

+ =
{p+, p+, e−}, and dihydrogen, H2 = {p+, p+, e−, e−}, treated
explicitly as three- and four-particle systems, respectively.
The Born-Oppenheimer approximation is not invoked, i.e.,
nuclei and electrons are described on equal footing. The
energies obtained for the first three rotational states are
shown in Tables I and II, respectively. For each state, we
optimized a different basis set consisting of 400 and 600
zFECG functions, respectively. Matrix elements were calcu-
lated as discussed in Sec. V where the projection operator
was applied to the ket function. The virial coefficient η =
|1 + 〈�|V̂ |�〉/(2〈�|T̂ |�〉)| vanishes for the exact solution
[41], so that it represents a diagnostic for the overall quality of
the variationally optimized wave function. The basis-set size
was gradually increased following the competitive selection
method [41] for which the newer basis functions entering the
basis set are selected from a large pool of randomly generated
trial functions. A simultaneous refinement of the nonlinear
variational parameters was crucial to achieve efficient energy
convergence. This optimization problem of minimizing the
energy with respect to the set of nonlinear parameters is
a difficult problem as the objective function is nonconvex,
nonseparable, and often (Sec. V G) ill conditioned. We relied
on two derivative-free algorithms: the subplex algorithm by
Rowan [50] and the principal axis method discussed by Brent
[51]. In our computer implementation of both methods, we
used the NLOPT package [52]. We employed our multichannel
optimization approach presented in our previous work [43],
and we have included every possible set of Jacobi coordinates,
the heavy-particle-centered coordinates, and the center-of-
mass-centered coordinates. The construction of the Gaussian
parameters through different U TICC

a maps allows us to explore

TABLE II. Nonrelativistic energies of H2 = {p+, p+, e−, e−}, compared with results from Ref. [54] in the last column. The calculations
include all possible Jacobi coordinates, the heavy-particle-centered, and the center-of-mass-centered coordinate sets. Here, �E = E (Ref.
[54]) − 〈Ĥ〉.

〈Ĥ〉/Eh (Nb = 600) η 〈Ĥ〉Ref./Eh (Nb = 4200) �E/nEh

N = 0 −1.164 025 024 82 10−8 −1.164 025 031 −6.18
N = 1 −1.163 485 167 09 10−8 −1.163 485 173 −5.91
N = 2 −1.162 410 405 66 10−7 −1.162 410 409 −3.34
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the parameter space faster and to describe different groupings
of the particles with the most appropriate TICC set. These
calculations were carried out using message passing inter-
face parallelization on six multiprocessor computer platforms
(e.g., the AMD Opteron Processor 6376).

We compare the results for H2
+ and H2 with Refs. [53,54],

respectively. Earlier results obtained with unprojected FECG
and numerically projected FECG functions (with three-
dimensional shifted centers) for H2 with a basis set size
of Nb = 1560 are 1.162 739 and 1.163 998 Eh, respectively
[40]. The wall time of these earlier calculations was about
three months. Our best result with only 600 linearly com-
bined apzFECGs for the rotational ground state of H2 is
−1.164 025 024 82 Eh. Accordingly, the wall time of the cal-
culation was reduced to about two months, yielding a result of
higher accuracy. Investigating the results in Tables I and II, we
observe that the energies are well converged with the number
of basis functions. The optimized basis-function parameters
are deposited in the Supplemental Material [55].

VII. CONCLUSIONS

Projection techniques increase the effectiveness of varia-
tional basis function optimization carried out in the desired
eigenspace. The formalism developed in this paper analyti-
cally solves the projection-based approach for the subset of
explicitly correlated floating Gaussian functions having shift
vectors aligned on one axis. We have derived analytical ex-
pressions of important matrix elements for projected zFECGs
with arbitrary angular momentum and parity configurations.
The resulting analytically projected zFECGs can potentially
target any rotational state. This can be done efficiently because
they are eigenfunctions of the total (nuclei plus electrons)
squared spatial angular momentum operator N̂2 with eigen-
value N and of N̂z with eigenvalue MN = 0. Since only states
with zero total spatial angular momentum projection onto the
z axis can be accessed, among the 2N + 1 degenerate states
with MN = −N, . . . ,+N , these functions are not suited in
applications for which these degeneracies are lifted, e.g., in

the presence of external magnetic fields. Despite this limi-
tation, projected zFECGs address the problem of targeting
rotationally excited states exactly, whereas other explicitly
correlated basis functions either specialize on one specific N
considering only lowest-order angular momentum couplings
for the ease of the Hamiltonian matrix elements, or resemble
the correct partial wave decomposition only for very high
linear combinations and in the variational limit with the so-
called global vector representation. The numerical examples
presented demonstrate the correctness of the derived formulas
and the applicability of the approach to excited rotational
states of small molecules.

Particularly interesting will be the application of our ana-
lytical projection method to shift vectors lying on a plane and
the extension to floating Gaussian functions with preexponen-
tial factors which can well represent the radial nodes of, for
example, pure vibrational states. Such calculations are beyond
the scope of the present paper and are therefore deferred to
future work.
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APPENDIX: LIST OF INTEGRALS

This Appendix reviews the solutions to the principal in-
tegrals of the overlap, kinetic, and total angular momentum
squared integral matrix elements for apzFECG functions. All
formulas have been checked for consistency against multiple
implementations and known special cases (sI = 0, C = 0).
The list of analytical solution to the principal integrals for N ∈
[0, 10] is as follows:

ϒ0
0 = 2

πC
sinh(C), (A1)

ϒ1
0 = 2

πC
cosh(C) − 2

πC2
sinh(C), (A2)

ϒ2
0 = 2

πC3
[(C2 + 3) sinh(C) − 3C cosh(C)], (A3)

ϒ3
0 = 2

πC4
[C(C2 + 15) cosh(C) − 3(2C2 + 5) sinh(C)], (A4)

ϒ4
0 = 2

πC5
[(C4 + 45C2 + 105) sinh(C) − 5C(2C2 + 21) cosh(C)], (A5)

ϒ5
0 = 2

πC6
[C(C4 + 105C2 + 945) cosh(C) − 15(C4 + 28C2 + 63) sinh(C)], (A6)

ϒ6
0 = 2

πC7
[(C6 + 210C4 + 4725C2 + 10395) sinh(C) − 21C(C4 + 60C2 + 495) cosh(C)], (A7)

ϒ7
0 = 2

πC8
[C(C6 + 378C4 + 17325C2 + 135135) cosh(C) − 7(4C6 + 450C4 + 8910C2 + 19305) sinh(C)], (A8)

ϒ8
0 = 2

πC9
[(C8 + 630C6 + 51975C4 + 945945C2 + 2027025) sinh(C) − 9C(4C6 + 770C4 + 30030C2 + 225225) cosh(C)],

(A9)

ϒ9
0 = 2

πC10
[C(C8 + 990C6 + 135135C4 + 4729725C2 + 34459425) cosh(C)

− 45(C8 + 308C6 + 21021C4 + 360360C2 + 765765) sinh(C)], (A10)
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ϒ10
0 = 2

πC11
[(C10 + 1485C8 + 315315C6 + 18918900C4 + 310134825C2 + 654729075) sinh(C)

− 55C(C8 + 468C6 + 51597C4 + 1670760C2 + 11904165) cosh(C)], (A11)


0
0 = 2

πC2
[sinh(C)(Cω − σ ) + Cσ cosh(C)], (A12)


1
0 = 2

πC3
{sinh(C)[(C2 + 2)σ − Cω] + C cosh(C)(Cω − 2σ )}, (A13)


2
0 = 2

πC4
{sinh(C)[C(C2 + 3)ω − (4C2 + 9)σ ]}, (A14)


3
0 = 2

πC5
{C cosh(C)[C(C2 + 15)ω − (7C2 + 60)σ ] + sinh(C)[(C4 + 27C2 + 60)σ − 3C(2C2 + 5)ω]}, (A15)


4
0 = 2

πC6
{sinh(C)[C(C4 + 45C2 + 105)ω − (11C4 + 240C2 + 525)σ ]

+ C cosh(C)[(C4 + 65C2 + 525)σ − 5C(2C2 + 21)ω]}, (A16)


5
0 = 2

πC7
{C cosh(C)[C(C4 + 105C2 + 945)ω − (16C4 + 735C2 + 5670)σ ]

+ sinh(C)[(C6 + 135C4 + 2625C2 + 5670)σ − 15C(C4 + 28C2 + 63)ω]}, (A17)


6
0 = 2

πC8
{sinh(C)[C(C6 + 210C4 + 4725C2 + 10395)ω − (22C6 + 1890C4 + 34020C2 + 72765)σ ]

+ C cosh(C)[(C6 + 252C4 + 9765C2 + 72765)σ − 21C(C4 + 60C2 + 495)ω]}, (A18)


7
0 = 2

πC9
{cosh(C)[C(C6 + 378C4 + 17325C2 + 135135)ω − (29C6 + 4284C4 + 148995C2 + 1081080)σ ]

+ sinh(C)[(C8 + 434C6 + 29925C4 + 509355C2 + 1081080)σ − 7C(4C6 + 450C4 + 8910C2 + 19305)ω]}, (A19)


8
0 = 2

πC10
{sinh(C)[C(C8 + 630C6 + 51975C4 + 945945C2 + 2027025)ω − (37C8 + 8820C6 + 530145C4

+ 8648640C2 + 18243225)σ ] + C cosh(C)[(C8 + 702C6 + 79695C4 + 2567565C2 + 18243225)σ

− 9C(4C6 + 770C4 + 30030C2 + 225225)ω]}, (A20)


9
0 = 2

πC11
{C cosh(C)[C(C8 + 990C6 + 135135C4 + 4729725C2 + 34459425)ω

− (46C8 + 16830C6 + 1621620C4 + 49324275C2 + 344594250)σ ]

+ sinh(C)[(C10 + 1080C8 + 190575C6 + 10405395C4 + 164189025C2 + 344594250)σ

− 45C(C8 + 308C6 + 21021C4 + 360360C2 + 765765)ω]}, (A21)


10
0 = 2

πC12
{sinh(C)[C(C10 + 1485C8 + 315315C6 + 18918900C4

+ 310134825C2 + 654729075)ω − (56C10 + 30195C8 + 4414410C6 + 224324100C4

+ 3445942500C2 + 7202019825)σ ] + C cosh(C)[(C10 + 1595C8 + 418275C6

+ 35945910C4 + 1045269225C2 + 7202019825)σ

− 55C(C8 + 468C6 + 51597C4 + 1670760C2 + 11904165)ω]}, (A22)

�0
0 = 0, (A23)

�1
0 = 2ϒ1

0 , (A24)

�2
0 = 6ϒ2

0 , (A25)

�3
0 = 12ϒ3

0 , (A26)

�4
0 = 20ϒ4

0 , (A27)

�5
0 = 30ϒ5

0 . (A28)
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