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using measurement-based quantum feedback control
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We study the application of a new method for simulating nonlinear dynamics of many-body spin systems using
quantum measurement and feedback [Muñoz-Arias et al., Phys. Rev. Lett. 124, 110503 (2020)] to a broad class of
many-body models known as p-spin Hamiltonians, which describe Ising-like models on a completely connected
graph with p-body interactions. The method simulates the desired mean-field dynamics in the thermodynamic
limit by combining nonprojective measurements of a component of the collective spin with a global rotation
conditioned on the measurement outcome. We apply this protocol to simulate the dynamics of the p-spin
Hamiltonians and demonstrate how different aspects of criticality in the mean-field regime are readily accessible
with our protocol. We study applications including properties of dynamical phase transitions and the emergence
of spontaneous symmetry breaking in the adiabatic dynamics of the collective spin for different values of the
parameter p. We also demonstrate how this method can be employed to study the quantum-to-classical transition
in the dynamics continuously as a function of system size.
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I. INTRODUCTION

Using carefully manipulated quantum systems to simulate
physical models of complex systems is widely seen as one
of the most promising near-term applications of quantum
technologies. Important advances in this direction have been
demonstrated recently using trapped ions [1–4], supercon-
ducting qubits [5–8], and ultracold atoms [9–14], among other
platforms. For quantum simulations of many-body systems, a
major goal is to be able to engineer different kinds of interac-
tions between the constituents of the system. However, each
physical platform imposes natural limitations on the type and
range of such interactions, as typically seen in trapped ions
with power-law decaying Ising couplings [15], or in arrays
of Rydberg atoms with the so-called kinetically constrained
spin models [16,17]. Therefore developing novel techniques
for simulating many-body interactions is desirable and would
allow quantum simulators to access a broader class of physical
models.

In the context of quantum simulation, one tool that has
been largely unexplored is measurement-based quantum feed-
back control (QFC) [18–20], which has a long history that
originated in quantum optics [19,21]. There one extracts in-
formation about the state of the system using (typically weak)
measurements and then uses that information to condition
its future evolution. Possible applications of QFC have been
studied in many different contexts over the past decades,
including deterministic generation of squeezing [22,23], state

*mhmunoz@unm.edu

preparation [24–26], and error suppression and correction
[27–29]. The enabling power of measurements for quantum
information processing has long been recognized in photonic
quantum computing, where it is known that one can in prin-
ciple achieve universality combining linear optics and non-
Gaussian measurements [30]. In another application, Lloyd
and Slotine [31] studied how QFC could be used to engineer
nonlinear Schrödinger equations using weak measurements
and feedback.

In this paper we study in detail a method proposed in [32]
which uses measurement-based QFC to simulate nonlinear
dynamics in collective spin systems (e.g., in an ensemble
of two-level atoms). In previous work we used this method
to study the quantum-to-classical transition of the quantum-
chaotic kicked top. Here we study in detail the scope of
this proposal and demonstrate its suitability to simulate a
broad family of spin Hamiltonians called p-spin models [33].
These models exhibit a broad variety of phenomena associated
with nonlinear dynamics and criticality, e.g., ground-state
phase transitions, dynamical phase transitions, and sponta-
neous symmetry breaking. We show that the proposed method
allows us to probe these features close to the thermodynamic
limit in the mean-field regime.

The remainder of this paper is organized as follows.
In Sec. II we present an overview of the method orig-
inally described in [32] and discuss the class of condi-
tioned unitary operations which are most suitable to simu-
late Hamiltonian dynamics. We also illustrate the existence
of measurement conditions which are optimal to achieve
such simulation and compare our formalism with the the-
ory of continuous measurements and Markovian feedback.
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Then, in Sec. III A we introduce a summary of the
most important features of p-spin models, focusing on
how phase transitions of different orders are obtained
when the interaction degree p is changed. In Secs. III B
and III C we show how to apply this method to simulate
the dynamics of these models in the mean-field regime and
derive analytically the measurement strength regime which
optimizes the success of the method. We then present a
series of applications of our feedback simulation of the p-
spin Hamiltonians. In Sec. IV A we study the corresponding
classical phase-space structures and discuss how well they
can be resolved. In Sec. IV B we demonstrate how different
signatures of dynamical phase transitions are readily accessed
with this protocol. In Sec. IV C we illustrate the emergence
of spontaneous symmetry breaking in the dynamics, induced
by the measurements performed on the system. Then, in
Sec. IV D we study in detail how well the simulation is
achieved in the thermodynamic limit as the number of parti-
cles is increased. Finally, in Sec. V we summarize and discuss
other potential applications of the proposed method.

II. SIMULATION VIA QUANTUM
MEASUREMENT AND FEEDBACK

A. Overview of the method

We summarize here the simulation protocol originally pro-
posed in [32]. We consider an ensemble of N spin- 1

2 particles
described by collective spin operators (Ĵx, Ĵy, Ĵz ), where

Ĵα = 1

2

N∑
i=1

σ̂
(α)
i , (1)

and σ̂
(α)
i with α = x, y, z is a Pauli operator corresponding to

the ith particle. At the initial time t0, we assume the state of
the system to be given by a spin coherent state (SCS) |ψ0〉 =
|↑�n〉⊗N = |θ, φ〉, where all particles are polarized along a
particular direction on the unit sphere �n, specified by angles
(θ, φ) on the sphere. The system then evolves in discrete
time steps {tk} where the state is described by {|ψk〉}, k =
0, 1, . . . , Nsteps. As depicted in Fig. 1, at each time t = tk , a
nonprojective measurement of a component of the collective
spin (say Ĵz) is performed, yielding a measurement outcome
mk . The probability of seeing a particular measurement out-
come mk is given by the Born rule

P(mk ) = 〈ψk|K̂†
mk

K̂mk |ψk〉, (2)

where K̂mk is the Kraus operator describing the nonprojective
measurement, which has the form [34]

K̂mk = 1

(2πσ 2)1/4
e− 1

4σ2 (Ĵz−mk )2

, (3)

where σ is the measurement resolution. After the measure-
ment, a unitary operation Û ( f (mk )) is applied to the system.
This operation is conditioned on the measurement outcome
via a feedback policy f (m), which can be an arbitrary function
of m. The unitary map Û will typically be constrained to a
restricted set of operations which can be easily implemented.
An example would be global SU(2) rotations for collective
spin systems [35]. At the end of the kth time step the state of
the system is updated following the quantum Bayes rule [36],

FIG. 1. Schematic representation of the quantum feedback con-
trol (QFC) simulation scheme. (a) At each simulation step, the
system interacts with a probe which is then measured projectively.
The measurement outcome mk is used to condition a unitary map
Û which then acts on the original system. (b) Stroboscopic time
evolution of the quantum state for the kth protocol step. The state
is updated via the quantum Bayes’ rule as in Eq. (4), giving a map
composed of a nonprojective measurement of the type described in
Eq. (3) followed by a unitary map conditioned on the measurement
outcome.

thus leading to the following map:

|ψk+1〉 = 1√
P(mk )

Û ( f (mk ))K̂mk |ψk〉. (4)

In the following we will be interested in the discrete
quantum trajectory {|ψk〉} generated by this protocol, which
is conditioned on a set of measurement outcomes {mk}.

B. Choice of conditioned unitary
and optimal measurement strength

The protocol described in the previous section leads to
a broad class of dynamics, which in particular encompasses
known applications of quantum feedback control [20]. In the
following we show how a particular choice of the unitary
Û ( f (m)) leads naturally to an effective dynamics which
simulates a desired Hamiltonian. In order to motivate this
argument, consider the limit of infinitesimally short time
steps, with length tk+1 − tk → dt . In this case the dynamics
is described by the theory of continuous weak measurements
[19,34]. The measurement record is now a continuous func-
tion of time {mk} → M(t ) whose evolution is described by
the equation

M(t )dt = 〈Â〉dt + 1√
κ

dW, (5)

where 〈Â〉 is computed over the state ρ̂(t ) = |ψ (t )〉〈ψ (t )|,
κ dt = σ−2 is the inverse of the squared measurement
strength, and dW is a Wiener increment [34,37]. While in our
case Â = Ĵz, the argument presented here is general.

Wiseman and Milburn showed [19,21] that a system under-
going continuous weak measurements of the observable Â and
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driven by a control Hamiltonian of the form

Ĥ (t ) = λM(t )F̂ , (6)

with λ the feedback strength and F̂ a Hermitian operator,
obeys the following QFC master equation:

d ρ̂ = −i

[
λ

4
{Â, F̂ }, ρ̂

]
dt + κ

4
D

[
Â − i

2λ

κ
F̂

]
ρ̂ dt

+
√

κ

4
H

[
Â − i

2λ

κ
F̂

]
ρ̂ dW, (7)

where we have assumed perfect measurement efficiency and
defined the superoperators

D[ĉ]ρ̂ = − 1
2 (ĉ†ĉρ̂ + ρ̂ĉ†ĉ − 2ĉρ̂ĉ†), (8)

H[ĉ]ρ = ĉρ̂ + ρ̂ĉ† − Tr[(ĉ + ĉ†)ρ̂]. (9)

Equation (7) describes the general dynamics of the system
for an arbitrary choice of the feedback operator F̂ . Note that
the overall effect of the feedback in Eq. (7) has both unitary
and nonunitary contributions, the latter being particularly
important in some applications of QFC, such as state stabi-
lization. However, if we choose the feedback Hamiltonian to
coincide (up to a multiplicative constant) with the operator
being monitored, i.e., F̂ = Â, Eq. (7) reduces to

d ρ̂ = −i

[
λ

2
Â2, ρ̂

]
dt − γ

2
[Â, [Â, ρ̂]]dt

+
√

κ

4

(
{Â, ρ̂} − 2〈Â〉 − i

2λ

κ
[Â, ρ̂]

)
dW. (10)

Equation (10) describes the evolution of a quantum system
which is (i) driven by a Hamiltonian ĤFB = λ

2 Â2, (ii) sub-
jected to dephasing in the basis of Â with a rate

γ = κ

4
+ λ2

κ
, (11)

and (iii) driven by a stochastic term which appears as pro-
portional to dW in the equation and is zero if we average
over measurement outcomes [34]. Focusing on (i) and (ii),
we readily see that choosing F̂ = Â decouples the deter-
ministic effect of the feedback into a completely unitary
part (i) and a nonunitary contribution (ii) which adds to the
unavoidable dephasing induced by the measurement. This
general argument reveals the existence of a regime under
which measurement-based feedback control simulates unitary
evolution generated by a Hamiltonian ĤFB at the expense of
additional dephasing. Note also that the total dephasing rate,
Eq. (11), is not a monotonic function of the measurement rate
κ . This can be understood from the fact that κ → ∞ (and
conversely σ → 0) is the limit of projective measurements,
in which a very accurate estimate of Â is obtained at the
expense of a large measurement back action on the system,
which dominates over the unitary evolution leading to γ →
∞. The opposite limit κ → 0 (and conversely σ → ∞) is that
of weak measurements. There the measurement disturbs the
state of the system only slightly but obtains a very inaccurate
estimation of Â. As a consequence, the control Hamiltonian in
Eq. (6) feeds back mostly noise into the system, thus leading
again to γ → ∞. It is then clear that a minimum value of γ

is achieved by an intermediate measurement rate κopt , which
demonstrates the existence of an information gain-disturbance
tradeoff in the dynamics simulated by the feedback procedure
[32]. Exploiting this fact is an integral part of our proposal,
and so we will be interested in working at the point of optimal
measurement in all cases.

C. Relation to continuous measurement
and Markovian feedback

Although in the previous section we have motivated our
choice of control Hamiltonian using the well-established the-
ory of continuous weak measurements, it is important to point
out that the general (discrete time) simulation protocol laid
out in Sec. II A actually allows for a more general class of
dynamics which are not described by the stochastic master
equation in Eq. (7). This is because the control Hamiltonian
in Eq. (6) is restricted to be a linear function of the mea-
surement record M(t ) in the continuous case, as higher-order
powers are ill defined [22]. To see why this is the case,
consider a modified control Hamiltonian Ĥn(t ) = λM(t )nF̂
with n a positive integer and recall from Eq. (5) that M(t ) =
〈Â〉 + 1√

κ

dW
dt . Then the change induced in the state by this

Hamiltonian is

d|ψ〉 = −iλM(t )nF̂ |ψ〉dt ∼ −iλ

(
dW

dt

)n

F̂ |ψ〉dt, (12)

the last term being the leading order in dt . Recalling that
dW 2 = dt , it is then clear that in order to keep d|ψ〉 → 0 as
dt → 0, the exponent n cannot be higher than 1. For n = 2,
actually, this term remains O(1), independent of dt .

In contrast, in the discrete time case the feedback policy
can be any (nonlinear) function of the measurement outcome
m, which gives us access to different classes of dynamics, as
we will illustrate in the next section. Note also that, as shown
in [32], the measurement outcome m can be taken as the
time-averaged measurement record M(t ), which makes the
discrete time evolution essentially non-Markovian. Of course,
the downside of the discrete time formalism is that we cannot
use the powerful tools of stochastic calculus. However, as
we will show in the next section, our approach allows for
a useful analytical treatment when working in the regime of
large system size N = 2J � 1 by employing the Holstein-
Primakoff approximation [38]. This is the regime of greatest
interest for simulation of mean-field dynamics, as we will see
below.

III. p-SPIN SYSTEMS

The p-spin models are a family of simple models describ-
ing the competition between two magnetically distinct order-
ings in an ensemble of N spin-1/2 particles. The ensemble
is subjected to an external uniform magnetic field inducing
paramagnetic order and an infinite-range p-body Ising-like
interaction inducing ferromagnetic order. In this family of
models one recovers for p = 2 the well-known Curie-Weiss
ferromagnet [39–41], which is the Lipkin-Meshkov-Glick
(LMG) model when interactions are infinite range [42]. For
general p, the interplay of these two incompatible orderings
gives rise to rich critical phenomena. We parametrize the
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p-spin Hamiltonian as a dimensionless universal Hamiltonian

Ĥp = −(1 − s)Ĵy − s

pJ p−1
Ĵ p

z , (13)

where we have chosen the external field to be along the y axis
and the interactions to be of z type, s ∈ [0, 1] is an interpola-
tion parameter controlling the degree of mixture between the
two distinct orderings, and Ĵα are collective spin operators as
in Eq. (1). Our choice of parametrization is in natural units and
naturally generalizes the mean-field dynamics of the LMG
model to models with higher p.

A. Summary of properties of p-spin models

Since the Hamiltonian preserves the total spin, that is,

[Ĥp, �̂J2] = 0, the dynamics of the system is constrained
to the symmetric subspace of the ensemble of spin-1/2
particles, spanned by N + 1 Dicke states {|J, J〉, |J, J −
1〉, ..., |J,−J〉}, which correspond to permutation symmetric
states. A salient feature of these models is the existence of
phase transitions of varying order depending on p. For p = 2,
the transition is second order (continuous), while for p > 2 it
is first order (discontinuous). We refer to [43] for a thorough
study of quantum phase transitions for a general model of col-
lective interacting spins. In the quantum regime, the study of
the behavior of the spectral gap in these systems has received
special attention in recent years, and it was shown that for
p = 2 the gap closes polynomially with N and for p > 2 it
closes exponentially [44]. The latter has strong consequences
for dynamical processes such as adiabatic quantum computa-
tion [45] and quantum annealing [46], where p-spin models
have been studied as systems constituting hard problems for
annealers to solve [44].

Properties of the Hamiltonian in Eq. (13) in the mean-field
case can be obtained by studying the semiclassical energy
function in the thermodynamic limit. We construct this energy
function by taking the expected value of the Hamiltonian
in Eq. (13) in a spin coherent state, neglecting correlations
and, in the limit J → ∞, defining the classical variables �X =
〈 �̂J〉/J . After this procedure one finds

V (u, φ; s, p) = −(1 − s)
√

1 − u2 sin(φ) − s

p
up, (14)

where we have written the classical variables �X in spherical
coordinates (X,Y, Z ) = [sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )]
and defined u = cos(θ ). In these models, phase transitions can
be studied by analyzing an order parameter (OP) in the ground
state. Here we take the OP to be the magnetization along
the z direction. In the thermodynamic limit we can obtain
the value of the ground-state OP for a given value of s as
the value of u at which Eq. (14) has its global minimum. It
is straightforward to see that the minimum condition implies
φ = π/2. As a consequence, the identification of the extreme
values of V (u, φ = π/2) ≡ V (u) is the main tool to study
phase transitions in our model. It is easy to check that u = 0 is
always an extreme value of V , and new extrema appear when

u2(p−1) − u2(p−2) +
(

1 − s

s

)2

= 0 (15)

FIG. 2. Equilibrium phase transitions in the p-spin model. (Left)
Semiclassical energy function of Eq. (14) as a function of the
direction of the collective spin vector, parametrized by u = cos(θ )
with φ = π/2, for three different values of s. From top to bottom
we show the cases of p = 2, 3, 4, respectively. We normalized each
curve by the difference between its maximum and minimum values
so that they lie within the interval (0,1). (Right) Global minimum
of the pseudopotential as a function of s. Notice the difference in
the continuity of the curves between the cases p = 2 (second-order
phase transition) and p � 3 (first-order phase transition).

has real-valued solutions. For s = 0 the global minimum is
at u = 0. As s is increased, other extreme values appear, and
eventually one of them becomes the new global minimum.
When we observe either a nonanalyticity or a discontinuous
jump in the OP, this indicates that the system has moved to a
new and more stable energy configuration and thus a phase
transition has taken place. In the left column of Fig. 2 we
present examples of semiclassical energy curves for systems
with p = 2, 3, 4 (top to bottom, respectively). A marked dif-
ference in the position of the global minimum can be seen
between the two curves in red and black and the green one. For
the latter, the global minimum is located at a value of u �= 0.

Consider now a real-valued solution of Eq. (15), say ũp. If
there is a value of s for which ũp becomes the position of the
global minimum, then the algebraic inequality

V (ũp; s, p) � −(1 − s) (16)

saturates at that value of s. Such a value of s marks the bound-
ary between two different phases and we will refer to it as the
equilibrium critical point, s = seq

c . Let us now study Eqs. (15)
and (16) for the three systems with p = 2, 3, 4. When p = 2
one can show that new extreme values of V (u; s, p) exist when
s � 0.5 and they have the form

u(s) =
√

1 −
(

1 − s

s

)2

, (17)
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where we have have only considered the positive branch.
This new extreme value becomes the global minimum for
values of s such that (s − 1/2)2 � 0, which is saturated when
s = 0.5, hence s(eq)

c = 0.5. Therefore for p = 2 the value of s
at which new extreme values appear and at which they become
the global minimum coincide and the phase transition is a
continuous, second-order one. This fact is seen by looking at
the OP curve as a function of the control parameter s, shown
in top-right panel of Fig. 2.

In the case of p = 3 new extreme values appear when s �
2/3 and they have the form

u(s) =

√√√√1

2
+ 1

2

√
1 − 4

(
1 − s

s

)2

. (18)

This new extreme value becomes the global minimum at
s(eq)

c = 0.697 831. For p = 4 a similar situation happens, new
extreme values exist when s � 3

23 (9 − 2
√

3) ≈ 0.722 073,

and they become the global minimum at s(eq)
c = 0.771 429.

Notice how for both p = 3 and p = 4 the emergence of new
extreme values and their transition to be the global minimum
do not occur at the same value of s. Thus we observe a
discontinuous magnetization (featuring an abrupt jump) as a
function of s, as can be seen in the middle and bottom panels
in Fig. 2. This behavior is indicative of a first-order phase
transition.

B. Feedback protocol for simulating p-spin dynamics

For the case p = 2, the mean-field dynamics of a Hamilto-
nian proportional to Ĵ2

z is obtained by linearizing the quantum
fluctuations around the mean, in which case Ĵ2

z → 2〈Ĵz〉Ĵz.
In the QFC protocol in [32] the measurement outcome m
provides an estimate of 〈Ĵz〉, in the limit in which the signal
dominates over the noise. We thus simulate the mean-field
dynamics of the quadratic “twisting Hamiltonian” through a
feedback policy that induces a collective rotation generated
by the term mĴz. In order to simulate the dynamics of the
p-spin model we follow a similar argument. In the mean-field
limit we can write the interaction term in Eq. (13) as Ĵ p

z →
p〈Ĵz〉p−1Ĵz, and thus we obtain the mean-field Hamiltonian

Ĥ (mf)
p = −(1 − s)Ĵy − s

J p−1
〈Ĵz〉p−1Ĵz. (19)

Note that in the mean-field limit, the interaction term is seen
as a rotation around the z axis by an angle proportional to
the (p − 1) power of the expected value of Ĵz. Since the mea-
surement outcome m provides information about the desired
expected value, we choose the feedback unitary map

Û ( f (m)) = exp

(
i�t (1 − s)Ĵy + i�t

smp−1

J p−1
Ĵz

)
(20)

to simulate the desired dynamics over a time step �t .

C. Derivation of the optimal measurement regime

As discussed in Sec. II B, we wish to operate this sim-
ulation scheme at the optimal value of the measurement
resolution σ . In order to explicitly find such optimal σ , we
write the map evolving the normalized vector of expectation

values, �X = 〈 �̂J〉/J , after the action of a single protocol step,
and determine the measurement strength that best approxi-
mates the mean-field dynamics. In the limit of a large spin
ensemble, N � 1, we can use that map to write down an
analytic expression for the optimal value of σ . To work in this
limit it is convenient to use the comoving Holstein-Primakoff
(H-P) approximation [38], the details of which were laid out
in [32]. In the limit N � 1, to a good approximation we can
write the state of the system as a Gaussian state. Thus the

vector of expectation values 〈 �̂J〉 and the symmetric covariance
matrix Vγ ν = 1

2 (〈{Ĵγ , Ĵν}〉 − 2〈Ĵγ 〉〈Ĵν〉) completely determine
the state of the system. In this limit the H-P approximation
consists of mapping an initial spin coherent state to the
vacuum of a bosonic mode on the tangent plane to the sphere
at the position of the mean spin vector. Then we construct
quadrature operators on the local basis of the plane out of
the collective spin operators. In the H-P plane, one can easily
compute the action of K̂m on the state (explicit expressions
are given in [32]). Using the H-P approximation we can recast
a single step of the protocol as consisting of the following
parts. First we change the basis from space-fixed Cartesian
coordinates to the local basis on the plane, which is achieved
by a rotation matrix A.1 Next we update the entries of �X and V
under the action of the measurement. Then, after rotating back
to the original coordinates, we apply the rotations specified by
Û ( f (m)).

This calculation simplifies considerably if we write the
feedback unitary map in Eq. (20) as a series of rotations
around the axes x and z. This operator then takes the form

Û ( f (m)) = ei(αĴy+β Ĵz ) = eiϕĴx e−γ Ĵz e−iϕĴx , (21)

where α = �t (1 − s), β = �ts mp−1

J p−1 , and γ =
√

α2 + β2, ϕ =
sin−1( α

γ
).

Using the H-P approximation and this last expression we
computed the explicit form of the map evolving �X after one
protocol step, yielding

Xi+1 = (1 − η1V22Zi )[cos(γ )Xi − cos(ϕ)Yi]

−V12η1[cos(ϕ)Xi + cos γYi]

+ (Zi + η1V22) sin(γ ) cos(ϕ),

Yi+1 = (1 − η1V22Zi )[cos(ϕ) sin(γ )Xi

+ ( cos(γ ) cos2(ϕ) + sin2(ϕ))Yi]

+V12η1[( cos(γ ) cos2(ϕ)+sin2(ϕ))Xi

− cos(ϕ) sin(γ )Yi]

+ [
Zi + V22η1(1 − Z2

i ) cos(ϕ) sin(ϕ)(1 − cos(γ ))
]
,

Zi+1 = (1 − η1V22Zi )[− sin(γ ) sin(ϕ)Xi

+ cos(ϕ) sin(ϕ)(1 − cos(γ ))Yi]

+V12η1[cos(ϕ) sin(ϕ)(1−cos(γ ))Xi+sin(γ ) sin(ϕ)Yi]

+ [
Zi+V22η1

(
1−Z2

i

)]
[cos2(ϕ)+ cos(γ ) sin2(ϕ)], (22)

1This is the same rotation matrix connecting Cartesian coordinates
with spherical coordinates, except that the spherical basis is ordered
as (�eφ, −�eθ , �er ).
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where η1 and η2 are two normally distributed random vari-
ables given by

η1 = mθ

σ 2
≡ N

(
0, σ 2

1

)
, with σ 2

1 = σ 2 + (
�Ĵ2

z

)
k

σ 4
,

η2 = mθ

J/W
≡ N

(
0, σ 2

2

)
, with σ 2

2 = W 2

J2

(
σ 2 + (

�Ĵ2
z

)
k

)
,

(23)

representing the randomness coming from the noisy measure-
ment and an imperfect feedback operation, respectively. We
will refer to the measurement noise as “shot noise” as in a
physical implementation with a laser probe. Here we have
defined mθ = m − 〈Ĵz〉 and W = (�ts)

1
p−1 . Also, (�Ĵ2

z )k is the
spin uncertainty, which we refer to as “projection noise” of
the state at the kth evolution step. Note that we also obtain
an explicit map for the evolution of the covariance matrix
V , which is not shown here. We point out that η2 does not
appear explicitly in Eq. (22); however, it is present in the
argument of the trigonometric functions via the parameter β,
since β = (W Z + η2)p−1.

A Taylor expansion of the trigonometric functions and
square roots in Eq. (22) shows that the first nonvanishing
terms are linear in both η1 and η2. Thus finding the optimal
value of the measurement resolution requires the minimiza-
tion of a convex combination of the two noise variances. Both
random variables are centered at zero, and thus we minimize

f
(
σ 2

1 , σ 2
2

) = σ 2
1 + σ 2

2 . (24)

If the time-evolved state remains, at all times, close to a spin
coherent state, then we can consider (�Ĵ2

z )k ∼ J/2, and we
parametrize the measurement resolution as proportional to the
projection noise, σ = μ

√
J . With these two definitions one

can easily find the value of μ minimizing f (σ 2
1 , σ 2

2 ), yielding

μopt = 1

2(�ts)
1

p−1

√
1 +

√
1 + (�ts)

2
p−1 . (25)

We study the behavior of the function f (σ 2
1 , σ 2

2 ) in a wide
range of values of μ in Fig. 3, from which several features
manifest. First, the existence of a minimum is evident in all
curves, at a value of μopt ∼ 1. This is expected, since a strong
measurement would lead to excessive measurement back ac-
tion, and a weak measurement would not extract sufficient in-
formation for useful feedback. The optimum μ gives the best
balance to this tradeoff. We notice the optimal value moves
towards smaller values of μ as s and/or p increases. However,
for larger p the position of the minimum becomes increasingly
insensitive to the value of s; see Figs. 3(a) and 3(c). Finally,
for larger p we observe narrower curves, indicating that the
simulated dynamics is less robust to deviations in μ than for
p = 2. This last fact already hints to a relation between the
value of p and the ease of simulating the respective mean-field
p-spin dynamics. We will explore this relation from different
points of view with the applications presented in the next
section.

FIG. 3. Analysis of the optimal measurement strength for the
simulation scheme. In each panel the normalized convex combina-
tion of the variances of the two random variables η1 and η2 appearing
in Eq. (22) are plotted as a function of the measurement strength
parameter μ = σ/

√
J . The case p = 2 is shown in (a), p = 3 in (b),

and p = 4 in (c). In all cases we observe the existence of an optimal
(minimum) value for the measurement resolution. As p increases,
curves for different values of s converge.

IV. APPLICATIONS

A. Constructing phase-space portraits

Using the protocol with the feedback policy introduced
in Sec. III B we can simulate arbitrary dynamics of mean-
field p-spin models. Studying equilibrium phase transitions
from dynamical simulations is challenging, since these are
associated with the emergence of a new global minimum in
the energy function V (u; s, p), which is a static property of
the Hamiltonian. However, dynamical changes occurring as
a consequence of such static processes are readily accessible
in our simulation. Of particular interest are the bifurcation
processes and emergence of new fixed points taking place
as a function of s for a given value of p. These processes
are a landmark of the nonlinear character of the mean-field
dynamics of the model in Eq. (13).

These dynamical processes are seen in the mean-field
model and are linked to the radical way in which the phase-
space changes as a function of the control parameter s. For
s < sb, where sb is the value at which a bifurcation occurs or
new extrema appear, the dynamics for any initial condition on
the unit sphere is mostly linear, with the Larmor precession
trajectories being only slightly deformed by the additional
nonlinear term. For values of s > sb, major changes in the
structure of phase-space trajectories occur. In the following
we focus on the consequences of such changes for the differ-
ent applications explored with our protocol.
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FIG. 4. Phase spaces and point-to-point similarities for the simulation of the mean-field p-spin dynamics. From top to bottom we show
p = 2, 3, 4 (with control parameter values s = 0.65, 0.75, 0.8, respectively). In both left and right boxes we show simulated phase-space
trajectories and similarity plots constructed by computing the quantity S discussed in Appendix A, Eq. (A1), over a uniform grid of initial
conditions on the unit sphere. Lighter colors correspond to high values of S, which indicate that the simulated trajectories are in good agreement
with the ideal mean-field evolution. Likewise, darker colors are associated to small S and indicate phase-space regions which are not accurately
simulated. The left box corresponds to ensemble size N = 104 and the right box to N = 106. For N = 106 we recover almost the entire phase
space with good correlation to the ideal dynamics, except near fixed points and separatrices. Other parameters used in the simulations are
�t = 0.01, Tmax = 3500, μ = 25.0, ncond = 80, and nsim = 700.

As a first step we study the degree to which these dynam-
ical changes can be observed with the measurement-based
feedback simulator. For this we take a set { �Xk}k=1,..,ncond of
initial conditions on the unit sphere and evolve them with
our scheme according to the map in Eq. (22). With these
trajectories we construct the respective phase-space portraits.
In Fig. 4 we display these portraits for p = 2, 3, 4 with the
values s = 0.65, 0.75, 0.80 from top to bottom, respectively.
We chose values of s > sb so that major changes in phase
space have already taken place. For N = 106 (right box in
Fig. 4), we see phase spaces with smooth trajectories and we
are able to resolve all the fixed points, stable and unstable,
and the separatrix line. However, for N = 104, the simulation
is not sufficiently deep in the thermodynamic limit to fully
reproduce the mean-field dynamics. In this case, the sim-
ulated evolution is disturbed by the presence of significant
quantum noise, i.e., high projection noise relative to the
mean spin, combined with the shot noise which is fixed by
optimal measurement strength. This amounts to blurring of
the average separation between trajectories which are macro-
scopically distinguishable. The smoothness of the simulated
phase space in this case is greatly reduced. In particular,
unstable fixed points and separatrix lines become hard to
resolve.

Qualitatively, the phase portraits in Fig. 4 show good
agreement between the QFC simulation and the mean-field
phase space, including the deformation of trajectories due to
bifurcations and emergence of new extreme points. However,
small imperfections can be hard to see by the eye at the global

scale at which we are looking at the phase spaces. In order
to quantitatively assess the quality of the simulated phase
spaces, we compute a similarity measure S between the QFC
simulation and the mean-field model (the explicit form of the
mean-field map is given in Appendix B). We employ a sim-
ilarity measure based on the Pearson correlation coefficient
[47]; its explicit construction is discussed in Appendix A. Its
main property is that S ∈ [0, 1], achieving S = 1 for perfect
correlation (i.e., if the simulated and mean-field phase spaces
are exactly the same), and S = 0 for no correlation (i.e., if
the simulated and mean-field phase spaces are completely
different).

In Fig. 4 we present point-to-point similarity maps be-
tween the mean-field phase spaces and the simulated ones,
constructed from computing S over a uniform grid with
nsim × nsim initial conditions. A few interesting points are
manifested from these similarity maps. First, unstable fixed
points and their respective separatrix lines are difficult to
simulate with a high degree of similarity. Second, and perhaps
more striking, trajectories in the vicinity of stable fixed points
are also difficult to simulate with a high degree of similarity.
This is connected to the fact that, even when working at the
optimal value of the measurement resolution σ , our simulator
has a finite resolution power, and trajectories in the vicinity of
stable fixed points within a range smaller than the resolution
are seen as pointlike objects. Finally, for initial conditions
far from any of these three regions our simulation produces
trajectories with an almost perfect similarity (see the right box
in Fig. 4).
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The similarity parameter also reveals an important distinc-
tion between the degree of success of the simulation scheme
for different system sizes. By comparing the left and right
similarity plots of Fig. 4, we observe that for N = 104 the
simulation scheme performs much better for p = 2 when
compared with p = 3 and p = 4. This behavior originates
from the fact that the latter cases are associated with a
proliferation of fixed points after the phase transition occurs,
as discussed in Sec. III A. As a consequence of this, some
phase-space structures are harder to resolve in the presence
of large quantum noise relative to the mean field. This last
observation suggests a deeper study of the behavior of S
as we change the system size, which can be used as a
probe of the quantum-to-classical transition, as we will see in
Sec. IV D.

B. Exploring dynamical phase transitions

As discussed in Sec. III A, p-spin Hamiltonians exhibit
equilibrium phase transitions of varying order depending on
p. Critical behavior can also be found in nonequilibrium
properties of quantum systems, leading to dynamical quantum
phase transitions (DQPTs) [48]. A characteristic property
of DQPTs is the abrupt change of the asymptotic value of
the quasisteady state of an observable which begins out of
equilibrium as a function of a parameter in the Hamilto-
nian [49]. For spin systems, such an observable can be the
collective magnetization or a two-body correlation function.
Since these quantities are experimentally accessible, DQPTs
have attracted much attention as test-beds for near-term quan-
tum simulators, with notable experimental studies including
analog quantum simulations of the one-dimensional Ising
model with trapped ions [2,3] and of the LMG model with
superconducting qubits [5]. Recent theoretical works have
studied DQPTs in nonintegrable Ising Hamiltonians and their
connection to the mean-field limit [49], and also the relation
between different manifestations of DQPTs [50,51]. In the
following we present an analysis of DQPTs for p-spin models
in the mean-field limit and show how our feedback protocol
allows us to access such features of dynamical criticality.

In the mean-field limit of the p-spin model we can build
a simple and useful intuition regarding the physical mean-
ing of the dynamical phase transition. Recall that using the
semiclassical energy function, we associated the equilibrium
phase transition with the existence of a new global minimum.
However, in order for a new global minimum to exist, the
semiclassical energy function must have developed new ex-
treme points first. New stable fixed points indicate a major
reconfiguration of the trajectories in phase space and are
accompanied by new unstable fixed points, which in turn
indicate the emergence of a separatrix line. The separatrix
marks the boundary between two disconnected regions of
phase space which show different types of regular motion.

In this spirit, the system under study will undergo a phase
transition of dynamical character (DPT) whenever the initial
condition finds itself inside a different region of phase space
[49,50]. As a consequence, the long time average of an
order parameter will undergo a major change. Notice that for
systems such as those studied here, the dynamical transition
cannot occur without the equilibrium phase transition taking

place first. Hence we expect to find sDPT
c � s(eq)

c . A detailed
explanation of how to compute the mean-field dynamical crit-
ical point s(DPT)∗

c is given in Appendix B, where we explicitly
give the values for p-spin models with p = 2, 3, 4.

In Sec. IV A we saw that for an appropriate value of N ,
our measurement-based simulation can capture all the macro-
scopic changes experienced by the mean-field trajectories,
as exhibited in Fig. 4. This includes bifurcations and the
emergence of the separatrix line. With this capability, we
expect that dynamical phase transitions are accessible with
our scheme. For the present study we consider two different
observables: the long time average of the z magnetization
and the two-body correlation function as indicators of the
dynamical phase transition. These are given by

Z∞ = lim
T →∞

1

T

∫ T

0

〈Ĵz〉t

J
dt, (26)

C∞
zz = lim

T →∞
1

T

∫ T

0

〈
Ĵ2

z

〉
t

J2
dt, (27)

where 〈Ô〉t = 〈ψ (t )|Ô|ψ (t )〉 for any observable Ô. Long time
averages are good indicators of phase transitions, as follows
from the theory of dynamical systems and their stability.
The details of the trajectories (usually oscillations) around a
stable fixed point strongly depend on the initial condition and
parameter values. However, time-averaged values are usually
robust to (small) changes in both the initial condition and
model parameters (see, e.g., Chap. 6 of [52]). We expect then,
after fixing the initial condition, to see similar or smoothly
varying behaviors of Z∞ and C∞

zz on each side of the critical
point, separated by a sharp transition.

To explore the dynamical phase transition with our simu-
lator, we prepare an initial spin coherent state along z, |ψ0〉 =
|J, J〉 = |↑z〉⊗N , and evolve it with our scheme using a fixed
value of s. After a sufficient time of evolution, we approximate
the values of Z∞ and C∞

zz . The procedure is repeated for all
values of s ∈ [0, 1]. The results of our numerical simulations
are shown in Fig. 5, where from top to bottom we display
p = 2, 3, 4, respectively. We make several observations from
these results. First, note that for all values of p the dynamical
phase transition is continuous, even in the exact mean-field
case (continuous curve in Fig. 5). This is a consequence of
the continuous manner in which phase-space trajectories are
deformed. However, for increasing p the transition becomes
sharper. Second, for large N (small projection noise relative
to the mean field), our simulation scheme reproduces almost
perfectly the mean-field DPT, including the correct position
of the critical point (see black dots in Fig. 5). For a smaller
value of N (orange diamonds) our scheme underestimates the
value of the critical point for p > 2, even though the shape
of the transition is qualitatively well reproduced. Overall,
we observe that the details of the dynamics are harder to
reproduce for increasing p, in agreement with our analysis
of the similarity of the phase-space portraits presented in the
previous section. We will continue to analyze the behavior of
the dynamical phase transition in Sec. IV D.

C. Spontaneous symmetry breaking

Our protocol allows us to explore aspects of symmetry
breaking induced by the action of the measurements (see
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FIG. 5. Dynamical phase transition in the simulation of the
mean-field p-spin model. (a), (c), (e) Infinite time average order
parameter Z∞, cf. Eq. (26), as a function of parameter s. (b), (d),
(f) Infinite time average of the two-body correlation C∞

zz , cf. Eq. (27),
as a function of parameter s. From top to bottom we display p = 2
in (a), (b), p = 3 in (c), (d), and p = 4 in (e), (f). In all figures the
symbols show the results obtained using the feedback-based scheme
for N = 104 (black dots) and N = 106 (orange diamonds), while the
continuous red lines show the values obtained for the classical p-spin
model described by the flow in Eq. (B3). The dashed green lines
indicate the value of the dynamical critical point corresponding to
the classical limit. The explicit calculation of the former is given in
Appendix B.

[53] for a related study of measurement-induced symmetry
breaking in Ising chains). We focus on the simulation of the
p-spin model with p = 2. To study this phenomenon, we
consider an adiabatic passage starting from the initial state
|ψ0〉 = |↑y〉⊗N , the ground state of −Ĵy. The adiabatic evolu-
tion is generated via s(t ) = t/T , with T the total passage time.
This total time is chosen long enough to guarantee adiabaticity
[54] and so the system is expected to reach the ground state
of −Ĵ2

z at t = T , i.e., when s = 1. This final ground state
is an equal-weight superposition of |↑z〉⊗N and |↓z〉⊗N , and
thus one expects that 〈Ĵz〉 = 0. In the semiclassical picture,
the initial state (X,Y, Z ) = (0, 1, 0) is a fixed point of the
flow map in Eq. (B3), and regardless of its stability, this point
will be stationary along the adiabatic passage, thus leading
to 〈Ĵz〉/J = 0 for all times. However, this point constitutes a
set of measure zero, and any imperfection or perturbation will
drive the system away from this stationary state in the unstable
regime (that is, for s > sc) [55]. In the adiabatic evolution
simulated by the QFC scheme, it is the back action induced
by the measurement who plays the role of such perturbation,
thus generating the symmetry breaking [53].

We explore how this measurement-induced symmetry
breaking is manifested in the simulation. Note that in this
example the protocol simulates a time-dependent Hamilto-
nian. This is achieved by setting s → tl/T in the feedback
unitary map of Eq. (20), where tl ∈ [0, T ], thus realizing a
discretized version of s(t ) = t/T . With this parametrization

FIG. 6. (a), (b) Magnetization Z (t ) as a function of time during
the adiabatic passage, which is described by the parametrization
s = t/T , where T is the total evolution time. Results are shown
for (a) N = 103 and (b) N = 105. The continuous red and black
lines show two different runs of the adiabatic evolution, highlighting
the large effect produced by random variations in the simulated
adiabatic evolution and in particular, of the final values Z (s = 1).
(c) Probability distribution of the values Z (s = 1) constructed from
8000 different runs of the adiabatic evolution. As we decrease the
effects of quantum noise relative to the mean field, we approach a
limit where the statistics of the final values Z (s = 1) follow that of
a fair coin. This behavior is indicative of the scheme simulating the
expected symmetry breaking of the final ground state. Simulation
parameters are μ = 45.0, �t = 10−2, and T = 104.

the simulation proceeds following Eq. (22), where each step
has a slightly larger value of s, the number of steps follows
from the total passage time T, and is chosen such that adia-
baticity is guaranteed. We show numerical results of different
realizations of the protocol in Figs. 6(a) and 6(b). The red and
black continuous lines represent two different realizations of
quantum trajectories simulating the adiabatic evolution with
the exact same parameters. In all cases it can be seen that
the intrinsic randomness induced by the measurement back
action has a large effect on the final state of the system. In
Fig. 6(a) we consider a system with N = 103, a value that is
sufficiently far from the thermodynamic limit that the effect
of projection noise of the initial SCS is relatively large. As a
result, the effect of the noise-driven field dominates over the
Hamiltonian evolution, and the symmetry breaking is washed
out by strong measurement back action.

On the other hand, for N = 105 [Fig. 6(b)], we are suffi-
ciently deep in the thermodynamic limit such that the effect
of quantum noise is small compared to the mean field. As
a consequence, the combination of the classical instability
and weak measurement back action is able to break the
symmetry and push the system to one of the two final states
|↑z〉⊗N or |↓z〉⊗N . In Fig. 6(c) we construct the probability
distribution for the expectation value of the spin projection
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FIG. 7. Analysis of the quantum-to-classical transition in the various applications analyzed in this work. (a), (b), (c) Heat maps show the
average similarity as a function of control parameter s and system size N for the cases p = 2, 3, 4, top to bottom, respectively. To the left of
each map, we plot three sample cross sections corresponding to the three dashed lines on the heat maps. The dashed blue, magenta, and green
lines correspond to s = 0.25, 0.45, 0.85, respectively. (d) Distance of the outcome distributions originally depicted in Fig. 6(c) to the uniform
distribution in the range Z (s = 1) ∈ [−1, 1] as a function of the system size N , computed using the normalized Jensen-Shannon divergence
(see main text for details). (e), (f), (g) Plots of the dynamical critical point s(DPT)

c obtained through the protocol depicted in Fig. 5 as a function
of system size N for p = 2, 3, 4, top to bottom, respectively. In all cases, values of s(DPT)

c are shown normalized by their classical values, s(DPT)∗
c

Z at the final time (t = T ) for different values of N . This is
done by repeating the simulation many times (8000 in this
case) and recording the final state. For small N , we obtain an
almost uniform distribution in the range Z ∈ [−1, 1] (black
histogram), indicating the impossibility of the state to resolve
the double-well structure of the semiclassical energy function
(see Fig. 2). In this case, the adiabatic evolution essentially
realizes a random walk on the sphere. As N increases and the
double-well features are resolved, measurement back action
can break the symmetry and we reach the limit of a “fair
coin” binomial distribution (orange histogram), where all
trajectories evolve to either Z = +1 or Z = −1. The effect
of the finite quantum noise in the symmetry-breaking process
can also be used as a probe of the quantum-classical transition,
and we will explore this in the next section.

D. Exploring the quantum-to-classical transition

The question of how and under what mechanisms a quan-
tum system recovers the appropriate classical behavior, be it
regular, chaotic, or critical, has received extensive attention
since the formulation of quantum theory. This question and
related issues have been explored for closed [56–62], open
[63–66], and continuously monitored [67–70] quantum sys-
tems. The latter is the situation under investigation in the
present work.

More specifically, in this section we explore the emergence
of the classical dynamics from the point of view of the three
different applications explored in the previous sections. The
basic idea here is that in systems of collective spin variables
one can introduce an effective Planck constant equal to the
reciprocal of the collective spin size, h̄eff = 1/J . Thus by
changing the size of the collective spin we are effectively
controlling how deep we are in the classical limit. As seen

in the previous section, increasing J reduces the projection
noise in the state of the system (relative to the mean spin)
and increases the accuracy of the simulation of the mean-
field dynamics. This is equivalent to the thermodynamic limit
of statistical physics. Here we set out to characterize this
behavior in more detail. Particularly, we are interested in
understanding how large N should be to accurately reproduce
each of the features of criticality studied before.

First we consider the effects of varying h̄eff in our ability to
reconstruct the mean-field phase spaces. To study this, we use
the similarity parameter introduced in Sec. IV A and calculate
its phase-space average, cf. Eq. (A4), for a range of values
of s ∈ [0, 1] and N ∈ [102, 107]. Each of these values is
displayed as a point in the heat maps of Figs. 7(a)–7(c), where
from top to bottom we have p = 2, 3, 4, respectively. Two
major features are evident from these plots. First, the region
of the space of parameters (s, N ) for which our simulator
differs substantially from the target model monotonically
grows with increasing p, as can be seen from the size of the
black region in the figures. This behavior is largely due to
the increase in the number of fixed points (regardless of their
stability). From this result we see that larger p values yield
a more difficult model to simulate and pushes the mean-field
limit to higher values of N .

A second major feature arises when we look at cross sec-
tions of the heat maps (see the dashed lines in Figs. 7(a)–7(c).
In particular, we looked at three cross sections for the values
s = 0.25, 0.45, 0.85 which capture the different phases of the
models for the values of p studied. Interestingly, the functional
form of all these cross sections for different values of p and s
is very similar, hinting at a universal form of the transition to
the mean-field limit, regardless of the phase and the value of p.
Finally, as pointed out in the first feature, the only difference
between all the cross sections is the position of the inflection
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point, which shifts to a larger value of N for increasing
s and p.

Next we look at the effects of varying the effective Planck’s
constant on the statistics of the output of repeated symmetry-
breaking experiments. We already touched on this analysis
in Fig. 6(c), where we showed how the distribution of these
outcomes changes between two limiting cases, a uniform
distribution in the range [−1, 1] at small N and a distribution
of two localized peaks at −1 and 1 at large N . Furthermore,
we saw that the distribution changes continuously between
these two limiting cases. To quantify this continuous transition
we calculated the distance of the outputs distribution to the
uniform distribution in [−1, 1] using the Jensen-Shannon di-
vergence [71,72]. This is a symmetrized version of the popular
Kullback-Leibler divergence [73], which satisfies the triangle
inequality and thus defines a proper distance in probability
space. It is defined as

J [P1, P2] = 1
2 (D[P1, Pm] + D[P2, Pm]), (28)

where D[P1, P2] = −∑
j P( j)

1 ln ( P( j)
1

P( j)
2

), with P1, P2 two prob-

ability distributions, and Pm = 1
2 (P1 + P2). In terms of the

Shannon entropy, S[P] = −∑
j Pj ln(Pj ), Eq. (28) can be

written in the form

J [P1, P2] = S

[
P1 + P2

2

]
− 1

2
(S[P1] + S[P2]). (29)

Results of our calculation of this quantity are shown in
Fig. 7(d), where the normalization factor J0 = 1/2 corre-
sponds to the Jensen-Shannon divergence between the uni-
form distribution and a distribution of two δ functions. Indeed,
we observe that the transition between the two limiting dis-
tributions is smooth. Additionally, the functional form of the
Jensen-Shannon divergence when varying N is very similar to
that of the cross sections in Figs. 7(a)–7(c), characterizing the
similarity of the simulated and ideal phase spaces.

Finally, we study the effects of varying h̄eff in our simu-
lation of the dynamical phase transition. This is done by an
exhaustive numerical study of the position of the critical point
as a function of N , for p = 2, 3, 4. The results are presented
in Figs. 7(e)–7(g), where all the curves are normalized to
their respective mean-field critical point (which are reported
in Appendix B). Two different behaviors are observed for the
cases of p = 2 and p > 2. Analogous to the similarity results
in Figs. 7(a)–7(c), the position of the critical point is more
resilient for p = 2 than p > 2, as seen from the wider plateau
at 1 for p = 2 in Fig. 7(d). In addition, we see that the behavior
for p = 2 presents two regimes, one in which we recover the
correct mean-field dynamical critical point and one in which
our simulation yields a completely different one. On the other
hand, for p > 2 three regimes are observed, one in which
the mean-field dynamical critical point is recovered almost
with no error, one in which the critical point is smoothly
shifted to smaller values, and one in which our simulator
cannot yield a physically meaningful value for the critical
point. The existence of an intermediate regime indicates a
marked difference between the cases p = 2 and p > 2. This
difference arises because, for the latter, the shape of the Z∞
and C∞

zz curves in Figs. 5(c)–5(f) is mostly maintained with
the discontinuity moved to smaller values of s. For the former,

it comes from the fact that the Z∞ and C∞
zz curves in Figs. 5(a)

and 5(b) transition from being almost identical for different
values of N , to completely noisy and not physically relevant
curves. We can understand this behavior from the nature of
the birth process of the separatrix line and its vicinity in the
mean-field phase space. For p = 2, the separatrix is generated
from the change in stability of a fixed point and thus it is
surrounded by an unstable manifold which is fragile in the
presence of noise. On the other hand, for p > 2 the separatrix
line appears as a consequence of the appearance of new pairs
of stable-unstable fixed points, without a change in stability
of the original ones, and thus it is surrounded by stable
manifolds. These are more robust to the presence of noise
coming from a simulation further away from the mean-field
limit. Finally, we also observe that the functional form of the
curves in Figs. 7(f) and 7(g) presents a certain resemblance
to those in Figs. 7(a)–7(d), providing more evidence of a
very general transition to classical behavior in the proposed
simulation scheme.

V. SUMMARY AND OUTLOOK

In this paper we have analyzed in detail and significantly
extended upon the method proposed in [32] for simulating
nonlinear dynamics of collective spin systems using quan-
tum measurement and feedback. The method uses unsharp
measurements followed by unitary dynamics conditioned on
the measurement outcome. Generally, we show that by per-
forming a well-chosen unitary map conditioned by the mea-
surement outcome of an operator Â, one can simulate the
dynamics of a Hamiltonian proportional to Âp. We focused on
collective spin systems and showed that the proposed protocol
is particularly suitable to simulate dynamics of a family of
models given by p-spin Hamiltonians. We demonstrated how
different features of these models can in principle be simu-
lated with this scheme. These include phase-space structures,
spontaneous symmetry breaking, and the signatures of dy-
namical phase transitions. For the latter, we have also obtained
additional results that show the emergence of dynamical crit-
icality in the previously unexplored regime of p > 2. We also
presented an extended discussion of the effects of added noise
(varying system size N) in the different applications explored.
The results of this analysis can be seen as a benchmark of
the performance of the simulation scheme when the target
dynamics is that of the mean-field p-spin model, yielding
a way of comparing the simulation complexity of different
models. Also, by introducing the effective Planck constant
h̄eff = 1/J , we can also interpret this analysis as an study
of the quantum-to-classical transition. Interestingly, we found
unifying features of these transitions across different values of
the control parameter s and the model parameter p for all the
applications considered.

The applications explored in this work and in [32] provide
evidence of the scope and flexibility of using measurement-
based feedback for quantum simulation of Hamiltonian dy-
namics in the thermodynamic limit, where the Gaussian ap-
proximation has validity. Nevertheless, we believe that this
simulation scheme is not restricted to mean-field dynamics
only and constitutes a platform to investigate dynamical phe-
nomena beyond the Gaussian approximation. This includes,
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as suggested in [31], exploring novel forms of quantum chaos.
However, for this method to be useful one should be able to
discriminate the nonlinear effect of the simulated dynamics
from the quantum noise. We expect this problem could be
tackled using noise characterization techniques which are ex-
tensively used in the dynamical systems community [74–76].
Exploring the domain of purely quantum nonlinear dynamics
with the QFC simulation scheme is an exciting avenue for
future research.

The p-spin models offer additional interesting avenues for
future research. One of them is related to different notions of
DPTs other than the one presented in this work. It is known
that DPTs can also be characterized in terms of the appearance
of zeros in the survival probability [48]. For p = 2, this notion
of DPT and its relation to the transition in the long-time av-
eraged order parameter has been previously studied [49]; the
behavior for general p is not known. Also, abrupt changes in
the state of a system, as phase transitions, can be characterized
using tools from catastrophe theory [77,78]. Recently, a study
of catastrophes for a quantum system of the type of those
studied in the present manuscript, with p = 2, was presented
in [79]. Extending such study for the whole family of p-spin
models and exploring the consequences of a noisy simulation
on the observed catastrophes is another research avenue. In
addition, the behavior of the order parameter around the criti-
cal point should in principle be described by critical exponents
[80], which have been explored for DQPTs in short-range
Ising models [81]. The nature of these exponents for long-
range models and how we can obtain them from our collective
spin simulator remains an open problem for future study.

Finally, an important issue in assessing the viability of
this protocol in an actual experimental implementation is to
study the effects of physical decoherence. In this work we
considered an ideal quantum nondemolition measurement,
with noise arising solely from the shot noise of the meter
and projection noise in the collective spin. Any real imple-
mentation will be accompanied by additional imperfections
and fundamental decoherence in the system-meter coupling.
In Ref. [32] we studied a simple decoherence model based on
the atom-light interface. There we showed that the extraction
of Lyapunov exponents from quantum trajectories was still
possible even in presence of small decoherence rates. It will
be essential to analyze how the features presented in this work
can be extracted in a realistic measurement model.
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APPENDIX A: CONSTRUCTION
OF SIMILARITY MEASURE

Here we present the details of the similarity measure S
employed in Sec. IV A. In order to compare the classical
phase space with that reconstructed from our simulation, the

similarity between two phase spaces is computed as follows.
Let { �Xk}k=1,..,ncond and { �X ′

k}k=1,..,ncond be two sets with ncond

trajectories corresponding to the mean-field phase space and
the simulated phase space, respectively. Each of the trajec-
tories in both sets is generated up to the same final time
Tmax and obtained from the time evolution of the same set
of initial conditions on the unit sphere. Consider a trajectory
on each set, say �Xk and �X ′

k , belonging to the same initial
condition. We quantify their similarity by the product of the
Pearson correlation coefficients [47] of their three Cartesian
components extended in time,

S ( �Xk, �X ′
k ) = |cor(X̃k, X̃ ′

k )cor(Ỹk, Ỹ ′
k )cor(Z̃k, Z̃ ′

k )|, (A1)

where X̃k = (X (1)
k , X (2)

k , ..., X (nt )
k ), with nt the number of time

bins in the interval [0, Tmax], is the vector of all the X compo-
nents from initial time to final time for the kth trajectory. The
Pearson correlation coefficient is given by

cor(A, B) = cov(A, B)√
var(A)var(b)

, (A2)

with cov(A, B) the covariance between vectors A and B of
same length, and var(A) the variance of vector A. Notice that
Eq. (A2) gives 1 for perfect correlation between A and B, −1
for perfect anticorrelation, and 0 in the absence of correla-
tions. Note that in order to have a similarity measure yielding
a value strictly in the interval [0,1], we define S as the absolute
value of the product of Pearson correlation coefficients, as in
Eq. (A1). However, it is important to point out that for this
application only very small negative covariances are found.

The conditioned evolution over a single time series of
measurement outcomes maps pure states into pure states.
Thus, in the mean-field limit, trajectories will always remain
close to the surface of the unit sphere. We can then express
these trajectories in angular coordinates and define Sang as

Sang( �Xk, �X ′
k ) = |cor(θ̃k, θ̃

′
k )cor(φ̃k, φ̃

′
k )|, (A3)

where θ̃k is the time-ordered vector of the θ coordinates of the
k′th trajectory and φ̃k that of the φ coordinates.

The detailed study of the phase-space similarities presented
in Sec. IV D as a function of the system size N uses a overall
similarity score given to the whole phase space, as obtained
from a set of initial conditions uniformly distributed over the
unit sphere. We construct this phase-space similarity score by
taking the average of S over the nsim × nsim grid of initial
conditions

S = 1

n2
sim

n2
sim∑

k=1

S ({ �Xk}k, { �X ′
k}k )

= 1

n2
sim

n2
sim∑

k=1

|cor(X̃k, X̃ ′
k )cor(Ỹk, Ỹ ′

k )cor(Z̃k, Z̃ ′
k )|. (A4)

For this quantity a value of S = 1 tells that the two phase
spaces are identical, and S = 0 tells that the two phase spaces
are completely different.
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APPENDIX B: CALCULATION
OF THE DPT CRITICAL VALUES

In Secs. IV B and IV D we presented simulations of the
dynamical phase transitions that compare the dynamical crit-
ical point obtained within the simulation with that obtained
from the mean-field model. Here we show how to compute
the values of the dynamical critical point in the latter case.

Our DPT protocol follows the evolution of the initial con-
dition |ψ0〉 = |↑z〉⊗N = |J, J〉 = |θ = 0, φ = 0〉, which in the
mean-field limit is given by the vector (X,Y, Z ) = (0, 0, 1).
As explained in the main text, the DPT is characterized by
Z∞ and C∞

zz , showing sharply different behaviors whether the
initial condition belongs to one of two separated regions of
phase space. Thus the dynamical critical point s(DPT)

c is given
by the value of s at which the initial condition lies in the
separatrix line.

Conservation of energy allows us to obtain s(DPT)
c by find-

ing the value of s which makes the energy of the initial
condition equal to that of the separatrix point. That is, s =
s(DPT)

c leads to the following equality:

V
(
Zsp; s(DPT)

c , p
) = V

(
Z0; s(DPT)

c , p
)
, (B1)

where Zsp is the z component of the separatrix point and Z0

is the z component of the initial condition. For p = 2 the
separatrix line appears due to the change in stability of the
fixed point at (X,Y, Z ) = (0, 1, 0), and then Eq. (B1) takes
the form −(1 − s) = s

2 , which has the solution s(DPT)
c = 2/3.

For p > 2 the separatrix line appears as a division between
old and new stable fixed points and is not a consequence of a
change in stability. Thus finding the explicit form of s(DPT)

c is
more involved than for p = 2. In particular, when p = 3, the
z component of the separatrix point has the form

Zsp =

√√√√1

2
− 1

2

√
1 − 4

(
1 − s

s

)2

, (B2)

and the numerical solution of Eq. (B1) yields s(DPT)
c ≈

0.745 921. The expression for the z component of the sepa-
ratrix point for p = 4 can easily be found numerically. With
this expression at hand one can solve Eq. (B1), from where
we find s(DPT)

c ≈ 0.786 074. Note that a simpler estimate of the
critical point can be employed and gives quite accurate results.
For p > 2 the energies of the point (X,Y, Z ) = (0, 1, 0) and
the separatrix point are not so different, and thus one can use
that point in the right-hand side of Eq. (B1). By doing so we
find the values s(DPT)

c = 2
3 , 3

4 , 4
5 for p = 2, 3, 4, respectively,

values which are fairly close to the exact ones.
Identifying the separatrix line can be done by looking at its

stability, with the tangent map of the flow defining the time
evolution of the classical equations of motion. This flow is
given by

dX

dt
= −(1 − s)Z + sZ p−1Y,

dY

dt
= −sZ p−1X,

dZ

dt
= (1 − s)X, (B3)

where the equations are obtained from the mean-field limit of
the Heisenberg evolution of Ĵγ . The tangent map of this set of
equations is given by

M( �X ) =
⎛
⎝ 0 sZ p−1 −(1 − s) + s(p − 1)Z p−2Y

−sZ p−1 0 0
1 − s 0 0

⎞
⎠,

(B4)

where we have used the fact that any fixed point of the flow in
Eq. (B3) has a vanishing x component.
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[49] B. Žunkovič, M. Heyl, M. Knap, and A. Silva, Dynamical
Quantum Phase Transitions in Spin Chains with Long-Range
Interactions: Merging Different Concepts of Nonequilibrium
Criticality, Phys. Rev. Lett. 120, 130601 (2018).

022610-14

https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevLett.107.210405
https://doi.org/10.1038/nphys1801
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevA.62.012105
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1103/PhysRevA.49.2133
https://doi.org/10.1103/PhysRevA.49.1350
https://doi.org/10.1103/PhysRevA.65.061801
https://doi.org/10.1103/PhysRevLett.92.223004
https://doi.org/10.1103/PhysRevLett.96.010504
https://doi.org/10.1038/nature10376
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1038/nature11505
https://doi.org/10.1103/PhysRevA.97.060102
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PhysRevA.62.012307
https://doi.org/10.1103/PhysRevLett.124.110503
https://doi.org/10.1103/PhysRevLett.45.79
http://arxiv.org/abs/arXiv:1811.02519
https://doi.org/10.1103/PhysRevA.64.014305
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1007/s10955-008-9608-x
https://doi.org/10.1103/PhysRevB.78.134428
https://doi.org/10.1088/0143-0807/34/6/1555
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1103/PhysRevA.83.022327
https://doi.org/10.1209/0295-5075/89/40004
https://doi.org/10.1142/S0219749917500113
https://doi.org/10.1103/PhysRevA.95.022308
https://doi.org/10.1080/00031305.1988.10475524
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.120.130601


SIMULATION OF THE COMPLEX DYNAMICS OF … PHYSICAL REVIEW A 102, 022610 (2020)

[50] B. Sciolla and G. Biroli, Dynamical transitions and quantum
quenches in mean-field models, J. Stat. Mech. (2011) P11003.
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