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Measurement-device-independent continuous-variable quantum key distribution (MDI-CVQKD) protocol
calibrates the phase reference frames by transmitting local oscillator pulses between two legitimate parties.
The above implementation leaves massive loopholes; in particular, an eavesdropper can attack the system
by manipulating the power of the local oscillator pulses. In this paper, a Bayesian phase-noise estimation
model is proposed to estimate the phase drift and its uncertainty in the MDI-CVQKD protocol. The model
employs the Bayesian estimation of the very weak quantum signal pulses and eliminates the necessity of
transmitting local oscillator pulses between two legitimate parties. Moreover, the Bayesian inference algorithm
has the characteristic of high robustness to noise and can achieve a well-motivated confidence interval of
the estimated eigenphase. Comparing with its Gaussian counterpart, we adopt the discrete modulation in the
MDI-CVQKD protocol, which allows a much better reconciliation efficiency at low signal-to-noise ratio. With
simpler implementation, the proposed Bayesian phase-noise estimation model precisely avoids the security
bottleneck due to the transmitted local oscillator pulses.
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I. INTRODUCTION

Continuous-variable quantum key distribution (CVQKD)
[1–5], as a competitor to the traditional discrete-variable
counterpart, encodes the key information on the quadratures
of the light field, and adopts coherent detection, such as
homodyne and heterodyne detection, to measure the received
signal. Its security of the shared keys is guaranteed by the
laws of quantum physics [6–9]. From a practical point of
view, the continuous variable enjoys a number of advantages
for quantum key distribution: it has higher key generation
rate and better compatibility with existing communication
systems [10–13], which has developed rapidly in recent years.
Significant efforts have been made to establish the system of
CVQKD, such as the thermal-state protocol [14–17], unidi-
mensional protocol [18,19], two-way protocol [20], finite-size
aspect [7–9], quantum router [21,22] and quantum repeater
[23], experimental [24–26], and postprocessing protocols
[10,27,28].

With the rapid development and application of complex
networks, researchers have progressively extended the field
of continuous-variable quantum cryptography from point
to point to a more robust end-to-end formulation. One of
the most valuable measurements is the measurement-device-
independent (MDI) CVQKD [29,30], which removes the
loopholes of the practical detectors and solves all the side-
channel attacks against detectors. MDI-CVQKD was pro-
posed in Ref. [31] both theoretically and experimentally.
In MDI-CVQKD protocol, a basic network topology is
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constructed where two legitimate parties (i.e., Alice and Bob)
connect to a distrusted intermediate relay (i.e., Charlie) for
communication via insecure links. The intermediate relay
receives quantum states sent by Alice and Bob and then
performs Bell-state measurement. Such measurement results
will be used by two legitimate parties in a postprocessing
step to generate secure keys. The MDI-CVQKD protocol has
been modified with phase self-alignment [32], noiseless linear
amplifiers [33], and squeezed states [34]. So far, the best
decoding strategy is to guess which variable of the party is
closer to the relay [31], though the maximal transmission
distance of MDI-CVQKD is still unsatisfactory in the prac-
tical implementation. One of the main obstacles is that the
MDI-CVQKD protocol is based on the Gaussian modulation
and Gaussian states, which results in the lower reconciliation
efficiency in the case of long distance transmission with low
signal-to-noise ratio.

Compared with its Gaussian counterpart, the discrete mod-
ulation has the advantage of the simpler implementation and
longer achievable maximal transmission distance [35]. The
first discretely modulated CVQKD protocol was proposed in
Ref. [36], which is based on a binary encoding of coherent
states. Its security has been proven against Gaussian attacks
[35] and general attacks [37]. Besides, the discrete modulation
also has good compatibility with an efficient error correction
code, which leads to higher reconciliation efficiency even at
low signal-to-noise ratio. According to the above mentioned,
in this manuscript, we continue to investigate the MDI-
CVQKD protocol by employing the discrete modulation. It
also has been demonstrated that the MDI-CVQKD protocol
with the discrete modulation is secure against collective at-
tacks in the asymptotic limit [37]. Without loss of generality,
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we mainly focus on the eight-state scheme [38]; in particular,
the legitimate parties prepare eight nonorthogonal coherent
states, and exploit the sign of measured quadratures of each
state to encode the bits of the secret key rate.

In the practical system of MDI-CVQKD, the light sources
of two legitimate parties are independent, so that the initial
optical pulses they emit may not stay in the same phase
reference frame. Therefore, the local oscillator pulses are
employed as the phase reference light of signal pulses in
the conventional MDI-CVQKD protocols [39]. First, Alice
divides its local oscillator pulses into two beams; a fraction
is sent to Charlie for Bell-state measurement and the other
portion is sent to Bob. After receiving the local oscillator
pulses sent by Alice, Bob interferes with his locally gener-
ated local oscillator pulses. Subsequently, Bob performs the
relative phase estimation and correction, and then adds the
phase difference to his quantum signal pulses. Hence the two
legitimate parties stay in the same phase reference frame.
Practically, the oscillator pulses are strong classical light, so
that an eavesdropper can manipulate it to attack the system,
such as intercept-resend attack [40], calibration attack [41],
wavelength attack [42,43], jitter in clock synchronization at-
tack [44], and polarization attack [45]. Therefore, transmitting
local oscillator pulses from Alice to Bob leaves a massive
loophole for eavesdroppers. In order to prevent LO attacks
altogether, Qi et al. [46], Soh et al. [47], and Huang et al. [13]
propose a self-reference scheme where Bob could generate the
local oscillator locally. Nevertheless, the security would also
be reduced when propagating the referenced pulse through
the optical fiber. For instance, Ren et al. propose a reference
pulse attack that even a local oscillator locally could be
vulnerable to a hacking attack if the trusted parties assume
that the phase noise is trusted, but cannot be used by Eve [48].

In the discretely modulated MDI-CVQKD protocol, we
propose a Bayesian phase-noise estimation model to estimate
the phase drift and its uncertainty. In the Bayesian model, at
Alice’s side, quantum signal pulses output from the laser splits
into two portions, a fraction of which is sent to Charlie; the
other portion is sent to Bob. At Bob’s side, his quantum signal
pulses are sent to Charlie, meanwhile, his local oscillator
pulses also split into two portions, a fraction of which is
sent to Charlie for Bell-state measurement; the other portion
interferes with Alice’s received quantum signal pulses to
perform Bayesian phase estimation [49]. The model employs
the Bayesian estimator of the very weak quantum signal
pulses and eliminates the necessity of transmitting a local
oscillator pulse from Alice to Bob. Hence the scheme could
avoid the security vulnerabilities caused by transmitted local
oscillator pulses. Besides, the Bayesian inference algorithm
has the characteristic of high robustness to noise and can
achieve a well-motivated confidence interval of the estimated
eigenphase [50,51].

This paper is structured as follows. In Sec. II, it presents
the eight-state MDI-CVQKD protocol, especially the prepare-
and-measure version and entanglement-based version. Then it
derives the secret key rate and gives the numerical simulation
and performance analysis of the proposal. In Sec. III, to
achieve the phase-noise estimation for the eight-state MDI-
CVQKD protocol, how to utilize the Bayesian inference al-
gorithm is discussed. Besides, the practical security of the

FIG. 1. PM scheme of the eight-state MDI-CVQKD protocol.
BS, beam splitter; Discrete Mod., discrete modulation; Hom, homo-
dyne detection.

proposal is analyzed. Finally, the conclusion is drawn in
Sec. IV.

II. Discretely modulated MDI-CVQKD protocol

In this section, we first review the basic notions related to
the discrete modulation. Without loss of generality, we mainly
focus on the eight-state scheme [38,52]. Then we present the
discretely modulated MDI-CVQKD protocol, especially the
prepare-and-measure (PM) version and entanglement-based
(EB) version.

A. MDI-CVQKD with discrete modulation

In the MDI-CVQKD protocol, the PM version is equal to
the EB version. To be specific, the PM version is applied to
implementation, while the equivalent EB version is conve-
nient for security analysis [53]. We introduce the PM version
first, then the EB version. As shown in Fig. 1, the standard PM
version description of the eight-state MDI-CVQKD protocol
is described as follows.

Step 1. Alice randomly prepares coherent state |�〉 = |q̂A +
i p̂A〉 from the data set

{|αk〉|αk = α ei kπ
4 , for k ∈ {0, 1, 2, . . . , 7}}, (1)

while Bob randomly prepares another coherent state |ς〉 =
|q̂B + i p̂B〉. Here, α is a positive number related to the modula-
tion variance VM = 2α2 of coherent states. The two modes are
then sent to Charlie to perform a Bell-state measurement, the
detection of which corresponds to measuring the quadrature
operations q̂− = (q̂A − iq̂B)/

√
2 and q̂+ = ( p̂A + i p̂B)/

√
2.

Step 2. The classical outcome χ is combined in a complex
variable χ = (q̂− + i p̂+)/

√
2, and then measurement results

are publicly announced by Charlie.
Step 3. Bob infers the variable of Alice by simple post-

processing such as ς∗ + χ = ρ. Here, ∗ represents conjugate
property of the complex number.

Step 4. Alice and Bob use an authenticated channel to
achieve parameter estimation, information reconciliation, and
privacy amplification.

In the EB version, as shown in Fig. 10, Alice and
Bob prepare two-mode squeezed states (TMSSs) |�8〉A1A2

and |�8〉B1B2 , respectively. Here, the variances of the two
modes are VA = VB = 1 + VM . The two-mode entangled state
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prepared by Alice and Bob is

|�8〉 =
7∑

k=0

√
λk|φk〉|φk〉 = 1

4

7∑
k=0

|�k〉|αk〉, (2)

with the notation

|�k〉 = 1

2

7∑
m=0

e
i(4k+1)mπ

4 |φm〉, (3)

with m ∈ {0, 1, 2, . . . , 7} and

|φk〉 = e−α2/2

√
λk

∞∑
i=0

α8n+k

√
(8n + k)!

|8n + k〉, (4)

for k ∈ {0, 1, 2, . . . , 7} and

λ0,4 = 1

4
e−α2

(
coshα2 + cosα2 ± 2 cos

α2

√
2

cosh
α2

√
2

)
,

λ1,5 = 1

4
e−α2

(
sinhα2 + sinα2 ±

√
2 cos

α2

√
2

sinh
α2

√
2

±
√

2 sin
α2

√
2

cosh
α2

√
2

)
,

λ2,6 = 1

4
e−α2

(
coshα2 − cosα2 ± 2 sin

α2

√
2

sinh
α2

√
2

)
,

λ3,7 = 1

4
e−α2

(
sinhα2 − sinα2 ∓

√
2 cos

α2

√
2

sinh
α2

√
2

±
√

2 sin
α2

√
2

cosh
α2

√
2

)
. (5)

Accordingly, the covariance matrix ΓA1A2 of the state |�8〉 can
be expressed as

Γ8 =
(

XI2 Z8σZ

Z8σZ Y I2

)
, (6)

with the notation X = 1 + 2α2, Y = 1 + 2α2, Z8 =
2α2 ∑7

k=0 λ
3/2
k−1λ

−1/2
k , I2 = diag(1, 1), and σZ = diag(1,−1).

Though the discretely modulated MDI-CVQKD protocol may
extremely improve the transmission distances, however, the
unconditional security proof of the discrete modulation relies
on the linear channel assumption [54]. It is worth mentioning
that utilizing the decoy states can solve the above assumption
and avoid the states-discrimination attack in the discretely
modulated MDI-CVQKD protocol [55]. Besides, the secret
key rate of eight-state protocol is analyzed in Appendix A.

B. Performance analysis

In Eq. (A3), the covariance matrix A1B′
1

has the same form
as in the Gaussian modulation protocol, where Z8 would be
replaced by the correlation of a two-mode squeezed vacuum
ZG = √

V 2
M + 2VM . As depicted in Fig. 2, when VM is suffi-

ciently low, Z8 is very close to ZG. For VM � 1, Z8 and ZG are
almost indistinguishable. That is to say, in the above region,
the bound on the maximal information available to Eve is very
similar in these two protocols. Hence the optimal regime of
the modulation variance VM is from 0 to 1. Besides, Fig. 2 also
compares the correlation parameter Z8 and Z4. We can see that
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FIG. 2. Comparison of the correlation Z8 for the eight-state
protocol, Z4 for the four-state protocol, and ZG for the Gaussian
modulation protocol as a function of the modulation variance VM .
SNU represents shot-noise units.

the amount of correlation between the trusted parties’ signals
of the eight-state protocol has been enhanced by four-state
protocol. This may imply that eight-state protocol can achieve
higher key rates in the optimal regime. In what follows, we
will discuss the optimal regime in the simulation results when
we optimize the secret key rate.

Numerical simulations are employed to reveal how param-
eter VM affects the performance. In order to find an optimal VM

to maximize the secret key rate in the asymmetric scenario,
we need to scan VM within a legitimate region. Figure 3 shows
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FIG. 3. Compressed variation trend of modulation variance VM

optimal interval of the eight-state and four-state MDI-CVQKD pro-
tocol with different transmission distance in the asymmetric scenario.
Here, Charlie is extremely to Bob in the asymmetric scenario (LBC =
0) [34,53,56,57]. Transmission distance from Alice to Charlie is set
as 20 km, 25 km, 30 km, and 35 km, respectively. Other parameters
are set as εA = εB = 0.002 and β = 0.99.
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FIG. 4. Secret key rates as a function of the transmission distance
in the asymmetric scenario. Here, Charlie is extremely to Bob in the
asymmetric scenario (LBC = 0). The solid lines denote the eight-state
protocol, the dot-dashed lines denote the four-state protocol [58], and
the dashed lines denote the Gaussian-modulated protocol [31].

the secret key rates as a function of the modulation VM in the
asymmetric scenario, for both the eight-state and four-state
protocol. The eight-state protocol is denoted by solid lines
and the four-state protocol is denoted by dashed lines. As
shown in Fig. 3, it is obvious that there exists a global optimal
VM that makes key rates achieve the maximum value with
different transmission distance in the asymmetric scenario. To
be specific, the optimal value of the modulation variance VM

is approximately 0.8 and 0.45 in the eight-state and four-state
protocol, respectively. By comparing, we can also conclude
that the modulation variance range of the eight-state protocol

is wider than that of the four-state protocol. Moreover, the
maximum key rates and the optimal modulation variance
of the eight-state protocol are both larger than that of the
four-state protocol under the same scenarios. Besides, from
the simulation results shown in Fig. 3, the numerical areas
of VM that make key rates achieve maximum are gradually
compressed when the transmission distance increases.

Figure 4 depicts the relationship between the secret key
rates and the transmission distance in the asymmetric sce-
nario, for eight-state, four-state, and Gaussian-modulated pro-
tocol. The eight-state protocol is denoted by solid lines,
while the four-state and Gaussian-modulated protocols are de-
noted by dot-dashed lines and dashed lines, respectively. For
one thing, the maximum transmission distance of discretely
modulated protocol, such as the eight state and four state, is al-
ways longer than that of the Gaussian-modulated protocol. For
another, the eight-state protocol is obviously outperformed by
the four-state protocol, which can achieve higher secret key
rates and longer transmission distance.

Subsequently, we consider the performance of the symmet-
ric scenario, where the length of two independent quantum
channels is equal. As we mentioned above, in order to find an
optimal modulation variance VM to maximize the secret key
rate in the symmetric scenario, we need to scan VM within
a legitimate region. Figure 5(a) shows the secret key rates
as a function of the VM in the symmetric scenario, for both
eight-state and four-state protocols. In particular, the optimal
value of the VM is approximately 1 and 0.5 in the eight-state
and four-state protocols, respectively. The maximum key rates
and the optimal modulation variance of the eight state and
four state are both larger than that of the four-state protocol
in the symmetric scenario, which is similar to what is shown
in Fig. 3. Figure 5(b) depicts the relationship between the
secret key rates and the transmission distance in the symmetric
scenario with different excess noise, for both eight-state and
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FIG. 5. (a) The compressed variation trend of modulation variance VM optimal interval of the eight-state and four-state protocol with
different transmission distance in the symmetric scenario. Here, the length of two independent quantum channels is equal. Other parameters
are set as εA = εB = 0.002 and β = 0.99. (b) Secret key rates as a function of the transmission distance in the symmetric scenario with
different excess noise. The optimal modulation VM of eight-state and four-state protocols is set as 1 and 0.5, respectively. Here, the black solid
line represents the secret-key capacity [60].
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FIG. 6. Schematic structure of Bayesian phase-noise estimation.
BS, beam splitter; Att., attenuator; PNRD, photon number resolving
detector.

four-state protocol. As we mentioned above, we let VM of
eight state equal 1 and four state equal 0.5 in the symmetric
scenario, which leads to the maximum secret key rates. The
performance of discretely modulated MDI-CVQKD proto-
col in the symmetric scenario is far worse than that in the
asymmetric scenario. Though we cannot achieve the secret
key in longer distance of the symmetric scenario, it is still
meaningful to analyze for a practical topology network where
several players are roughly equidistant from the intermediate
router.

III. DISCRETELY MODULATED MDI-CVQKD
WITH BAYESIAN PHASE-NOISE ESTIMATION

A. Bayesian phase-noise estimation

In this section, we mainly discuss how to utilize the
Bayesian inference algorithm to achieve the phase reference
calibration in discretely modulated MDI-CVQKD protocol.
For the sake of simplicity, we mainly focus on the eight-state
MDI-CVQKD protocol. As depicted in Fig. 6, at Alice’s
side, quantum signal pulses’ output from the laser splits into
two portions with an intensity ratio of 50:50, a fraction of
which is sent to Charlie; the other portion is sent to Bob.
At Bob’s side, his local oscillator pulses also split into two
portions with an intensity ratio of 50:50, a fraction of which
is sent to Charlie; the other portion interferes with Alice’s
quantum signal pulses received through the beam splitter.
By interfering with Alice’s quantum signal pulses and Bob’s
oscillator pulses, the phase drift and phase variance can be
measured with a photon number resolving detector (PNRD)
and Bayesian inference algorithm. At Charlie’s side, he splits
the received local oscillator pulses into two beams to interfere
with the two received quantum signal pulses. And then Charlie
uses two homodyne detection for Bell-state measurement and
publicly announces the measurement results. The proposed
Bayesian phase estimation model, which is depicted in Fig. 6,
executes the following steps.

Step 1. Bayesian approach requires an initial prior dis-
tribution P (φ) representing the confidence that the current
hypotheses is the correct eigenphase. We achieve this by using
a Gaussian with mean μ and variance σ 2 to model the initial
prior distribution. The Gaussian with mean μ and variance σ 2

can be denoted as N(φ|μ, σ 2).
Step 2. The result of each new measurement � is used to

update the mean and standard derivation based on the Bayes’
rule that the probability distribution for φ after observing the
datum is

P (φ|�) = P (�|φ)P (φ)∫
P (�|φ)P (φ)dφ

. (7)

Note. First, we perform experiment and achieve outcome �.
Then we draw m samples from N(φ|μ, σ 2). As for each sam-
ple φi, we assign φi to � with the likelihood function P (�|φi),
while a host of samples are probabilistically discarded due
to the fact that they do not match the likelihood function.
Finally, we can update mean and variance with μ = E(�) and
σ 2 = V (�). Here, we have P (�|φi)N(φ|μ, σ 2) ∝ P (φ|�),
which denotes that the accepted samples are drawn from the
posterior distribution [49–51].

Step 3. After updating the posterior distribution in Eq. (7),
we then set the prior distribution to equal the posterior distri-
bution. It is an iterative process which repeated for each of the
experiments in the data sets. The likelihood function is defined
as follows:

P (|α0〉|φ) = 1
8 [1 + e−δ2

cos(φ)sin(φ)],

P (|α1〉|φ) = 1
8 [1 + e−δ2

cos(φ)cos(φ)],

P (|α2〉|φ) = 1
8 [1 − e−δ2

sin(φ)cos(φ)],

P (|α3〉|φ) = 1
8 [1 + e−δ2

sin(φ)sin(φ)],

P (|α4〉|φ) = 1
8 [1 + e−δ2

cos(φ)sin(φ)],

P (|α5〉|φ) = 1
8 [1 − e−δ2

cos(φ)cos(φ)],

P (|α6〉|φ) = 1
8 [1 − e−δ2

sin(φ)cos(φ)],

P (|α7〉|φ) = 1
8 [1 − e−δ2

sin(φ)sin(φ)]. (8)

Generally, we assume that quantum states undergo a phase
diffusion process during propagation, whose amplitude is
characterized by the parameter δ. In what follows, we express
the definition of the probability density function to illustrate
the relation between the phase drift and the detected photons
N . The probability density function has the form

Ppdf (φ|N ) =
∑7

i=0 P (|αi〉|φ)ni

M , (9)

where M is the normalization factor satisfying∫ 2π

0
Ppdf (φ|N )dφ = 1. (10)

Here, N represents the total number of detected photons with
N = ∑7

i=0 ni, where ni denotes the number of detected pho-
tons for state |αi〉. Considering the eight-state MDI-CVQKD
protocol, the encoding phase includes eight kinds of condi-
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FIG. 7. Probability density function versus the phase drift with
different number of detected photons. (a) The number of detected
photon state |α0〉 is set as n0 = 1, 2, 3, 4, 5, while other detected
photon states |αi〉 are set as ni = 5 with i ∈ {1, 2, . . . , 7}, respec-
tively. (b) The number of detected photon state |α0〉 is set as n0 =
2, 4, 6, 8, 10, while other detected photon states |αi〉 are set as
ni = 10 with i ∈ {1, 2, . . . , 7}, respectively. Here, we assume that
quantum states undergo a phase diffusion process characterized by
the amplitude parameter δ = 0.9.

tions with φi = kπ
4 for k ∈ {0, 1, 2, . . . , 7}. In Eq. (8), we have

7∑
j=0

P (|αi〉|φ j ) = 1, (11)

for each likelihood function.
The number of detected photons is a parameter that will

profoundly affect the performance of the probability density
function. As depicted in Fig. 7, we plot the probability density

as a function of the phase drift with different detected photons.
In Fig. 7(a), the number of detected photon states |α0〉 is
set as n0 = 1, 2, 3, 4, 5, while other detected photon states
|αi〉 are set as ni = 5 with i ∈ {1, 2, . . . , 7}, respectively. In
Fig. 7(a), the number of detected photon states |α0〉 is set as
n0 = 2, 4, 6, 8, 10, while other detected photon states |αi〉 are
set as ni = 10 with i ∈ {1, 2, . . . , 7}, respectively. It is obvious
that the probability density is gradually compressed when the
number of photons n0 increases, and the trend of the probabil-
ity density gradually trends gently with the increase of n0. In
addition, as depicted in Fig. 7(a) and Fig. 7(b), when detected
photons n0 increase, the mean value of the received phase
drift probability density function moves towards a uniformly
distributed density function. Figure 8 shows the probability
density distribution of phase drift with different detected pho-
tons n0. Figures 8(a)–8(c) are three-dimensional numerical
simulations, while Figs. 8(d)–8(f) are contour maps. It is
obvious that, in the bottom right-hand corner of the above
subgraphs, the bright yellow region has gradually expanded
with increasing detected photons n0, which is similar to what
is shown in Fig. 7. Consequently, increasing the detected
photons can reduce the possibility of phase drift and then
improve the accuracy of phase estimation.

B. Security analysis

In Sec. III A, we present the idea and basic notions of the
Bayesian inference algorithm. In the following, we utilize the
model of phase estimation to analyze the practical security of
the eight-state MDI-CVQKD protocol. In general, the actual
phase compensation error has the following form [59]:

Ve = Vch − VBaye. (12)

Here, the phase noise of the quantum channel is zero mean
with variance Vch; meanwhile, the phase noise reduced by
the Bayesian inference algorithm is zero mean with variance
VBaye. Considering the imperfect phase compensation, the
actual transmittance can be calculated as

ητ = τη, (13)

where τ denotes the phase estimation accuracy with the
notation τ = (1 − 1

2Ve)2 [59]. Consequently, the actual ex-
cess noise ετ and actual channel-added noise χτ

t can be
obtained as

ετ = ε + (1 − τ )(X − 1)

τ
(14)

and

χτ
t = 1

ητ

+ ετ − 1. (15)

Considering the actual phase compensation error, the final
covariance matrix of state ρA1B′

1
is redefined as

Γ ′
A1B′

1
=

(
aI2 c′σZ

c′σZ b′I2

)
=

(
XI2

√
ητ Z8σZ√

ητ Z8σZ ητ (Y + χt )I2

)
,

(16)
where X , Y , and Z8 have been mentioned in Eq. (6). In the case
of reverse reconciliation, the secret key rate under collective
attacks is defined in Eq. (A4), where the Shannon mutual
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FIG. 8. Secret key rate versus phase drift and detected photons. The number of detected photon state |α0〉 is set to (a) and (d) n0 = 3,
(b) and (e) n0 = 7, and (c) and (f) n0 = 11, respectively. Other detected photon states |αi〉 are set as ni = 5 with i ∈ {1, 2, . . . , 7}, respectively.

information between Alice and Bob is redefined as

I ′
AB = log2

[
a + 1

a + 1 − (c′)2/(b′ + 1)

]
. (17)

The Holevo quantity χBE has been expressed in Eq. (A6); in
particular, the three symplectic eigenvalues are redefined as

k′
1,2 =

√
A′ ±

√
(A′)2 − 4(B′)2

2
(18)

and

k′
3 = a − (c′)2/(b′ + 1), (19)

where A′ = a2 + (b′)2 − 2(c′)2 and B = ab′ − (c′)2.
The plot of Fig. 9 shows the practical and ideal secret key

rates as a function of the transmission distance in the asym-
metric scenario for the eight-state MDI-CVQKD protocol.
As shown in Fig. 9(a), it is assumed that the phase noise of
quantum channel Vch is normally distributed with variance
0.1 (rad2) and the phase noise VBaye reduced by Bayesian
inference algorithm (see Appendix B for details) is normally
distributed with variance 0.094 (rad2). Therefore, the actual
deviation of phase compensation error Ve on quantum signals
is 0.006 (rad2). As depicted in Fig. 9(b), the practical secret
key rate of the eight-state MDI-CVQKD protocol without
phase estimation is denoted by dashed yellow line and the
secret key rate with considering the Bayesian phase com-
pensation is denoted by dotted red line. It is obvious that
increasing accuracy of the Bayesian estimation can obvi-
ously improve the secret key rate and extend the maximum

transmission distance. Accordingly, Bayesian inference algo-
rithm can effectively reduce the phase compensation error and
thereby increase the maximum transmission and secret key
rate.

IV. Discussion and Conclusion

In this paper, we have investigated the phase reference
calibration of MDI-CVQKD protocol. In the conventional
MDI-CVQKD protocol, the light sources of two legitimates
are independent, so that the initial optical pulses they emit
may not stay in the same phase reference frame. The local
oscillator pulses are employed as the phase reference light of
signal pulses for the need of Bell-state measurement, which
leaves a massive loophole for eavesdroppers. In this paper,
we propose the Bayesian phase-noise estimation model to
estimate the phase drift and its uncertainty of the MDI-
CVQKD protocol. The model employs the Bayesian estimator
of the very weak quantum signal pulse and eliminates the need
for transmitting the local oscillator pulse from Alice to Bob.
Hence the schematic could avoid the security vulnerabilities
caused by transmitting local oscillator pulses in the MDI-
CVQKD protocol. Considering large excess noise and low
reconciliation efficiency are two drawbacks of CVQKD, we
adopt the discrete modulation in the MDI-CVQKD protocol,
which outperforms the Gaussian modulation. According to the
numerical simulations, the Bayesian inference algorithm can
achieve a well-motivated confidence interval of the estimated
eigenphase. In our manuscript, we are working on the assump-
tion that the quantum channel is a linear quantum channel
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FIG. 9. (a) Phase noise of quantum channel Vch is normally dis-
tributed with variance 0.1 (rad2) and the phase noise VBaye reduced by
Bayesian inference algorithm is normally distributed with variance
0.094 (rad2). (b) The practical and ideal secret key rates of the
eight-state MDI-CVQKD protocol in the asymmetric scenario. The
solid blue line represents the ideal secret key rate (Ve = 0). The
solid red line represents the practical secret key rate with Bayesian
phase estimation (Ve = 0.1 − 0.094 = 0.006). The solid yellow line
represents the practical secret key rate without phase estimation
(Ve = 0.1). Other parameters are set as VM = 0.5, and εA,B = 0.002,
and β = 0.99. Here, the black solid line represents the secret-key
capacity [60].

[61–63]. That is to say, we restrict Eve’s attack performed to a
linear quantum channel. Fortunately, Shouvik et al. establish
a lower bound on the asymptotic secret key rate of CVQKD
with a discrete modulation of coherent states [37]. The bound
is valid to collective attacks. This work is a major step towards
establishing the full security of continuous-variable protocol
with a discrete modulation. We hope the proposed scheme

FIG. 10. Equivalent one-way protocol of the eight-state
MDICVQKD protocol in EB schematic.

could further improve the security of the MDI-CVQKD pro-
tocol.
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APPENDIX A: SECRET KEY RATE

In the EB scheme, if one further assumes Bob’s initial
two-mode squeezed state and the displacement operation is
untrusted, the protocol can be converted into a well-known
one-way CVQKD protocol [53]. The equivalent one-way
schematic is depicted in Fig. 10. Accordingly, the secret key
rate of the one-way protocol Kone can be a lower bound of the
EB scheme KEB. Without loss generality, we use the method
to calculated secret key rate of one-way protocol to achieve
KEB.

As shown in Fig. 11, the channels from Alice to Charlie
and Bob to Charlie are two independent quantum channels.
We set each quantum loss as α = 0.2 dB/km, and the chan-
nel transmittance is calculated as ηA = 10−αLAC/10 and ηB =
10−αLBC/10, respectively. Hence the equivalent excess noise of
the one-way protocol can be expressed as [58]

ε = 1 + χA + ηB

ηA
(χB + 1)

+ ηB

ηA

[√
2

ηBg2

√
VB − 1 −

√
VB + 1

]2

,

(A1)

with the notation χA = 1
ηA

− 1 + εA and χB = 1
ηB

− 1 + εB.
Here, g represents the gain of displacement. In order to min-

FIG. 11. EB scheme of the eight-state MDI-CVQKD protocol.
BS, beam splitter; EPR, two-mode squeezed state; Dis., displacement
operation; Het, heterodyne detection; Hom, homodyne detection.
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Algorithm 1. Bayesian phase estimation.

Input: Initial prior probability distribution N (μ0, σ0), constant KE .
Output: the phase estimation mean μ and phase standard derivation σ .

μ = μ0, σ = σ0. % Initialization data.

for i ∈ 1 −→ m do

Obtain the measurement outcome E from the experiment.

(μ, σ ) = Update(E, μ, σ,KE ). % Update the prior distribution based on the likelihood function.

end for

return (μ, σ ).

imize the equivalent excess noise, we choose g =
√

2
ηB

√
VB−1
VB+1

[53]; then we obtain

ε = ηB

ηA
(χB − 1) + 1 + χA. (A2)

We assume the homodyne detectors are ideal apparatuses,
so that the total channel added noise can be expressed as
χt = 1

η
− 1 + ε, where η = ηAg2

2 is a normalized parameter.
According to that mentioned above, the final covariance ma-
trix of state ρA1B′

1
is

ΓA1B′
1
=

(
aI2 cσZ

cσZ bI2

)
=

(
XI2

√
ηZ8σZ√

ηZ8σZ η(Y + χt )I2

)
,

(A3)

where X , Y , and Z8 have been mentioned in Eq. (6). The secret
key rate under collective attacks can be defined as

KEB = βIAB − χBE , (A4)

where β represents the reconciliation efficiency, IAB is the
Shannon mutual information between Alice and Bob, and χBE

denotes the Holevo quantity between Eve and Bob. Here, IAB

and χBE can be expressed as

IAB = log2

[
a + 1

a + 1 − c2/(b + 1)

]
(A5)

and

χBE =
2∑

i=1

G

(
ki − 1

2

)
− G

(
k3 − 1

2

)
, (A6)

with the notation

G(x) = (x + 1)log2(x + 1) − x log2x (A7)

Algorithm 2. Bayesian prior distribution updating function.

Input: phase mean μ and standard derivation σ , measurement outcome E , constant KE .

Output: phase estimation mean μ′ and phase standard derivation σ ′ of the posterior distribution.

function Update(E, μ, σ,KE )

μacc, μ
′
acc,Vacc,V ′

acc = 0.

for i ∈ 1 −→ n do

x ∼ N (μ, σ )

x = x mod 2π .

x′ = x + π mod 2π .

u ∼ Uniform (0, 1). % The probability P (E |x) of the acceptable particle.

if P (E |x) � KE u then

μacc = μacc + x.

Vacc = Vacc + x2.

V ′
acc = V ′

acc + x′2.

Nacc = Nacc + 1.

end if

end for

μ′ = μacc/Nacc.

σ ′ = min[
√

(Vacc − μ2
acc )/(Nacc − 1),

√
(V ′

acc − μ2
acc )/(Nacc − 1)].

return (μ′, σ ′).

end function
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and

k1,2 =
√

A ± √
A2 − 4B2

2
, k3 = a − c2/(b + 1), (A8)

where A = a2 + b2 − 2c2 and B = ab − c2.

APPENDIX B: BAYESIAN INFERENCE ALGORITHM

In this section, we focus on the implementation steps of
the Bayesian inference algorithm [49,51,64]. The main idea is
described and shown in Algorithm 1 and Algorithm 2.
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