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Quantum techniques, developed in recent decades, provide new approaches to achieving high-precision
measurements beyond the classical bounds. In this paper, we theoretically demonstrate a metrology method for
improving the sensitivity of the interferometric optical gyroscope, robust against the loss, by using coherent-light
stimulated two-mode squeezed beams as the light source. The detection protocol is based on a simple intensity
measurement, and the quantum noise is far below the shot-noise limit. The enhancement factors for different
coherent light fields are analyzed in detail. Additionally, the influence of loss during the propagation in the
optical path is studied, and the conditions for achieving sub-shot-noise measurement sensitivity are obtained. We
also find that the phase sensitivity of the proposed gyroscope scheme becomes closer to the quantum Cramér-Rao
bound with increasing of the photon number of the coherent beams.
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I. INTRODUCTION

The advent of the laser in 1960 evoked interest in the use
of the Sagnac effect for sensing inertial rotation by optical
means. Generally, in an optical gyroscope, there is a pair of
counterpropagating light beams traveling around a ring cavity
and the interference between them provides information about
the rotation rate relative to an inertial frame. To be specific,
the phase difference ϕ between the two counterpropagating
beams after one round trip is given by ϕ = 8πA�/cλ, where
� is the angular velocity of the rotating cavity, λ is the
wavelength, and A is the area enclosed by the light beams. The
theoretical limit on the minimum detectable angular velocity
�min is directly related to the uncertainty in measuring ϕ,
given by [1]

�min = cλ

8πA
�ϕ. (1)

The sensitivity of the gyroscope is then determined by the
phase resolution of the interferometers.

In general, the Sagnac effect has always used lasers, in
spite of a few with atoms or single photons [2–5], and the
minimum detectable phase shift is the shot-noise limit for
�ϕSN = 1/

√〈N〉, where 〈N〉 is the average number of pho-
tons. Recent theoretical and experimental work has proved
that the advance in quantum techniques makes it possible
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to enhance the phase-sensitivity scale of an interferometer
beyond the conventional bound; even approaching or beyond
the Heisenberg limit, �ϕHL = 1/〈N〉 [5–14]. In particular,
the squeezing light technique has gained much attention
in improving measurement sensitivity of the interferome-
ter [14–21]. The Mach-Zehnder interferometer with two
independently-squeezed coherent states has been investigated
with respect to quantum Fisher information (QIF) and the
detection loss effect on phase sensitivity [19–21]. The two-
mode squeezed state, which has a correlation feature between
the two modes, has also been used as the input light source
to enhance the phase sensitivity with parity measurements
[14,15], coincidence measurements [16], and homodyne
detection [17].

The improvement in accuracy implies a revolution in the
field of interferometric sensing. In terms of the atomic gy-
roscope, in 1998 Dowling demonstrated a type of gyroscope
based on an entangled two-mode Fock state, the sensitivity
of which can achieve the Heisenberg limit [10]. Recently,
Heisenberg-limited Sagnac interferometry with entangled-
photon pairs from parametric down conversion has been re-
ported by using high-order coincidence measurements [11]. In
addition, a nonlinear Sagnac interferometer is proposed by re-
placing the beam splitter (BS) with a nonlinear optical process
[22]. Although these works showed a great enhancement in
phase sensitivity, the difficulty in producing the light source,
or implementing the detection strategy, or even modifying the
structure of the Sagnac interferometer, would undoubtedly
put an obstacle in their way toward application with current
technology.
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In this paper, we investigate the sensitivity of the optical
gyroscope fed with a two-mode squeezed-light field generated
from an optical parametric amplification (OPA) process with
two-mode coherent light field inputs—the so-called coherent-
boosted two-mode squeezed beams. The phase shift is esti-
mated by measuring the intensity difference of the light beams
directly, which is much simpler than the multiphoton coin-
cidence measurement [11,16] or parity measurement [14,15]
suggested in previous works. The sub-shot-noise sensitivity
with robustness against the loss is the main focus of our
discussion. The enhancement factor with respect to the shot-
noise limit is studied in detail under the conditions that the
two modes of the coherent field are balanced or unbalanced in
modulus, as well as in phase. We note that the measurement
accuracy has seldom been examined in the latter condition.
In addition, since loss plays an important role in precision
measurements, especially in the fiber gyroscope, we explore
the influence of the loss arising from the light propagation. We
analyze the requirements on the loss and reciprocity of the two
paths for sub-shot-noise measurements. Moreover, we study
the quantum Cramér-Rao bound for our gyroscope scheme to
evaluate the efficiency of the intensity difference estimation
strategy. It should be pointed out that the results obtained in
this paper can be applied to other kinds of SU(2) interferom-
eters such as the Mach-Zehnder interferometer [12].

Unlike the conventional optical gyroscope, the biased
phase modulation is no longer necessary for the gyroscope
discussed in the present paper, and thus the corresponding
loss can be avoided. Meanwhile, the loss arising from the
propagation in the gyroscope can be overcome by control of
the OPA parameters. All of this means that our gyroscope
scheme has advantages not only in measurement precision
but also in robustness. On the other hand, compared with
interferometric schemes with a two-mode squeezed vacuum
state (TMSV) [17] or one squeezed input and one coherent in-
put [18], our scheme contains more photons experiencing the
phase shift. This is due to the coherent light field stimulation
in the OPA, and thus a higher sensitivity can be reached. The
measurement sensitivity of the proposed gyroscope is very
close to that of the coherent boosted SU(1,1) interferometer
[23] or the nonlinear interferometer [24]. At the same time,
the tolerance to loss in the interferometer is better than the
nonlinear interferometer in Ref. [24].

The paper is organized as follows. In Sec. II, our gy-
roscope scheme for phase measurement beyond the shot-
noise limit is described. The influence of the loss due to
propagation is investigated in Sec. III. In Sec. IV, the ef-
fect of the detection strategy is discussed. Then, in Sec. V,
we compare the present gyroscope scheme with the tra-
ditional one and previous works. The conclusion is given
in Sec. VI.

II. OPTICAL GYROSCOPE BEYOND
THE SHOT-NOISE LIMIT

As described in Fig. 1, a two-mode coherent light field,
corresponding to the annihilation operators â0 and b̂0,
respectively, is seeded into an OPA pumped by a high-power
laser. The operation of the OPA can be described by a two-
mode squeeze operator Ŝ = eξ∗âb̂−ξ â†b̂†

with ξ = reiθ , and the

O
PA

(r,θ)

0â â

0̂b b̂ d̂

ĉ

M = d +d − c+cd +dM d d

Lcw

Lccw

FIG. 1. The equivalent optical network diagram of the Sagnac
interferometer for the coherent-boosted two-mode squeezed light
field, where the first and second beam splitters are meant to be one
and the same in the Sagnac interferometer. The two-mode squeezed
light fields in â and b̂, which are generated by the OPA (with
the parameters r and θ ), are injected into the gyroscope from the
beam splitter. After traveling in the clockwise and counterclockwise
directions, respectively, the two light fields combine at the beam
splitter again, and then leave the gyroscope. Then, immediately, the
intensity difference 〈M̂〉 between the two output fields is detected to
estimate the phase difference between the two arms.

field operators of the output modes â and b̂ can be written as

â = â0 cosh r − eiθ b̂†
0 sinh r, (2)

b̂ = b̂0 cosh r − eiθ â†
0 sinh r, (3)

where r is the parametric gain coefficient and θ is the phase
of the pump laser [25].

The output light of the OPA is fed into the Sagnac inter-
ferometer, the equivalent optical path diagram of which is
depicted in Fig. 1. We assume that the BS of the gyroscope is
50-50, and the phase shift on transmission at the BSs for both
the input and the output light fields is 0, and that on reflection
is π/2. After passing through the BS for the first time, the light
has two possible paths, one is in the clockwise direction Lcw

and the other is counterclockwise Lccw. If the interferometer
is not rotating, the optical paths for both directions are the
same; otherwise, the optical path difference will be induced.
When the two light beams recombine at the BS for the second
time, the light emerges from the two output ports and is
detected by two detectors. We describe the light field leaving
the interferometer by operators ĉ and d̂ in the following form:

ĉ = 1
2 [(eiμ − eiν )â + (ieiμ + ieiν )b̂], (4)

d̂ = 1
2 [(ieiμ + ieiν )â − (eiμ − eiν )b̂], (5)

where μ ∝ Lcw and ν ∝ Lccw are the phases proportional to
the length of the two light paths [25].

Suppose the initial two-mode coherent light fields â0 and
b̂0 are in the state |ψ〉 = |α〉|β〉. The average number of the
total photons exiting the interferometer then is

〈N̂〉tot = 〈ĉ†ĉ + d̂†d̂〉 = 〈â†â + b̂†b̂〉
= (|α|2 + |β|2) cosh 2r − (α∗β∗eiθ + αβe−iθ ) sinh 2r

+2 sinh2 r, (6)

where the loss in the optical paths is omitted. We notice that,
generally, the average photon numbers of the coherent light
fields |α|2, |β|2 � sinh2 r (this assumption is used for the
rest of Secs. II and III), and then the above equation can be

022614-2



ENHANCED PHASE ESTIMATION WITH … PHYSICAL REVIEW A 102, 022614 (2020)

approximated as

〈N̂〉tot ≈ (|α|2 + |β|2) cosh 2r − (α∗β∗eiθ + αβe−iθ ) sinh 2r.

(7)

To find out the phase signal produced by the difference
of the two light paths, we measure the intensity difference
operator between the two output beams, that is,

M̂ = d̂†d̂ − ĉ†ĉ

= (â†â − b̂†b̂) cos ϕ + (â†b̂ + âb̂†) sin ϕ, (8)

where ϕ = μ − ν is the phase difference between the two
beams. Hence, the output signal is given by

〈M̂〉 = (|α|2 − |β|2) cos ϕ + {
(α∗β + αβ∗) cosh 2r

− 1
2 [eiθ (α∗2 + β∗2) + e−iθ (α2 + β2)] sinh 2r

}
sin ϕ.

(9)

The uncertainty of the phase signal is given by the linear
error propagation method [25,26],

�ϕ2 = �M2

|∂〈M̂〉/∂ϕ|2 , (10)

which is dependent on the phase shift ϕ. The linear error
propagation method is conventionally used for the local phase
estimation, in which a small change of signal is monitored
at a fixed reference point [27]. As for the gyroscope, we are
concerned with the sensitivity at the point where the phase
shift is close to zero, under the assumption that the rota-
tion we desire to detect is usually very small. Thus, we
analyze the uncertainty of the phase in the case of ϕ = 0.
We have

�ϕ2 = |α|2 + |β|2∣∣(α∗β + αβ∗) cosh 2r − 1
2 [eiθ (α∗2 + β∗2) + e−iθ (α2 + β2)] sinh 2r

∣∣2 . (11)

The uncertainty of the phase signal is not only dependent on
the OPA parameters r and θ , but is also determined by the
complex amplitudes of the initial two-mode coherent light
fields α and β.

On the other hand, according to Eq. (7), the shot-noise
limit for the phase measurement, i.e., the variance of the phase
shift for the classical gyroscope with the coherent light source
containing the same average photon number, is

�ϕ2
SN = 1

〈N̂〉tot
= 1

(|α|2 + |β|2) cosh 2r − (α∗β∗eiθ + α∗β∗e−iθ ) sinh 2r
. (12)

Next, we will discuss the behavior of the phase sensitivity in
the following three cases classified according to the complex
amplitudes of the initial coherent light field. This will make it
easy to compare the relationship between the variance of the
phase shift �ϕ and the shot-noise limit �ϕSN. To make the
comparison convenient, we define a factor R = �ϕ2/�ϕ2

SN
to indicate the enhancement of the phase sensitivity. The
uncertainty of phase �ϕ will be below the shot-noise limit
if R < 1.

(i) Case I: α = β

We first focus on the case that the complex amplitude
of the input coherent light field for each mode is the same,
that is, α = β = η = √

neiγ (assuming n and γ to be real),
where n is the average photon number of each coherent beam.
Therefore, the average total number of the photons of the
initial coherent light field is 〈N̂〉coh = 2n. In this condition,
the average number of the photons [based on Eq. (7)] exiting
from the Sagnac ring is

〈N̂〉tot = 2n cosh 2r − 2n sinh 2r cos(θ − 2γ )

= 2nG = 〈N̂〉cohG, (13)

where G = cosh 2r − sinh 2r cos(θ − 2γ ), which is the para-
metric power gain of the OPA. It varies with the parametric
gain coefficient r, the phase of the pumping laser θ , and the
phase of the initial coherent light field γ . The shot-noise limit
is �ϕ2

SN = 1/(2nG). Meanwhile, according to Eq. (11), we

can calculate the uncertainty of the phase shift as

�ϕ2 = 1

2nG2
= 1

〈N̂〉cohG2
= 1

G
�ϕ2

SN, (14)

For G > 1, the minimum detectable phase shift �ϕ is less
than the shot noise while, for G < 1, it is greater than the
shot noise. The maximum value of G, given by Gmax = e2r , is
obtained when cos(θ − 2γ ) = −1, i.e., θ = π + 2γ . Hence,
the variance of the phase shift will be

�ϕ2 = 1

2n(e2r )2
= e−2r�ϕ2

SN. (15)

Here, we see that our gyroscope is shown to be doubly
enhanced over the conventional (classical) counterpart: First,
the shot noise itself is reduced by the increase of input photon
number due to the parametric amplification [see Eq. (13)].
Then, there is the signal-to-noise improvement via squeezing
as shown in Eq. (15). At this stage, the enhancement factor R
of the phase uncertainty can be written as

R = �ϕ2/�ϕ2
SN = e−2r . (16)

The above equation shows that the uncertainty of the phase
shift is decreased with the parametric gain coefficient r rel-
ative to the shot-noise limit, which means the uncertainty in
measuring the angular velocity � will be reduced accordingly.
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(ii) Case II: |α| 	= |β| but γα = γβ = γ , where γα and
γβ are the phases of the complex amplitudes α and β,
respectively.

Here we consider the case that there is a difference in the
intensity but not in the phase between the two amplitudes
of the initial coherent light. Suppose that α = √

neiγ , β =
ε
√

neiγ , where 0 < ε � 1 indicates the ratio between the
intensity of the two modes â0 and b̂0, then we have |β|/|α| =
ε. According to Eq. (11), the variance of the phase takes the
following form:

�ϕ2 = 1 + ε2

n|2ε cosh 2r − (1 + ε2) sinh 2r cos(θ − 2γ )|2 .

(17)

Based on Eq. (7), the shot-noise limit is

�ϕ2
SN = 1

n[(1 + ε2) cosh 2r − 2ε sinh 2r cos(θ − 2γ )]
. (18)

Both �ϕ2 and �ϕ2
SN will each have their own minimum when

the condition θ = π + 2γ is satisfied, and the ratio between

them is

R = (1 + ε2)[(1 + ε2) cosh 2r + 2ε sinh 2r]

|2ε cosh 2r + (1 + ε2) sinh 2r|2 . (19)

Figure 2 describes the dependence of the enhancement fac-
tor R on ε and the parametric gain coefficient r, respectively.
When ε = 1, we have R = e−2r , which corresponds to case I.
As shown in Fig. 2(a), with the decrease of the parameter ε,
the factor R increases, which means the uncertainty of phase
�ϕ increases and is generally close to or larger than the
shot-noise limit �ϕSN. However, we notice that even in the
case of ε → 0, i.e., |α| � |β| (R → cosh 2r

| sinh 2r|2 in this condition),
the phase variance below the shot-noise limit is also obtained
if the parametric gain coefficient r satisfies the condition
cosh 2r/ sinh2 2r < 1 [see Fig. 2(b)].

(iii) Case III: |α| = |β| = √
n, but γα 	= γβ .

Lastly, we deal with the case that the two coherent states in
modes â0 and b̂0 have the same intensity but are different in
the phase of the complex amplitude. We now assume that the
phase difference between the complex amplitude of the two
states |α〉 and |β〉 is δ, and α = √

neiγ and β = √
nei(γ+δ).

Following Eq. (11), it is straightforward to get that the vari-
ance of the phase

�ϕ2 = 2

n|2 cosh 2r cos δ − sinh 2r[cos(θ − 2γ ) + cos(θ − 2γ − 2δ)]|2 (20)

and the corresponding shot-noise limit is

�ϕ2
SN = 1

2n[cosh 2r − sinh 2r cos(θ − 2γ − δ)]
. (21)

The optimal OPA occurs when θ = π + 2γ + δ, and in this
case the factor R between �ϕ2 and �ϕ2

SN takes the following
form:

R = 1

cos2 δ(cosh 2r + sinh 2r)
= e−2r

cos2 δ
. (22)

The factor R varies periodically with parameter δ. As
shown in Fig. 3(a), for one period [0, π ], R increases as the
parameter δ increases in the interval [0, π/2) and decreases in
the interval (π/2, π ]. And when δ → π/2, the ratio R → ∞.
This periodic variation is due to the interference between the
two coherent beams with different phases. The changes of the
R caused by the parametric gain coefficient r and parameter
δ are displayed in Fig. 3(b). The curves show that the sub-
shot-noise limit phase sensitivity is not always achieved if
parameter δ does not equal 0 or π . But, for a fixed value of
δ the ratio R will decrease, even below one, with the increase
of the parametric gain coefficient r.

By comparing these three cases, it is not difficult to find
that the optimal performance of the phase sensitivity takes
place in the case that the input coherent light fields for the
OPA are balanced (i.e., case I), in spite of the fact that the
unbalanced input can also result in supersensitivity in phase
measurements. The enhancement in phase measurements can
be attributed, in part, to the suppression of quantum noise
of the intensity difference between the two squeezed light

beams â and b̂ at the input ports. Here we use a quantity,
noise reduction factor (NRF) to indicate this suppression
(see Appendix B).

In case I with θ = π + 2γ , there is NRF = G−1 = e−2r

[see Eq. (B5) in Appendix B], which is exactly equal to the
phase-sensitivity enhancement factor R. For case II, we have
[see Eq. (B6) in Appendix B]

NRF = 1 + ε2

(1 + ε2) cosh 2r + 2ε sinh 2r
, (23)

which increases with the decreasing of the parameter ε. In
other words, the increasing imbalance between the intensity
of the two states |α〉 and |β〉 will diminish the noise reduction,
and at the same time, the phase sensitivity of the gyroscope
becomes worse.

Note, however, the phase-sensitivity enhancement of the
gyroscope is not only determined by the noise suppression of
the intensity difference of the light source of the gyroscope.
As for case III, when the condition θ = π + 2γ + δ is sat-
isfied, the NRF for the two-mode squeezed light beams will
also be e−2r [see Eq. (B7) in Appendix B]. Although the factor
NRF is the same as that in case I, the variance of the phase is
not the same [see Eqs. (16) and (22)]. Notice that the complex
amplitude of the two squeezed coherent light beams â and b̂
are given as follows:

〈â〉 = √
n(eiγ cosh r − ei(θ−γ−δ) sinh r) = Aeiγa , (24)

〈b̂〉 = √
n(ei(γ+δ) cosh r − ei(θ−γ ) sinh r) = Beiγb . (25)
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FIG. 2. For case II, the sensitivity enhancement factor R between
the variance of the phase �ϕ2 and shot-noise limit �ϕ2

SN varies with
(a) the parameter ε and (b) the parametric gain coefficient r. R = 1
(the black dot line) means the phase sensitivity reaches the shot-noise
limit.

The phase of these two light beams then takes form

γa = arctan
cosh r cos γα − sinh r cos(θ − γβ )

cosh r sin γα − sinh r sin(θ − γβ )
, (26)

γb = arctan
cosh r cos γβ − sinh r cos(θ − γα )

cosh r sin γβ − sinh r sin(θ − γα )
. (27)

It is clear that γa and γb are equal to each other in cases I
and II, but are not the same in case III. In particular, when
δ = π/2, there is tan γa tan γb = −1, i.e., the phases of the
two beams are separated by π/2 and the uncertainty of the
phase approaches infinity (Fig. 3). Obviously, for case III, an
additional interference happens between two light beams with
different phases, which makes the phase sensitivity worse.

III. INFLUENCE OF LOSS IN THE OPTICAL PATH

In practice, there must be loss arising from the propagation
of the light in the gyroscope. There are various origins of this
loss, such as the changes in polarization, the widening of the
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FIG. 3. For case III, the ratio R between the variance of the phase
�ϕ2 and shot-noise limit �ϕ2

SN varies with (a) the parameter δ and
(b) the parametric gain coefficient r. R = 1 (the black dot line) means
the phase sensitivity reaches the shot-noise limit.

spectrum, the optical Kerr effect, and so on. The effect of the
loss due to the propagation may be modeled by fictitious beam
splitters BSa and BSb, placed in the two optical paths [28,29]
as described in Fig. 4. Ŝi denotes the field operator of the beam
in the gyroscope at the input port of the BSi and Ŝ′

i denotes
the field operator at the output port of the BSi, (i = a, b). The

FIG. 4. The Sagnac interferometer in presence of loss in light
propagation process, where the loss is modeled by the fictitious beam
splitters.
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relation between Ŝi and Ŝ′
i can be expressed as follows:

Ŝ′
i = tiŜi + riV̂i, (28)

where V̂i is the field operator for the environment, which is
assumed to be vacuum, and ri and ti are the reflection and the
transmission coefficients for mode i, which are assumed to be
real. Clearly, r2

i = 1 − t2
i stands for the loss in the mode i.

As mentioned in the preceding section, under the condition
α = β, the phase sensitivity is enhanced compared with the
conventional gyroscope by a factor of 1/G. When the loss is
taken into account, following the argument in Sec. II, we find
the variance of the phase shift ϕ is given by

�ϕ2 = 1

2n2G2
+ t2

a r2
b + t2

b r2
a

4t2
a t2

b n2G

=
(

1

G
+ t2

a r2
b + t2

b r2
a

2t2
a t2

b

)
�ϕ2

SN, (29)

where �ϕSN is the shot-noise limit obtained for the ideal, no-
loss condition.The phase sensitivity decreases due to the loss
in the propagation. In the case θ = π + 2γ , the enhancement
factor of the phase variance R becomes

R = e−2r + t2
a r2

b + t2
b r2

a

2t2
a t2

b

. (30)

When the transmission coefficients ta and tb approximate to 0,
the enhancement factor R is going to be infinity because, under
this situation, no signal can be detected, and no information of
the phase can be obtained either.

Figure 5 shows the factor R as a function of the transmis-
sion coefficients t2

a and t2
b for various values of the parametric

gain coefficients r. It is clear that the area where R < 1 cor-
responds to the situation where the phase sensitivity is below
the shot-noise limit. When the parametric gain coefficient r is
fixed, the bigger the transmission coefficients t2

a and t2
b are, the

smaller the ratio R is, and the better the precision of the phase
measurement. Meanwhile, for given t2

a and t2
b , the area where

R < 1 increases with the increase in the coefficient r, and the
phase sensitivity is improved. That is to say, the uncertainty
of the phase measurement caused by the loss in light paths
Lcw and Lccw can be compensated by increasing the parametric
gain coefficient r.

The reciprocity of the wave propagation in two directions
plays an important role in the accuracy of the optical gyro-
scope. Let us consider the influence of the loss coming from
the light propagation on the sub-shot-noise phase sensitivity
under the conditions that the optical paths are reciprocal
(t2

a = t2
b ) and nonreciprocal (t2

a 	= t2
b ), respectively.

(i) t2
a = t2

b = T
In general, the two optical paths should be reciprocal when

the optical gyroscope is stationary. This means the losses in
the two paths should be equal, thus we can set t2

a = t2
b = T .

At this stage, the variance of the phase signal will be

�ϕ2 =
(

1

G
+ 1 − T

T

)
�ϕ2

SN (31)

and Eq. (30) is rewritten as

R = e−2r + 1 − T

T
. (32)

FIG. 5. Contour plot of the enhancement factor R varying with
the transmission coefficients t2

a and t2
b . The area for R < 1 (white

colored) corresponds to the situation in which the phase sensitivity is
below the shot-noise limit.

It is easy to show that to obtain the sub-shot-noise limit, the
transmissivity needs to be

T >
1

2 − e−2r
>

1

2
. (33)
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The above equation implies that it is always possible to obtain
the sub-shot-noise limit if the loss in the optical path is no
more than 3dB.

(ii) t2
a 	= t2

b
In many applications, the losses in the two optical paths

are most likely unequal, i.e., t2
a 	= t2

b . Suppose t2
a /t2

b = κ and
t2
b = T , such that 0 < κ � 1. The parameter κ reflects the

degree of the reciprocity, the two paths tend to be reciprocal
as the parameter κ approaches one, and vice versa. According
to Eq. (29), we have

�ϕ2 =
(

1

G
+ 1

2T
+ 1

2κT
− 1

)
�ϕ2

SN, (34)

and in the case of θ = π + 2γ , the ratio between �ϕ2 and
�ϕ2

SN takes the following form:

R = e−2r + 1

2T
+ 1

2κT
− 1. (35)

The required value of κ for sub-shot-noise phase sensitivity
(R < 1), of course, depends on T . From the above equation,
it is always possible to achieve the sub-shot-noise limit mea-
surement if κ > 1/3 for T = 1, or κ > 1/2 for T = 3/4.

If we were to have a single-port input, by adjusting the
transmission coefficient of the BS, we would be able to
compensate the unbalance of the loss. In our scheme, we have
a two-port input before the first BS. And the coherent beams
will experience the OPA and the BS, and then go through the
two paths of the interferometer. That means the amplitudes
of the initial two coherent beams are not equal to those of
the beams passing through the two arms. To overcome the
unbalance between two paths by using the initial coherent
states of different amplitudes, it is necessary to know the
degree of the nonreciprocity between the two paths, which
we define as t2

a /t2
b = κ here, and then adjust the parameters

of OPA and BS to ensure the amplitudes of the lights going
through the two arms are balanced. On the other hand, there
are many factors that can induce the nonreciprocity, such as
the thermal fluctuation, light scattering, or other disturbing
from outside. The degree of the nonreciprocity usually is un-
known in practice. Therefore, optimizing the two amplitudes
of the initial coherent states could be possible via an adaptive
control with feedback.

In addition to the loss in propagation, the photon loss
can occur in the detection, and alters the phase sensitivity
of an interferometer sensor as well [19,21]. The effect of
the photon loss in the detection is described in Appendix A.
Comparing Eq. (31) with Eq. (A11), we notice that the loss
in the detection and the loss in the propagation have the same
effect on the phase sensitivity. After all, the final result is to
shrink the number of photons to be detected no matter where
the loss occurs (in the propagation or in the detection). From
that point of view, the loss we discussed in this section can be
regarded as the one that occurs not only in the propagation but
also in the detection. If the two kinds of loss are considered at
the same time, there will be a multiplication of the two factors;
T is to be replaced by T τ , where τ is the detection efficiency,
shown in (A11).

IV. QUANTUM CRAMÉR-RAO BOUND

For a probing system, the limit of the accuracy of the
parameter estimation is given by its quantum Cramér-Rao
bound (QCRB), which is independent of the measurement
strategy, and the limit may not always be achieved by any
kind of measurement. In this section, we investigate the phase
sensitivity for the gyroscope system to show whether the
quantum Fisher information is saturated by intensity differ-
ence measurement. Unlike the numerical result reported in
Ref. [15], here we will provide an analytical expression of the
QCRB of the two-mode squeezed coherent state.

According to the discussion in Sec. II, for the present
measurement strategy the optimal phase sensitivity, which
is �ϕ2 = 1/[2n(e2r )2], is achieved under the condition that
the complex amplitudes of the two initial coherent beams
are the same, i.e., α = β = η = √

neiγ , and the phase match
θ = π + 2γ is satisfied (see case I in Sec. II). Therefore,
the state of the light field injected into the gyroscope can
be expressed as |�〉 = Ŝ|η, η〉. And the gyroscope can be
represented by a unitary transformation Ûgyro in terms â and b̂
(see Appendix C),

Ûgyro = e
1
2 ϕ(â†b̂−b̂†â) = e−iϕĜgyro , (36)

where Ĝgyro = i
2 (â†b̂ − b̂†â). Therefore, the quantum Fisher

information is 4�G2
gyro and the QCRB of the system is given

by [30]

�ϕ2
QCRB = 1

4�Ĝ2
gyro

= 1

2n(e2r )2 + sinh2 2r
. (37)

The phase sensitivity obtained by intensity-difference mea-
surement will be equal to the QCRB in the case that the
average photon number of the initial coherent field 〈N̂〉coh

is far greater than that of the TMSV field 〈N̂〉TMSV, i.e.,
2n � 2 sinh2 r. As shown in Fig. 6, the curves of the phase
sensitivity and the QCRB tend to overlap with the increase in
the average photon number of each initial coherent beam n
and the average total photon number at the output port of the
gyroscope 〈N̂〉tot. This indicates that the intensity difference
measurement is capable of saturating the QCRB under the
condition n � sinh2 r.

The average number of the total photons at the output
port is 〈N̂〉tot = 2nG + 2 sinh2 r, based on Eq. (6). Thus
the shot-noise limit and the Heisenberg limit are �ϕSN =
1/

√
2nG + 2 sinh2 r and �ϕHL = 1/(2nG + 2 sinh2 r), re-

spectively, which are also shown in Fig. 6. When the average
photon number of the initial coherent field n = 0, it means
the light field used as the probe is the TMSV state. The total
number of the photons exiting the gyroscope will then be
〈N̂〉tot = 〈N̂〉TMSV = 2 sinh2 r, and the QCRB is

�ϕ2
QCRB = 1

〈N̂〉tot (〈N̂〉tot + 2)
, (38)

which is consistent with the result in Ref. [14]. Note that
the QCRB for the TMSV state is below the Heisenberg
limit, which indicates that the Heisenberg limit—given by
the inverse of the total photon number—is not the ultimate
limit of the phase variance [12,13]. As the phase sensitivity
with intensity difference measurements becomes unbound,
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FIG. 6. The phase sensitivity �ϕ varying with (a) the average
photon number of each one of the initial coherent beams n and
(b) the average total photon number of the output light fields 〈N̂〉tot .
The parametric gain coefficient r is set to be 2, that 〈N̂〉tot ≈ 26.3
if the input coherent beams are in the vacuum state. SNL: shot-
noise limit. PS: phase sensitivity of our interferometer scheme given
by Eq. (15). QCRB: quantum Cramér-Rao bound. HL: Heisenberg
limit.

the intensity difference measurement strategy is no longer a
good measurement scheme when the probing light field is in
the TMSV state [see Eq. (14)]. In this case, the signal ob-
tained by intensity difference measurements does not contain
any information of the phase shift [see Eq. (9)]. If losses
were to be included, the QCRB can be calculated follow-
ing, for example, Ref. [31]. Calculation of QCRB including
losses, however, becomes significantly more cumbersome and
complex.

V. DISCUSSION

Compared with the conventional gyroscope, a distinct ad-
vantage of our proposed scheme is the enhancement with a
factor of e2r in the phase sensitivity �ϕ2. As a consequence,
the minimal detectable angular velocity will decrease with
the factor e−r , based on Eq. (1). In practice, the minimum
detectable angular velocity for a conventional fiber gyroscope

is given as [32,33]

�
cg
min = λc

2πDL

√
2e(1 + cos φb)� f√

RDP sin φb

= λc

2πDL

√
2e� f λ

RDhc

1√
2 sin(φb/2)

�ϕSN, (39)

where L is the length of the fiber, coil diameter D = 0.2 m,
P is the output power at the detectors, λ is the wavelength,
RD is the detector responsiveness which measures the input-
output gain of a detector system (in the unit of A/W), φb is the
bias phase, e is the electron charge, h is the Planck’s constant,
c is the velocity of light, and � f is the count bandwidth of
the output signal. If the two-mode squeezed coherent state is
adopted, as discussed in Sec. II, according to Eq. (15), the
minimum detectable angular velocity can be expressed as

�
qg
min = λc

2πDL

√
2e� f λ

RDhc
�ϕ. (40)

It is obvious that the minimum detectable angular velocity
decreases by a factor of

√
2e−r sin(φb/2). Note that for a fair

comparison, we assume the total number of photons is the
same for both the conventional gyroscope and the quantum
gyroscope.

For example, for a conventional fiber gyroscope with
the parameters L = 5 km, D = 0.2 m, P = 250 μW, λ =
1550 nm, RD = 1A/W, φb = 3π/4, and � f = 0.01 Hz, the
minimum detectable angular velocity �

cg
min is 4.2×10−5(◦)/h.

Whereas, for the present gyroscope with the same parameters,
the minimum detectable angular velocity �

qg
min can reach

5.5×10−6(◦)/h in the case of r = 2.25, which can be realized
with the current technology [34]. Besides, if the interfer-
ometer is injected with light from the TMSV light field, as
suggested in Ref. [17], to realize a phase sensitivity equivalent
to 5.5×10−6(◦)/h, the demand on the parametric gain r would
be no less than nine, which is hard to achieve in practice. That
is the reason we adopt the output field of the OPA with the
coherent light input as the light source of the gyroscope.

Typically, for the conventional optical gyroscope, the max-
imal sensitivity occurs at the point ϕ = π/2, and a bias phase
φb is necessary to obtain the maximal sensitivity at the point
ϕ = 0. For our gyroscope scheme, according to Eq. (9), when
|α| = |β| the output signal is proportional to sin ϕ, i.e., 〈M̂〉 ∝
sin ϕ. Thus ∂〈M̂〉/∂ϕ ∝ cos ϕ, even if r = 0. That shows the
maximal sensitivity can be achieved at the working point
ϕ = 0 without the bias phase for our scheme. In turn, it
indicates that the loss caused by the bias phase modulation
in the conventional optical gyroscope can be avoided in our
scheme. At the same time, our gyroscope scheme is robust
against propagation loss for a wide range of the transmission
coefficient T and nonreciprocal κ .

On the other hand, we can obtain the same phase sensitivity
with a much smaller length of the light path, that is, �

cg
min =

�
qg
min, when Lqg = e−rLcg. As a result, the loss due to the light

propagation in the fiber will be reduced due to the smaller
length. Hence, any kind of loss that is proportional to the
length of the fiber, such as loss coming from backscattering,
the Kerr effect, the Faraday magnetic-optical effect, etc., will
decrease by a factor of e−r . With a simple numeral calculation,
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we find these kinds of losses in our gyroscope will decrease
to 10% of those in the conventional one when we take the
parametric gain of OPA r = 2.25.

In addition, several nonlinear interferometer schemes
showing better performance than linear interferometers have
been reported in recent years [23,24]. In the present paper,
the uncertainty of the phase measurement can be expressed
as �ϕ = e−2r/

√
〈N̂〉coh by taking Eq. (14) when θ = π +

2γ , which is comparable to the nonlinear interferometer in
Ref. [23], with �ϕ = e−2r/

√
2〈N̂〉coh in the high gain limit.

The output detection adopted in Ref. [23], however, is the
intensity-sum measurement. Our gyroscope scheme using the
intensity-difference measurement might well have advantages
in that various technical noises can be eliminated with differ-
encing. Also, unlike the result in Ref. [24], the influence of
the loss in propagation can be compensated by enhancing the
parametric gain of the OPA in our scheme.

VI. CONCLUSION

In conclusion, we have analyzed a type of gyroscope with
a coherent-boosted two-mode squeezed light field and showed
its sub-shot-noise phase sensitivity. The phase sensitivity has
been examined with different coherent light fields and the
results show that the optimal sensitivity occurs when the
complex amplitudes of the two modes of the coherent light are
equal to each other. The corresponding minimum detectable
angular velocity has an enhancement with a factor of e−r

compared with the conventional gyroscope with the same
number of photons at the output—that factor would be e−2r

if the same number of photons at the input is assumed. The
effect of the loss from the light propagating through the
interferometer is another significant factor in high precision
measurement.

The good news here is that it does not limit the enhance-
ment of the measurement sensitivity, since it can also be
offset by the increase of the parametric gain coefficient r.
It is still possible to achieve sub-shot-noise sensitivity even
in the noisy environment. In addition, we found that the
intensity difference estimation strategy has the capability to
reach Cramér-Rao bound. It should be pointed out that the
technologies involved in our scheme, such as the OPA and the
intensity difference measurement, are highly accessible and
well-established techniques. We also notice that the use of
the orbital angular momentum states of light has been demon-
strated for measuring rotation angle or vibrations [35,36]. By
contrast, our scheme is based on the current gyroscope tech-
nique and can be integrated with existing optical gyroscope
systems. Therefore, we believe that our gyroscope scheme
is positively suitable for practical applications of quantum
technique and can be realized in the near future.
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APPENDIX A: THE VARIANCE OF THE PHASE SHIFT

Assume the quantum efficiency of the two detectors are the
same and equal to τ (where τ � 1), the operators of the inten-
sity detection are m̂d = τ d̂†d̂ and m̂c = τ ĉ†ĉ, respectively. In
this condition, the operator for intensity difference is given
as [37]

M̂τ = τ d̂†d̂ − τ ĉ†ĉ = τM̂, (A1)

M̂2
τ = τ 2(d̂†d̂ − ĉ†ĉ)2 + τ (1 − τ )(d̂†d̂ + ĉ†ĉ)

= τ 2M̂2 + τ (1 − τ )(d̂†d̂ + ĉ†ĉ) (A2)

and the variance on the intensity difference measurement is

�M2
τ = 〈

M̂2
τ

〉 − 〈M̂τ 〉2

= τ 2〈M̂2〉 + τ (1 − τ )〈N〉tot − τ 2〈M̂〉2

= τ 2�M2 + τ (1 − τ )〈N̂〉tot, (A3)

where �M2 = 〈M̂2〉 − 〈M̂〉2. Then, with the method of linear
error propagation, the phase sensitivity is

�ϕ2 = �M2
τ

|∂〈Mτ 〉/∂ϕ|2 = τ 2�M2 + τ (1 − τ )〈N̂〉tot

τ 2|∂〈M〉/∂ϕ|2 . (A4)

First, we are concerned with the case of idea detection, that
is, τ = 1, then the uncertainty of the phase shift ϕ takes the
following form:

�ϕ2 = �M2

|∂〈M〉/∂ϕ|2 , (A5)

which is Eq. (10) in the Sec. II. According to Eq. (8), there is

�M2 = 〈M̂2〉 − 〈M̂〉2

= 〈[(â†â − b̂†b̂) cos ϕ + (â†b̂ + âb̂†) sin ϕ]2〉
−〈(â†â − b̂†b̂) cos ϕ + (â†b̂ + âb̂†) sin ϕ〉2. (A6)

Meanwhile, according to Eq. (9), we have

∂〈M̂〉
∂ϕ

= −(|α|2 − |β|2) sin ϕ +
{

(α∗β + αβ∗) cosh 2r

−1

2
[eiθ (α∗2 + β∗2) + e−iθ (α2 + β2)] sinh 2r

}
cos ϕ.

(A7)

Since we focus on the working point at ϕ = 0, in the above
two equations the terms containing sin ϕ can be neglected,

�M2 = 〈(â†â − b̂†b̂)2〉 − 〈(â†â − b̂†b̂)〉2

= |α|2 + |β|2, (A8)

∂〈M̂〉
∂ϕ

=
{

(α∗β + αβ∗) cosh 2r − 1

2
[eiθ (α∗2 + β∗2)

+ e−iθ (α2 + β2)] sinh 2r

}
, (A9)
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where Eqs. (2) and (3) are used. Bringing the above two equations into Eq. (A5), we obtain the uncertainty of the phase shift
with ideal detection,

�ϕ2 = |α|2 + |β|2∣∣(α∗β + αβ∗) cosh 2r − 1
2 [eiθ (α∗2 + β∗2) + e−iθ (α2 + β2)] sinh 2r

∣∣2 , (A10)

which is Eq. (11) in Sec. II.
Next, we turn to a brief discussion about the effect of the

quantum efficiency on the phase sensitivity. In the case of
α = β = √

neiγ , based on Eq. (A4), we have

�ϕ2 = τ 2(2n) + τ (1 − τ )(2nG)

τ 2|2nG|2

=
(

1

G
+ 1 − τ

τ

)
�ϕ2

SN. (A11)

Therefore, the the enhancement factor of the phase uncertainty
becomes R = 1

G + 1−τ
τ

. To make the phase uncertainty go
below shot-noise limit, the condition τ > G

2G−1 must be satis-
fied. For the optimal case of cos(θ − 2γ ) = −1, the quantum
efficiency of the detectors τ > 1

2 is required.

APPENDIX B: NOISE REDUCTION FACTOR

Much attention has been paid to the two-mode squeezed
states due to the quantum correlation between its two modes.
One of the characteristics of its quantum correlation is the
suppression on the intensity difference noise between the two
modes under certain conditions.

Assume the annihilation operators of two light beams
are î1 and î2, then the intensity difference between the two
beams can be expressed as Îdiff = î†

1 î1 − î†
2 î2. In general, for

two independent coherent light beams, the state of which is
|χ1〉|χ2〉, the variance of the intensity difference between the

two beams is

�Idiff = 〈(î†
1 î1 − î†

2 î2)2〉 − 〈î†
1 î1 − î†

2 î2〉2

= |χ1|2 + |χ2|2. (B1)

This is the shot-noise limit of the intensity difference between
any two light beams, which is equal to the total average photon
number of the two light beams.

For the two-mode squeezed light beams, when we ignore
the quantum correlation between the two modes, the uncer-
tainty of the intensity difference should be equal to the total
average photon number 〈N̂〉tot. That is to say the the shot-noise
limit in detecting the intensity difference between the two
modes â and b̂, according to Eq. (7), is

�kSN = (|α|2 + |β|2) cosh 2r − (α∗β∗eiθ + αβe−iθ ) sinh 2r

= (|α|2 + |β|2) cosh 2r

− 2|α||β| sinh 2r cos(θ − γα − γβ ) (B2)

in the case that α = |α|eiγα and β = |β|eiγβ . However, for the
two-mode squeezed state, i.e., Ŝ|α〉|β〉, the variance of the
intensity difference between the two modes â and b̂, in fact,
is

�k = 〈(â†â − b̂†b̂)2〉 − 〈â†â − b̂†b̂〉2

= |α|2 + |β|2. (B3)

The rate between the shot-noise limit �kSN and the variance
�k, NRF, is given as

NRF = �k̂2

�k̂2
SN

= |α|2 + |β|2
[(|α|2 + |β|2) cosh 2r − 2|α||β| sinh 2r cos(θ − γα − γβ )]

. (B4)

Obviously, when NRF < 1 the quantum noise is reduced, and
vice versa.

When α = β = √
neiγ , there is

NRF = 1

cosh 2r − sinh 2r cos(θ − 2γ )
= 1

G
. (B5)

It shows the quantum noise will decrease when the condition
G > 1 is satisfied. The relation described in Eq. (B5) shows
good agreement with the theoretic analysis and experimental
results in Refs. [38–40], in which the reduction is attributed
to the quantum correlation between the photon number of the
two beams.

Based on Eq. (B4), the NRF for case II in Sec. II (|β|/|α| =
ε, but γα = γβ = γ ) is given as

NRF = 1 + ε2

(1 + ε2) cosh 2r − 2ε sinh 2r cos(θ − 2γ )
. (B6)

And there is

NRF = 1

cosh 2r − sinh 2r cos(θ − 2γ − δ)
(B7)

for case III in Sec. II (|α| = |β| = √
n, but γβ − γα = δ).

APPENDIX C: CALCULATION FOR QUANTUM
CRAMÉR-RAO BOUND

When a certain variable λ (for example) is estimated, we
usually use the Cramér-Rao inequality to show the limit of
the mean-square error of variable λ, that is, �λ2 � 1/pF (λ)
(where p is the is the number of measurements and F (λ) is
the so-called Fisher information). That means the limit of the
variance, or the Cramér-Rao bound, is �λ2

CRB = 1/pF (λ).
Note that the probing light field is in the two-mode

squeezed state, and the state to be detected is a pure state.
According to Ref. [30], the quantum Fisher information has a
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simple form F (λ) = 4〈ψ0|�G2
sys|ψ0〉, where |ψ0〉 is the prob-

ing state and Ĝsys is the corresponding Hermitian generator of
the system.

As described in Sec. IV, the probing state of our gyroscope
is |�〉 = Ŝ|η, η〉, then the light field to be detected will be
in the state |�(ϕ)〉 = Ûgyro|�〉, where Ûgyro = Û −1

BS P̂ϕÛBS. In
terms of the operators of the modes â and b̂, there are [41]

ÛBS = ei π
4 (â†b+b̂†a), (C1)

P̂ϕ = ei(− ϕ

2 â†â+ ϕ

2 b̂†b̂) = e−i ϕ

2 (â†â−b̂†b̂). (C2)

Here we assume that the phase is imprinted symmetrically.
That means the model with a symmetrically distributed phase
shift is used [41]. We then get

Ûgyro = e
1
2 ϕ(â†b̂−b̂†â) = e−iϕĜgyro , (C3)

where Ĝgyro = i
2 (â†b̂ − b̂†â).

Note that the probing light field is in the two-mode
squeezed state, and the state |�(ϕ)〉 = Ûgyro|�〉 we detected
is a pure state. Therefore, according to Ref. [30], the quantum
Fisher information can be written as

F (ϕ) = 4〈�|�G2
gyro|�〉

= 4(〈η, η|Ŝ†Ĝ2
gyroŜ|η, η〉 − 〈η, η|Ŝ†ĜgyroŜ|η, η〉2)

= 2n(e2r )2 + sinh2 2r, (C4)

where Eqs. (2) and (3) are used. The QCRB of the system is
then obtained as

�ϕ2
QCRB = 1

4�Ĝ2
gyro

= 1

2n(e2r )2 + sinh2 2r
. (C5)
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