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High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes
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We propose the generation of entangled qubits by utilizing the properties of edge states appearing at one end of
a periodically driven (Floquet) superconducting qubit chain. Such qubits are naturally protected by the system’s
topology and their manipulation is possible through adiabatic control of the system parameters. By utilizing a
Y-junction geometry, we then develop a protocol to perform high-fidelity transfer of entangled qubits from one
end to another end of a qubit chain. Our quantum state transfer protocol is found to be robust against disorder
and imperfection in the system parameters. More importantly, our proposed protocol also performs remarkably
well at larger system sizes due to nonvanishing gaps between the involved edge states and the bulk states, thus
allowing us in principle to transfer entangled states over an arbitrarily large distance. This work hence indicates
that Floquet topological edge states are not only resourceful for implementing quantum gate operations, but also
useful for high-fidelity and long-distance transfer of entangled states along solid-state qubit chains.
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I. INTRODUCTION

Transferring quantum states from one place to another
is an essential task in quantum information processing. The
ubiquitous noise and device imperfections are, however, un-
avoidable and often limit the range for which a quantum state
can be transferred with a good fidelity. Devising a scheme
to effectively transfer quantum states over a long distance
while minimizing the loss in fidelity has therefore been an
active study since the last decade. Up to this date, various
quantum state transfer (QST) protocols in many different
platforms have been proposed, such as via strong coupling
with photons [1–3] or coherent transfer along a chain of qubits
[4–11]. In most cases, QST relies on the time evolution of a
specifically designed Hamiltonian, and as such perfect QST
may require a very precise control over some of the system
parameters, which may pose some difficulties in its large-scale
implementation. Reference [8] first proposed to use adiabatic
control to facilitate robust quantum state transfer, but the
dynamical phase induced by the adiabatic control field therein
needs to be eliminated.

In a seemingly separate area, topological phases of matter
have emerged as a new paradigm for designing novel devices
that are naturally immune to local disorder or imperfec-
tion. For example, topological insulators and superconductors
possess the so-called edge states at their boundaries whose
properties are insensitive to the specific details of the system
[12–15]. Such inherent robustness of edge states makes them
ideal candidates for storing and processing quantum infor-
mation. Indeed, the use of edge states for quantum comput-
ing has been extensively studied and has become an active
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research area on its own [12,16–23]. In addition, the time
evolution of symmetry-protected topological edge states often
induces trivial dynamical phases (e.g., zero dynamical phase),
a feature that can often simplify protocol designs for quantum
information processing.

In recent years, several proposals to utilize edge states
for QST have also emerged [24–27]. In Refs. [24,25], chiral
edge states of a topological material are used to transfer
quantum information stored in one qubit to another distant
qubit. The ability to control the coupling between the input
and output qubits with the edge states is thus necessary in such
proposals, which may not be straightforward to implement
and may induce additional errors. An alternative approach
to harnessing topological phenomena for QST would be to
design a transfer protocol which directly controls the sys-
tem in which the qubits are encoded. This was explored in
Refs. [26,27]. There, logical qubits are encoded at the edges
of a superconducting qubit chain with dimerized coupling. By
adiabatically tuning the qubit-qubit couplings in a prescribed
manner, a logical qubit located at one end of the chain can be
transferred to the other end [26,27]. Owing to the topological
nature of the edge states, both logical qubit encoding and QST
aspects of the protocol are inherently robust against common
perturbations or disorder [26]. It is thus natural to generalize
such a proposal for transferring entangled qubits from one
end to the other. This possibility has also been explored in
Ref. [26] by using trimerized instead of dimerized qubit-qubit
couplings, although its implementation may be a challenge
due to the extremely small energy gap in the protocol.

In this paper, we present another approach for transferring
entangled qubits which are encoded in the edge states of a
periodically driven (Floquet) topological system. Our study
is further motivated by the capability of Floquet topolog-
ical phases to exhibit features with no static analog, such
as the existence of edge states pinned at quasienergy (the
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FIG. 1. A chain of Xmon qubits (red dash-dotted box) coupled
to one another via tunable coupler (green dashed box). The external
flux threading the tunable coupler realizes the time-periodic coupling
between adjacent Xmon qubits.

analog of energy in Floquet systems) π/T [21,22,28–36] and
anomalous edge states which do not satisfy the usual bulk-
edge correspondence [37]. The former feature is particularly
important in our present context, as the coexistence of the
edge states pinned at both quasienergy zero and π/T naturally
provides more channels for qubit encoding [21–23] and QST,
as detailed below.

In the following, we describe our QST protocol based on
a periodically driven Su-Schrieffer-Heeger model realized in
a superconducting (Xmon) qubit chain [10,26]. It should be
stressed, however, that our protocol can in principle also be
implemented in a variety of other platforms capable of ex-
hibiting one-dimensional topological phases, such as photonic
wave-guide arrays [38,39] and acoustic systems [40]. The
use of superconducting qubits to realize our QST protocol
is, however, expected to be particularly promising for the
following two reasons. First, the high tunability of the qubit-
qubit coupling strength makes superconducting qubits an ideal
platform to perform QST [10,41]. Second, with the current
research trend of building quantum networks with supercon-
ducting qubits, it is an important task to achieve QST on such
systems [10,26]. In particular, a type of superconducting qubit
termed the Xmon qubit [42–45] offers further benefits in terms
of high coherence time and fast coupling tunability [41–45].
Such an Xmon qubit comprises of a cross-shaped capacitor
coupled to a superconducting quantum interference device
(SQUID) (see the design inside the red box of Fig. 1). There,
couplings between adjacent Xmon qubits are realized through
the additional inductance elements connected to the qubits’
SQUID components [42–45], whose strength is adjustable
through the threading external flux (see the design inside the
green box of Fig. 1). In such an Xmon qubit chain platform,
the use of time-periodic coupling enables the existence of
a pair of edge states at one end of the system, which we
find to allow the creation of entangled qubits. An adiabatic
manipulation protocol of the qubit-qubit couplings can then
be devised to transfer such entangled qubits from one end
to the other while maintaining a very good fidelity due to
its topological protection. The main difference between our
approach and that of Ref. [26] is twofold. First, entangled
qubits can be prepared in a minimal setup with dimerized
qubit-qubit couplings in our approach. Second, during the

FIG. 2. A chain of superconducting qubits with dimerized cou-
plings arranged in a Y-junction geometry. In a certain regime of
system parameters, a pair of zero and π edge modes may emerge
at one end of the L and M branches, which in the ideal case appear
as antisymmetric and symmetric superpositions of the first (or the
last) two qubits, respectively [see Eq. (8)].

adiabatic manipulation, the edge states remain pinned at
quasienergy zero and π/T . As a result, large quasienergy
gaps between the logical qubits and the rest of the qubits
are maintained throughout the protocol, which is necessary
for adiabaticity to hold. Our proposal thus demonstrates that
while Floquet topological phases enable more qubits to be
encoded as compared with their static counterpart under the
same physical constraints, such qubits can also be transferred
from one place to another using an approach similar to that in
typical static systems.

This paper is structured as follows. In Sec. II, we introduce
the model studied in this paper, briefly review the emergence
of zero and π modes in the model and the topological in-
variants that characterize them, and set up some notation. In
Sec. III, we propose a protocol to generate entangled qubits
from the ground states of the underlying static model by
utilizing the properties of the zero and π modes that exist
after the periodic driving is turned on. In Sec. IV, we present a
protocol to transfer an entangled qubit from one end to another
along a Y-shaped chain of periodically driven Xmon qubits.
In Sec. V, we verify the robustness of our QST protocol in
the presence of disorder and imperfection; then we also show
how our proposal can be adapted to improve the previous QST
protocol in Ref. [26], enabling high-fidelity QST even for
long qubit chains. Finally, we conclude our paper and present
potential future directions in Sec. VI.

II. MODEL AND QUBIT ENCODING

We consider a chain of superconducting qubits arranged
in a Y-junction geometry with dimerized nearest-neighbor
time-periodic couplings, as depicted in Fig. 2. Each circle
represents a superconducting Xmon qubit and is categorized
into sublattice A or B based on how it couples with its two
neighboring qubits. The dashed and solid lines mark two
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different coupling strengths between two such qubits, which
are referred to as intra- and interlattice coupling, respectively.
L, R, and M label the three branches of the system, each of
which is described by a Hamiltonian of the following form:

H (c)(t ) =
{

H (c)
1 (t ) for (m − 1)T < t < (m − 1/2)T

H (c)
2 (t ) for (m − 1/2)T < t < mT,

H (c)
1 (t ) =

∑
j

(−Jc
intra, jσ

c†
B, jσ

c
A, j + H.c.

)
, (1)

H (c)
2 (t ) =

∑
j

(− jc
inter, jσ

c†
B, jσ

c
A, j+1 + H.c.

)
, (2)

where c ∈ {L, R, M} labels one of the three branches, A and
B are the indices of the sublattice site, σ

†
S, j = |e〉〈g|S, j is the

qubit raising operator at sublattice S of unit cell j, |g〉 j and
|e〉 j are the ground and excited states of the jth Xmon qubit,
Jintra is the intralattice coupling strength in H1 and jinter is the
interlattice coupling strength in H2. To simplify our analysis,
we only consider the intralattice coupling in the first half of the
period and the interlattice coupling in the second half. Unless
otherwise specified, we take Jc

intra, j = Jc
1 and jc

inter, j = jc
2 in

the following.
The spectral properties of such a time-periodic system are

characterized by quasienergies, defined as the eigenphase of
the one-period propagator (Floquet operator [46,47]),

U |ε〉 = exp(−iεT )|ε〉,

U ≡ T exp

(∫ t0+T

t0

− iH (t )

h̄
dt

)
, (3)

where T is the time-ordering operator, ε is the quasienergy,
and |ε〉 is the Floquet eigenstate with quasienergy ε. By
construction, ε is only defined modulo 2π

T . As such, edge
states may form not only in the gap around quasienergy zero,
which are commonly found in static systems, but also in the
gap around quasienergy π/T .

In the momentum space, the two Hamiltonians defined in
Eq. (2) take the form

H(c)
α (k, t ) = −(

h(c)
a,α + h(c)

b,α cos(k)
)
τx + h(c)

b,α sin(k)τy, (4)

where α = 1, 2, τ ’s are Pauli matrices acting in the sublattice
space, h(c)

a,1 = Jc
1 , h(c)

b,1 = 0, and h(c)
b,2 = jc

2, h(c)
a,2 = 0. By taking

t0 = T/4 in Eq. (3), the momentum space Floquet operator
can be written as (we take h̄ = T

2 = 1 from here onwards)

Usym(k) = F (k)G(k),

F (k) = exp (−iH2(k)/2) exp (−iH1(k)/2),

G(k) = exp (−iH1(k)/2) exp (−iH2(k)/2). (5)

It follows that Usym(k) possesses a chiral symmetry defined
by the operator � = τz, such that �Usym(k)�† = Usym(k)†. As
a result, its edge states under open boundary conditions are
pinned at exactly zero and/or π/T quasienergies (termed zero
and π modes, respectively), whose numbers are determined
by the topological invariants defined in Refs. [28,29]. In
particular, since F (k) = �†G(k)†�, such invariants can be
obtained from F (k) only. That is, by writing the 2 × 2 matrix

FIG. 3. The phase diagram of the topological invariants υ0 and
υπ as a function of J1 and j2.

representation of F in the canonical (� = τz) basis as

F (k) =
(

a(k) b(k)
c(k) d (k)

)
, (6)

the topological invariants counting the number of zero and π

modes are respectively given by [28,29]

υ0 = 1

2π i

∫ π

−π

dk

(
b−1 d

dk
b

)
, (7)

υπ = 1

2π i

∫ π

−π

dk

(
d−1 d

dk
d

)
. (8)

In Fig. 3, we numerically compute υ0 and υπ under some rep-
resentative parameter values, which we have also analytically
verified in Appendix A.

In the following, we are mostly interested in the yellow and
purple regime of Fig. 3, corresponding to the presence and
absence of both zero and π modes, respectively. In particular,
we initialize our system such that branches L and M are in
the yellow regime, whereas branch R is in the purple regime.
For analytical solvability, we further consider the following
parameter values (referred to as the ideal case) for the yellow
regime, JL,M

1 = iπ/2, jL,M
2 = iπ, and for the purple regime,

JR
1 = iπ/2, jR

2 = 0, in the presentation of our state prepa-
ration and QST protocols, where such imaginary couplings
are indeed realizable in superconducting qubit setups [10].
We show, however, through some numerical calculations, that
such fine tuning is not necessary in the actual implementation
of our protocols.

In the ideal case, one pair of zero and π modes is localized
at the first two qubits (the first unit cell) of the L branch.
By further taking t0 = 0 in Eq. (3), the zero and π modes
localized near the left end can be explicitly obtained as [48]

|0〉(L) = (|eg〉(L)
1 − |ge〉(L)

1

) ⊗ G′,

|π〉(L) = (|eg〉(L)
1 + |ge〉(L)

1

) ⊗ G′, (9)
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where subscript is the site index and G′ = ∏
i �=1 |gg〉i denotes

the ground state of the other Xmon qubits in the system, which
are suppressed in the rest of this paper. In particular, we as-
sume that quantum information is initially encoded in the first
two Xmon qubits of the L branch, i.e., the subspace spanned
by {|gg〉(L)

1 , |ge〉(L)
1 , |eg〉(L)

1 , |ee〉(L)
1 }, which is then transferred

to the last two Xmon qubits of the R branch, i.e., the subspace
spanned by {|gg〉(R)

N , |ge〉(R)
N , |eg〉(R)

N , |ee〉(R)
N } (N being the size

of the R branch), through appropriate adiabatic deformation
of some system parameters. In this case, we note that the zero
and π edge modes defined above then represent two maxi-
mally entangled states between two qubits, and the carefully
designed adiabatic deformation leads to the movement of the
domain wall accommodating these edge modes from one end
of the L branch to the other end of the R branch, so that the L
(R) branch becomes a topologically trivial (nontrivial) regime
at the end of the transfer protocol. In particular, the former
also implies that the task of preparing an entangled state then
reduces to the task of preparing a Floquet edge state, the latter
of which can be accomplished via a protocol introduced in
the next section. Finally, since zero and π modes must appear
in pairs at two opposite edges, another set of zero and π

modes exists at the end of the M branch. These zero and π

modes will remain there at all times, and by taking the size of
the M branch to be sufficiently large, quantum information
leakage due to hybridization between pairs of zero and π

modes during the QST process can be avoided.

III. ENTANGLED QUBITS GENERATION

Suppose that our system starts in a ground state of a static
Hamiltonian H = H (L)

2 + H (M )
2 + H (R)

2 , before we switch on
the periodic driving at some time t0. Without loss of generality,
we may assume that this corresponds to the initial state
of |ψ0〉 = |eg〉(L)

1 ∝ |0〉(L) + |π〉(L), which is thus a simple
product state. Our objective in this section is to devise a
protocol based on a series of adiabatic variations of some
qubit-qubit couplings in the system, such that the above initial
state evolves to either |0〉(L) or |π〉(L) at the end of the protocol.
This can be accomplished by adapting the protocol introduced
by two of us in Ref. [21] which amounts to transforming zero
and π modes as |0〉(L) → (|0〉(L) − |π〉(L) )/

√
2 and |π〉(L) →

(|0〉(L) + |π〉(L) )/
√

2. To this end, it suffices to restrict our
attention to branch L, so that we remove the (L) index in the
following. We now present our protocol in three steps, which
is also summarized in Fig. 4.

In step 1, we adiabatically deform the Hamiltonian strobo-
scopically (by slowly varying it at every period) to move the
zero and π modes from the first to the third unit cell in the
L branch. This is accomplished by setting jinter,2 = j2 cos φ

and at the same time introducing a new coupling h(1)
2 =

j2 sin φ σ
†
A,1σB,2 + H.c. into H2, where φ is the adiabatic

parameter which is swept from zero to π/2. It can be shown
that the zero and π modes at any stroboscopic time take the
form [21]

|0〉 = cos φ(|eg〉1 − |ge〉1) − sin φ(|eg〉3 − |ge〉3), (10)

|π〉 = cos φ(|eg〉1 + |ge〉1) − sin φ(|eg〉3 + |ge〉3). (11)

FIG. 4. Schematic of the adiabatic protocol resulting in a π/4
rotation in the subspace spanned by the zero and π modes. Here
we focus on the L branch and highlight only the evolution of the
zero mode (red solid circles), which at the end transforms into a
superposition of zero and π modes (red and green half-filled circles).
Dashed (solid) lines represent the qubit-qubit coupling appearing in
H1 (H2).

At the end of this step, |0〉 adiabatically changes from
(|eg〉1 − |ge〉1) to (−|eg〉3 + |ge〉3), whereas |π〉 transforms
from (|eg〉1 + |ge〉1) to −(|eg〉3 + |ge〉3); i.e., both zero and π

modes are now shifted to the third unit cell as intended.
In step 2, starting from the end of step 1, we con-

tinue to adiabatically deform the system’s Hamiltonian by
taking jinter,1 = j2 cos φ and introducing a new term h(2)

2 =
j2 sin φ σ

†
A,2σA,3 + H.c. into H2, where φ again changes slowly

every period from zero to π/2 at the end of this step. We can
again show that at any stroboscopic time [21]

|0〉 = − sin φ(|eg〉1 + |ge〉1) + cos φ(−|eg〉3 + |ge〉3), (12)

|π〉 = sin φ(−|eg〉1 + |ge〉1) − cos φ(|eg〉3 + |ge〉3). (13)

That is, |0〉 transforms to −|eg〉1 − |ge〉1, whereas |π〉 trans-
forms to (−|eg〉1 + |ge〉1) at the end of this step.

In step 3, we recover the system’s original Hamiltonian
by returning jinter,1 and jinter,2 back to their original values
as jinter,1 = jinter,2 = j2 cos φ and slowly decreasing h(1)

2 and
h(2)

2 to zero as h(1)
2 → h(1)

2 cos2 φ and h(2)
2 → h(2)

2 cos2 φ with
φ being slowly swept from zero to π/2. However, in order
to induce a nontrivial rotation in the subspace spanned by
zero and π modes, we only tune the adiabatic parameter φ

every other period. As demonstrated in Ref. [21], this leads to
the transformation |0〉 → (|0〉 − |π〉)/

√
2 and |π〉 → (|0〉 +

|π〉)/
√

2 at the end of this step, thus completing our protocol.
To explicitly demonstrate how an entangled state can be

generated via the protocol above, in Fig. 5 we numerically
plot the overlap between the state |ψ (t )〉, initially prepared in
the product state |eg〉1, and the zero (π ) mode of the original
system, both of which represent a maximally entangled two
qubit states [see Eq. (9)]. In particular, since its overlap with
the zero mode becomes unity at the end of the adiabatic proto-
col, our state transforms into |0〉 = |eg〉1 − |ge〉1. In practice,
for superconducting Xmon qubits with j2/2π = 50 MHz, the
qubit generation process in Fig. 5 takes 6 μs, which is far
less than the energy relaxation time of Xmon qubits (approx-
imately 50 μs) [10,41]. To generate another entangled state
|π〉 = |eg〉1 + |ge〉1, we can simply perform exactly the same
protocol two more times. That is, starting with |eg〉(L)

1 , the

022608-4



HIGH-FIDELITY AND LONG-DISTANCE … PHYSICAL REVIEW A 102, 022608 (2020)

FIG. 5. Time evolution of the overlap |〈0|ψ (t )〉| and |〈π |ψ (t )〉|
for a state initially prepared as a superposition of zero mode and π

mode, i.e., |ψ (0)〉 = 1√
2
(|0〉 + |π〉). Each step takes 200 periods to

complete.

application of the above protocol once, twice, and three times
yields |0〉 = |eg〉1 − |ge〉1, |0〉 − |π〉 = −|ge〉1, and −|π〉 =
−|eg〉1 − |ge〉1, respectively.

In principle, we can also prepare a more generic entangled
state by exploiting the dynamical evolution of the Floquet
operator within a driving period. In particular, since |0〉 and
|π〉 pick up different dynamical phases during their time
evolution, evolving a state initially prepared in either |0〉
or |π〉 to a specific time t∗ < T can in principle lead to a
desired arbitrary entangled state |ψ〉 = α|eg〉1 + β|ge〉1 (see
Appendix C for an explicit example). In general, however,
this mechanism will lead to a lower fidelity as compared with
that based on the protocol described above, and as such a
distillation protocol might also need to be supplemented in
the actual implementation of such an arbitrary entangled state
generation.

IV. QUANTUM STATE TRANSFER

In the previous section, we have shown how entangled
qubits arise as either a zero or π mode. In general, a generic
entangled qubit can be encoded as a superposition of zero
and π modes, |ψ〉 = α|eg〉1 + β|ge〉1 = α+β

2 |0〉 + α−β

2 |π〉. In
this section, we propose a protocol to transfer these zero and
π modes (and thus any entangled qubits) from the leftmost
end (L branch) to the rightmost end (R branch) of the chain.
To this end, the importance of using Y-junction geometry
to facilitate such a QST is now clear. That is, in a strictly
one-dimensional chain of such Xmon qubits, both zero and π

modes necessarily emerge at both ends. As a result, transfer-
ring a zero or π mode from one end to the other necessarily
leads to the interference with zero or π mode located at the
other end, thus destroying the transferred information. By
utilizing a Y-junction geometry, we can instead adjust our
system such that one pair of zero and π modes is located
at the end of the L branch, whereas the other is at the end
of the M branch. By encoding our information in the zero
and π modes originally located in the L branch, we can

FIG. 6. Schematic diagram of the QST protocol. The green dash-
dotted line represents the coupling added in phase I of QST and the
blue line represents the coupling added in phase II. Again, dashed
lines represent the coupling in H1 and solid lines present the coupling
in H2.

faithfully transfer such information to the other end of the R
branch, thus completing our QST procedure. Such a transfer
can then be accomplished by performing a series of adiabatic
manipulations, which can be divided into two phases below
and summarized in Fig. 6.

Phase I. Transfer zero and π modes from the end of the L
branch to the middle point in (NL − 2)/4 steps, NL being the
number of qubits in the L branch. In the xth step, a new term
is introduced in H2, i.e., h(3)

x = j2 sin φx σ
(L)†
A,2x−1σ

(L)
B,2x + H.c.,

and we set the coupling strength jinter,2x = j2 cos φx, where
φx is the parameter adiabatically increasing from 0 to π/2.
As detailed in Appendix B 1, the zero and π modes at any
stroboscopic time within the xth step are found as

|0〉(L) = 1√
2

[
cos φx

(|eg〉(L)
2x−1 − |ge〉(L)

2x−1

)
+ sin φx

(|eg〉(L)
2x+1 − |ge〉(L)

2x+1

)]
, (14)

|π〉(L) = 1√
2

[
cos φx

(|eg〉(L)
2x−1 + |ge〉(L)

2x−1

)
+ sin φx

(|eg〉(L)
2x+1 + |ge〉(L)

2x+1

)]
. (15)

At the end of this phase, i.e., after completing the [(NL −
2)/4]th step, both zero and π modes are transferred to the
middle point of the Y junction; i.e.,

|0〉(L) : |eg〉(L)
1 − |ge〉(L)

1 → |eg〉(L)
NL

− |ge〉(L)
NL

, (16)

|π〉(L) : |eg〉(L)
1 + |ge〉(L)

1 → |eg〉(L)
NL

+ |ge〉(L)
NL

. (17)

Phase II. Transfer zero and π modes from the middle
point to the end of the R branch in NR/2 steps, NR being
the number of qubits in the R branch. In the xth step, a new
term, h(4)

x = j2 sin φx σ
(R)†
A,x−1σ

(R)
B,x + H.c., is introduced in H2,

where φx is the adiabatic parameter swept slowly at every
period from zero to π/2, and σ

(R)
A,0 ≡ σ

(L)
A,NL

. As detailed in
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Appendix B 2, the zero and π modes at any stroboscopic time
within the xth step are

|0〉(L) = 1√
2

[
cos

(π

2
sin φx

)(|eg〉(R)
x − |ge〉(R)

x

)

+ sin
(π

2
sin φx

)( − |eg〉(R)
x+1 + |ge〉(R)

x+1

)]
, (18)

|π〉(L) = 1√
2

[
cos

(π

2
sin φx

)(|eg〉(R)
x + |ge〉(R)

x

)

+ sin
(π

2
sin φx

)(|eg〉(R)
x+1 + |ge〉(R)

x+1

)]
. (19)

At the end of this phase, i.e., after completing the (NR/2)th
step, the zero and π modes are perfectly transferred to the
right end of branch R:

|0〉(L) : (−1)NR/2
(|eg〉(R)

NR
− |ge〉(R)

NR

)
, (20)

|π〉(L) : |eg〉(R)
NR

+ |ge〉(R)
NR

. (21)

In this case, it is also worth noting that the L branch now
becomes topologically trivial, whereas the R branch is in the
topologically nontrivial regime.

To perform a long-distance QST over 40 qubits with
configuration NL = 22, NR = 18, and NM = 8, where each
step takes 70 periods to complete, for superconducting Xmon
qubits with maximal coupling strength j2/2π = 50 MHz, the
QST completes in 19 μs, which is within the coherence time
of Xmon qubits (approximately 50 μs) [10,41]. While the
above protocol is presented in the ideal case, i.e., based on
special parameter values discussed in Sec. II, the actual im-
plementation of our protocol does not rely on such fine tuning.
Indeed, as long as the zero and π modes in the system remain
well separated in quasienergies from the bulk states during the
adiabatic manipulations [see, e.g., Fig. 7(a)], the above QST
protocol is still expected to work with a good fidelity (this
aspect is further discussed in the next section). Moreover, the
fact that zero and π modes remain at quasienergy zero and
π/T , respectively, at all times means that chiral symmetry is
respected throughout the whole protocol, thus implying the
topological robustness of the QST process. This aspect is
especially expected since, as illustrated in Fig. 6, our QST
protocol involves only couplings between sublattice A and B,
corresponding to terms proportional to τx and τy, which are
thus compatible with the chiral operator τz associated with
the system’s instantaneous Hamiltonian. Finally, it is worth
commenting on the possible existence of chiral-symmetry-
breaking terms, which may be detrimental for the implementa-
tion of our protocol, in actual experiments. Within the frame-
work of the Xmon qubit chain where the current proposal
is envisioned, we note that such terms may potentially arise
if the different Xmon qubits in the chain have considerably
different transition frequencies. However, given that current
state-of-the-art experiments involving Xmon qubits [44,45]
suggest the possibility to control qubits’ frequencies to a very
high precision, we expect that such chiral-symmetry-breaking
terms can in principle be avoided.

FIG. 7. (a) The quasienergy spectrum of our system during QST.
Notice that quasienergies zero and π/T , which correspond to our
zero and π modes, respectively, remain well separated from the other
quasienergies at all times. (b) Infidelity (1 − |〈ψi|ψd 〉|) against the
disorder strength. In the 10-qubit system, we take NL = 6, NR = 4,
and NM = 8, whereas in the 40-qubit system, we take NL = 22,
NR = 18, and NM = 8. The parameters used for the nonideal case
(the orange dotted line) are J1 = 1.5i, jL

2 = jM
2 = 3i, jR

2 = −0.1i,
and J2 = j1 = 0. Each step takes 39 (70) periods to complete in the
10-qubit (40-qubit) system and each data point is averaged over 100
disorder realizations.

V. DISCUSSION

In practice, perfect modulation of the coupling strengths is
impossible. As such, we now examine the robustness of the
QST protocol presented in Sec. IV against coupling disorders,
which are implemented by adding each of the following terms
to H1 and H2, respectively:

�H1 =
∑
c∈C

∑
m

(
δ1,mJ1 σ

c†
B,mσ c

A,m + H.c.
)
,

�H2 =
[ ∑

c∈{L,M}

∑
m

(
δ2,m j2 σ

c†
B,mσ c

A,m+1 + H.c.
)
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+
∑

m′

(
δ3,m′ j2σ

L†
A,2m′−1σ

L
B,2m′ + H.c.

)

+
∑
m′′

(
δ4,m′′ j2σ

R†
A,m′′−1σ

R
B,m′′ + H.c.

)]
, (22)

where δi,m is a uniform random number taken ∈
[−0.5W, 0.5W ] and W is the disorder strength. In addition
to disorders introduced in the original system, we further
consider the presence of disorders during the numerical
implementation of the QST protocol introduced in Sec. IV.
This is accomplished by modifying the newly added
couplings h(3)

x = sin φx j2(1 + δ(3)
x )σ (R)†

A,2x−1σ
(R)
B,2x + H.c. and

h(4)
x = sin φx j2(1 + δ(4)

x )σ (R)†
A,2x−2σ

(R)
B,2x−1 + H.c.

By denoting the transferred state as |ψi〉 in the ideal case
and |ψd〉 in the case with disorders, we numerically calculate
the infidelity 1 − F = 1 − |〈ψi|ψd〉| as a function of the dis-
order strength in Fig. 7(b). In addition to the robustness of our
QST protocol against small to moderate disorders, the orange
line of Fig. 7(b) also demonstrates the good performance of
our QST protocol at other system parameters, such as J1 =
1.5i, jL

2 = jM
2 = 3i, jR

2 = −0.1i, and J2 = j1 = 0, which de-
viate rather significantly from the ideal case in which our QST
protocol is analytically solvable.

We also note that phase I and phase II of our QST protocol
can in principle be sped up by performing the actions in all
(NL − 2)/4 and NR/2 steps in one go. That is, starting with
|0〉(L) and |π〉(L) localized at the left end of the L branch,
one can introduce h(3) = ∑

x h(3)
x and h(4) = ∑

x h(4)
x in H2 and

take jinter,2 = jinter,4 = · · · = jinter,NL−1 = j2 cos φ simultane-
ously to move |0〉(L) and |π〉(L) to the right end of the R branch.
While this approach works very well for sufficiently small
systems, increasing the number of qubits will inevitably cause
the transferred state to become more delocalized in the middle
of such a direct-transfer protocol, leading to the unavoidable
closing of the quasienergy spectrum as shown in Fig. 8(b). By
contrast, the step-by-step QST protocol introduced in Sec. IV
ensures that the transferred state remains localized at all times,
thus maintaining large quasienergy gaps between zero or π

modes and the bulk quasienergies, even for a very large
number of qubits. In such cases, the step-by-step protocol
is expected to perform better as compared with the direct-
transfer protocol, which we have also verified in Fig. 8(a) for
the case of 68 qubits.

Inspired from the above analysis, we may also propose an
improvement to the QST protocol introduced in Ref. [26]. In
particular, Ref. [26] proposes a similar QST protocol by using
a chain of Xmon qubits with time-dependent coupling. Due
to the lack of π modes in static systems, however, the use of
dimerized coupling in such a chain only enables the transfer
of a single qubit from one end to the other, which Ref. [26]
proposed to accomplish in one step by simultaneously modu-
lating all the qubit-qubit couplings. While their results show
a good QST fidelity for a small number of qubits, the same
problem of the vanishing energy gap will also arise for a larger
number of qubits. As such, the idea of breaking down the QST
process into steps in the spirit of our protocol in Sec. IV can
also be adapted to enable high-fidelity transfer of one qubit
in such a static system scenario. To this end, we recall the
static Hamiltonian used in Ref. [26] describing the dimerized

FIG. 8. (a) Comparison of the infidelity against disorder strength
between our proposed step-by-step protocol in Sec. IV and the
direct-transfer protocol. Both systems have the size NL = 30, NR =
30, ad NM = 8 and the total time for both QSTs is 6600 periods.
(b) Quasienergy spectrum of the direct-transfer protocol during the
QST process. Notice that the quasienergy gap vanishes somewhere
during the process, leading to the corruption of the transferred
information and thus lower fidelity. The quasienergy spectrum of the
step-by-step protocol can be seen in Fig. 7(a).

qubit-qubit couplings in a chain of Xmon qubits,

Ĥ =
N∑

j=1

(
J j

0 σ̂
†
A, j σ̂B, j + J j

1 σ̂
†
B, j σ̂A, j+1 + H.c.

)
. (23)

In Ref. [26], QST is accomplished by adiabatically tuning
all J j

1 and J j
0 simultaneously as J j

i = g(1 + (−1)i cos θ ), with
θ being the adiabatic parameter swept from zero to π . In
our proposed improvement, we may instead break down the
QST protocol into N − 1 steps. In the xth step, we take Jx

i =
g(1 + (−1)i cos θx ) while keeping the other coupling strengths
constant, with θx being the same adiabatic parameter swept
from zero to π . This amounts to transferring a qubit from
the xth unit cell to the (x + 1)th unit cell, so that after the
(N − 1)th step, the qubit originally at the left end of the
lattice is perfectly transferred to the right end. In this improved
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FIG. 9. (a) The energy band spectrum of a single qubit transfer
along a chain of 21 Xmon qubits of Ref. [26] by performing the
transfer in one go. (b) Same as in (a), but we divide the QST process
into 20 steps. (c) Comparison of the infidelity as a function of the
disorder strength between the two protocols in (a) and (b). The total
adiabatic time for both QST protocols is ttot = π/(0.01g).

QST protocol, the gap in the energy spectrum is significantly
larger than the original protocol, as illustrated in Figs. 9(a) and
9(b). To further test the robustness of this improved protocol,
we again consider the presence of disorders by adding the

following term to the original Hamiltonian of Eq. (23):

Ĥd =
∑

j

(
J j

0 δ0, j σ̂
†
A, j σ̂B, j + J j

1 δ1, j σ̂
†
B, j σ̂A, j+1 + H.c.

)
, (24)

where δ0, j and δ1, j are random numbers taken ∈
[−0.5W, 0.5W ] and W is the disorder strength. The infidelity
as a function of the disorder strength is plotted in Fig. 9(c).
To have a fair comparison, the total transfer time is the same
for the two protocols, ttot = π/(0.01g). It is clear that our
proposed protocol indeed improves the robustness of such
a system during QST. To conclude, breaking down the QST
process into steps is one of our main results in this paper,
which can be applied to improve the fidelity of adiabatic-
based QST for large system sizes, both in time-periodic and
static settings. This in turn enables us, at least in principle, to
transfer qubits over an arbitrarily large distance.

Finally, despite the advantages of employing the time-
periodic system highlighted in this paper, we should also
comment on two potential challenges in its implementation.
First, while we have demonstrated the robustness of our
protocol against spatial disorders, it can be more vulnerable
to temporal disorders (see Appendix D for the explicit anal-
ysis regarding the performance of our QST protocol under
temporal disorders). This is, however, a typical issue com-
monly found in Floquet systems and, as such, efforts have
been made in recent years to study and mitigate the effect
of such temporal disorders [49]. On the other hand, with
current technologies, we expect that the implementation of
sufficiently precise periodicity may not actually be impossible
in the actual experimental implementations, given that indeed
experimental observations of Floquet phases have been made
over the years [50,51]. Combined with the existence of a
near-perfect plateau at small enough temporal noise depicted
in Appendix D, there is therefore hope to verify our presented
protocol in experiments in the near future.

A second potential problem expected in Floquet systems
is thermalization due to interaction (where an exception to
this is expected for a class of Floquet systems with many-
body localizations (MBLs) [52–55] or coupled to a cold
reservoir [56]). In the model system considered here, the
quantum information transfer always, as indicated by our
model itself, occurs within the single-qubit excitation sub-
space (so many-body interaction is not there in the ideal
case). In the physical platform here, error on the hardware
level more likely causes population leakage from the Hilbert
space under consideration, rather than interaction effects as
in a many-electron system. Furthermore, suppose there are
weak many-body interactions resulting from certain unknown
error and hence thermalization becomes unavoidable; it may
in practice take place at a timescale longer than that which
is typically relevant in experiments. For instance, while MBL
is considered necessary for the formation of a recently dis-
covered Floquet phase termed the Floquet time crystal [57],
an experiment done in Ref. [50] demonstrates the observation
of some Floquet time crystal signatures, at least within the
timescale considered therein. Therefore, it is still possible
to avoid the seemingly detrimental effect of thermalization
even in the presence of many-body interactions. Overall, the
interaction effects in Floquet topological phases in general are
still an open problem.
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VI. CONCLUDING REMARKS

In this paper, we have proposed an innovative scheme to
realize high-fidelity and long-distance transfer of an entan-
gled state along a Y-shaped topologically nontrivial qubit
chain in the presence of periodic driving. Before the state is
transferred, a maximal entangled state is prepared through
an adiabatic process, in which a key step is to introduce a
nontrivial rotation between zero and π modes (both being
topological edge states of the qubit chain). In the ideal situ-
ation, our QST can perfectly transfer an entangled state from
one branch to another branch. In a more realistic situation,
where disorder effects are introduced, the transfer fidelity is
found to be robust against random noise, due to the inherent
robustness of encoding qubits built from Floquet zero and
π edge modes. Furthermore, one important property of our
QST scheme is that the gap between the involved zero and π

modes and the bulk states in the quasienergy spectrum does
not scale down to zero as the size of the qubit chain increases.
Thus, our scheme enables us to transfer the entangled qubits
over long distance without the loss of topological protection
or adiabaticity. Inspired by our QST scheme, we have also
improved the QST protocol proposed in Ref. [26]. Indeed,
one simple modification over the original protocol greatly
enhances its robustness against disorder and also makes it
possible to realize long-distance QST, but for single-qubit
states only.

The potential applications of our QST protocol should
lie in solid-state-based quantum information processing and
quantum computation, where entangled qubits need to be
transferred in certain solid-state devices over a not necessarily
short distance. Given that topological edge modes, especially
those of periodically driven systems, are already found to
have great potential in implementing quantum computation
protocols [21–23], it is stimulating to see by now that Floquet
topological edge modes can further facilitate entangled state
transfer along solid-state-based qubit chains.
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APPENDIX A: ANALYTICAL CALCULATION
OF υ0 AND υπ

We calculate the topological invariants υ0 and υπ of our
system [see Eq. (4)]. As we discuss in the main text, υ0 can be
expressed in terms of b(k) in the F matrix, which is explicitly
given by

b(k) = eik sin

(
j2
2

)
cos

(
J1

2

)
+ cos

(
j2
2

)
sin

(
J1

2

)
. (A1)

Therefore,

υ0 = 1

2π i

∫ π

−π

dk b−1 d

dk
b (A2)

= 1

2π

∫ π

−π

dk
1

1 + tan J1/2
tan j2/2 e−ik

. (A3)

It can be shown that for any real number A,

1

2π

∫ π

−π

dk
1

1 + Ae−ik
=

{
1, |A| < 1
0, |A| > 1.

(A4)

Since tan x is monotonically increasing in the range x ∈
(0, π/2), the number of edge states with zero quasienergy
(zero modes) is

υ0 =
{

1, j2 > J1

0, j2 < J1.
(A5)

The topological invariant υπ can be calculated in a similar
manner:

d (k) = cos

(
j2
2

)
cos

(
J1

2

)
− e−ik sin

(
j2
2

)
sin

(
J1

2

)
.

(A6)

Therefore,

υπ = 1

2π i

∫ π

−π

dk d−1 d

dk
d (A7)

= 1

2π

∫ π

−π

dk
1

1 − eik cot(J1/2) cot( j2/2)
. (A8)

As we discussed above, υπ = 1 if | cot(J1/2) cot( j2/2)| <

1. The inequality can be further simplified by using the
trigonometry identity:

cot(J1/2) cot( j2/2) = cos
( J1− j2

2

) + cos
( J1+ j2

2

)
cos

( J1− j2
2

) − cos
( J1+ j2

2

) . (A9)

As cos( J1− j2
2 ) > 0 when 0 < J1, j2 < π , we only require j2 +

J1 > π to have | cot(J1/2) cot( j2/2)| < 1. Hence, the number
of edge states with π/T quasienergy (π modes) is

υπ =
{

1, j2 + J1 > π

0, j2 + J1 < π.
(A10)

APPENDIX B: DERIVATION OF |0〉(L) AND |π〉(L) DURING
THE QST PROTOCOL

In this Appendix, we present the derivation of the zero and
π modes at any stroboscopic time during the transfer protocol
in Sec. IV.

1. Phase I

The Floquet operator U of our system can be written as a
product of two exponentials,

U = exp(−iH2) × exp(−iH1), (B1)

where the period T is now set to be 2 for brevity. To simplify
our notation, we focus on the relevant terms in H1 and H2
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which have support on the transferred zero and π modes. In
the xth step, H1 and H2 read

H1 = i
π

2

(
σ

(L)†
A,2x−1σ

(L)
B,2x−1 + σ

(L)
A,2xσ

(L)
B,2x

+ σ
(L)†
A,2x+1σ

(L)
B,2x+1 + H.c.

)
, (B2)

H2 = iπ
(
σ

(L)†
B,2x−1σ

(L)
A,2x + sin φx σ

(L)†
A,2x−1σ

(L)
B,2x

+ cos φx σ
(L)†
B,2x σ

(L)
A,2x+1 + H.c.

)
, (B3)

where φx is adiabatically increased at every period from zero
to π/2. It can be verified that

|0〉(L) = 1√
2

[
cos φx

(|eg〉(L)
2x−1 − |ge〉(L)

2x−1

)
+ sin φx

(|eg〉(L)
2x+1 − |ge〉(L)

2x+1

)]
, (B4)

|π〉(L) = 1√
2

[
cos φx

(|eg〉(L)
2x−1 + |ge〉(L)

2x−1

)
+ sin φx

(|eg〉(L)
2x+1 + |ge〉(L)

2x+1

)]
. (B5)

Note that

exp(−iH1)|eg〉(L)
2x±1 = |eg〉(L)

2x±1, (B6)

exp(−iH1)|ge〉(L)
2x±1 = ±|ge〉(L)

2x±1, (B7)

exp(−iH2)|ge〉(L)
2x±1 = |ge〉(L)

2x±1, (B8)

exp(−iH2)|eg〉(L)
2x±1 = ∓ cos 2φx|eg〉2x±1 + sin 2φx|eg〉2x∓1.

(B9)

By using Eqs. (B6) to (B9), one can directly verify that
U |0〉 = |0〉 and U |π〉 = −|π〉.

2. Phase II

In a similar fashion, we can write H1 and H2 in the xth step
as

H1 = i
π

2

x+1∑
m=1

(
σ

(R)†
A,m−1σ

(R)
B,m−1 + H.c.

)

+ i
π

2

NM∑
m′=1

(
σ

(M )†
A,m′ σ

(M )
B,m′ + H.c.

)
, (B10)

H2 = iπ sin φx σ
(R)†
A,x−1σ

(R)
B,x

+ iπ

(
x−1∑
m=1

σ
(R)†
A,m−1σ

(R)
B,m +

NM∑
m′=1

σ
(R)†
A,m′−1σ

(R)
B,m′

)
+ H.c.,

(B11)

where σ
(R)†
A,0 = σ

(L)†
A,NL

, σ
(M )†
B,0 = σ

(R)†
B,0 = σ

(L)†
B,NL

, and φx is adia-
batically increased at every period from zero to π/2. From
the equations

exp(−iH1)|eg〉(R)
x(−1) = |eg〉(R)

x(−1), (B12)

exp(−iH1)|ge〉(R)
x(−1) = −|ge〉(R)

x(−1), (B13)

FIG. 10. The coefficient α as a function of t∗ in the first half
period of the time evolution.

exp(−iH2)|eg〉(R)
x−1 = cos(π sin φx )|eg〉(R)

x−1

+ sin(π sin φx )|eg〉(R)
x , (B14)

exp(−iH2)|ge〉(R)
x−1 = −|ge〉(R)

x−1, (B15)

exp(−iH2)|eg〉(R)
x = |eg〉(R)

x , (B16)

exp(−iH2)|ge〉(R)
x = − sin(π sin φx )|eg〉(R)

x−1

+ cos(π sin φx )|ge〉(R)
x , (B17)

FIG. 11. Infidelity of the protocol under temporal noise as com-
pared with that under static noise. The system parameters are NL =
22, NR = 18, and NM = 8, with each step in the protocol taking 70
driving periods to complete. The protocol needs 14 steps in total
to complete the QST. Results are obtained after averaging over 100
noise histories.
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it can be verified that

|0〉(L) = 1√
2

[
cos

(π

2
sin φx

)(|eg〉(R)
x−1 − |ge〉(R)

x−1

)

+ sin
(π

2
sin φx

)( − |eg〉(R)
x + |ge〉(R)

x

)]
, (B18)

|π〉(L) = 1√
2

[
cos

(π

2
sin φx

)(|eg〉(R)
x−1 + |ge〉(R)

x−1

)

+ sin
(π

2
sin φx

)(|eg〉(R)
x + |ge〉(R)

x

)]
. (B19)

APPENDIX C: DYNAMICAL STATE PREPARATION

This Appendix gives more details about the state prepa-
ration by using the dynamical phase within a driving period.

As described in the main text, a more generic state can be ob-
tained by dynamically evolving the state. Suppose the initially
prepared state is |0〉 = |eg〉1 − |ge〉1; after the time evolution
at specific time t∗, the state becomes α(t∗)|eg〉1 + β(t∗)|ge〉1,
where the numerical value of β/α is plotted in Fig. 10 for
0 � t∗ � T/2.

APPENDIX D: THE QST PROTOCOL UNDER
TEMPORAL NOISES

This Appendix shows the numerical results of the infidelity
of the QST protocol under temporal noises (see Fig. 11).
Although the protocol is more vulnerable under temporal
noises, it still shows robustness at small disorder strength.
The temporal noise is introduced in a way that noise in
different driving periods is independent, which is identical to
the imperfect periodicity situation.
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