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We present how basic logic gates including NAND, NOR, and XOR gates can be implemented counterfactually.
The two inputs (Bob and Charlie) and the output (Alice) of the proposed counterfactual logic gate are not within
the same station but rather separated in three different locations. We show that there is no need to prearrange
entanglement for the gate, and, more importantly, there are no real physical particles traveling among Alice, Bob,
and Charlie during the information processing. Bob and Charlie only need to independently control the blocking
and unblocking of the transmission channels that connect them to Alice. In this way, they can completely
determine the state of a real photon at Alice’s end, thereby leading to implemention of a counterfactual logic
gate. The functionality of a particular counterfactual logic gate is determined only by an appropriate design of
Alice’s optical device. Furthermore, by utilizing the proposed counterfactual logic gates, we demonstrate how to
counterfactually prepare the Greenberger-Horne-Zeilinger state and W state with three remote quantum objects,
which are in superposition states of blocking and unblocking the transmission channel.
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I. INTRODUCTION

Quantum measurement plays a very important role in quan-
tum mechanics, and brings many fascinating results, such as
interaction free measurement [1,2] and the quantum Zeno ef-
fect [3–5], which leads to the fact that frequent measurements
of a quantum system inhibit its unitary evolution. Utilizing
this fact, the direct counterfactual quantum communication
protocol by Salih, Li, Al-Amri, and Zubairy (SLAZ) was
proposed theoretically [6], and successfully verified experi-
mentally [7,8]. This protocol shows that information can be
transmitted without any physical particles traveling between
two communicating parties, Alice and Bob. The only action
Bob needs to take is to control the blocking or unblocking of
the transmission channel that connects him to Alice. By doing
that, he is able to manipulate a single photon that is confined
to Alice’s station.

Potential applications of the direct counterfactual quan-
tum communication protocol include detection of vulnera-
ble samples [7], quantum secure communication [9], quan-
tum eavesdropping [10,11], Bell-state analysis [12], quantum
cloning [13], entanglement distribution [14–17], and much
more [18–22]. It is worth noting that, in the SLAZ protocol,
the control of the transmission channel is implemented by a
classical object to either block or unblock the transmission
channel using, for example, a switchable detector. Instead of
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the classical object, one can have a quantum object [12–22],
which can be in a superposition of blocking or unblocking
the transmission channel. Such a quantum object can be a
Rydberg atom [18,23,24], a single-side cavity with a three-
level atom inside [19,25–27], and so on. It is shown that the
quantum object can be entangled with Alice’s photon with-
out any photons traveling between them [14–18]. Based on
the achieved counterfactual entanglement, two-qubit quantum
gates such as the CNOT gate [12,21], controlled-phase gate
[22], and quantum swap gate [20] have been investigated and
accomplished counterfactually.

Up to now, most of the related works have focused on
only two remote parties. We notice that, when considering
network applications, research on multiparty counterfactual
quantum control is necessary. Therefore, in this paper, we go
further and study the situation involving three or more parties.
More specifically, only one party holds an optical device
with a real photon inside it, while other parties independently
control the transmission channels utilizing either classical or
quantum objects. In case where classical objects are used, we
show that the photon can be manipulated without any need
for prearranged entanglement or any real physical particles
traveling among those parties. We assume that the status of
the classical object represents input while the final state of
the photon represents the output. The exclusive design of the
optical device can lead to counterfactual implementation of
NAND, NOR, and XOR gates. This is the main contribution
of this work. Moreover, based on those counterfactual logic
gates, we show that when classical objects are replaced by

2469-9926/2020/102(2)/022606(12) 022606-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1870-210X
https://orcid.org/0000-0002-2082-7393
https://orcid.org/0000-0002-7679-3620
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022606&domain=pdf&date_stamp=2020-08-10
https://doi.org/10.1103/PhysRevA.102.022606


LI, JI, ASIRI, WANG, AND AL-AMRI PHYSICAL REVIEW A 102, 022606 (2020)

quantum objects, it is possible to counterfactually entangle
three remote quantum objects with the assistance of the fourth
parity’s photon, and hence realize the Greenberger-Horne-
Zeilinger (GHZ) state and the W state [28–30]. Our results
will facilitate the study of three-qubit counterfactual quantum
gates including Toffoli and Fredkin gates, along with research
on counterfactual multiparty entanglement.

The structure of this paper is as follows. In Sec. II, we
introduce the basic model and calculation method of the
present work. In Sec. III, we present the counterfactual NAND

gate. Since its design is very close to the SLAZ protocol,
this section can be regarded as a brief review of the SLAZ
protocol. In Sec. IV, we introduce the counterfactual logic
gate unit (CGU), which is an essential component of the
proposed NOR gate and XOR gate. In Sec. V, we present the
scheme of the counterfactual NOR gate along with numerical
simulation. In Sec. VI, we present the counterfactual XOR gate
and its numerical simulation results. In Sec. VII, we show how
to use counterfactual logic gates to entangle three quantum
objects (V-type three-level atom), thus realizing the GHZ state
and the W state. In Sec. VIII, we give a short discussion
about the experiment. In Sec. IX, we present our concluding
remarks.

II. BASIC MODEL AND CALCULATION METHOD

A. Tripartite model

In Fig. 1, Alice, Bob, and Charlie are three remote parties.
At Alice’s end, we have a box that contains the optical design
for a counterfactual logic gate. It consists of beam-splitters
(BS), normal mirrors (MR) and detectors (D) (not shown
in the figure). Initially, a single photon is generated by a
single photon source (S) and enters Alice’s device with a
fixed initial state. After that, its real photon path (the solid
lines) is determined by the design of Alice’s device and the
actions of Bob and Charlie. Regarding Bob and Charlie, they
have separate transmission channels (the dotted-dashed lines)
connecting them to Alice. The actions they take are to block
or unblock their own transmission channels. In experiment,
these actions can be achieved with a switchable detector (SW),
which is a classical object. If the SW is turned on, it becomes
a single-photon detector. If it is off, it becomes a mirror and
returns photons entering the transmission channel to Alice’s
device. In that sense, the transmission channel is unblocked.
Here, we define these actions as inputs to the counterfactual
logic gate. More specifically, blocking (unblocking) the trans-
mission channel represents logic 0 (1). According to Bob’s
and Charlie’s actions, Alice’s photon is routed to different
directions. We define the final photon states as outputs to the
counterfactual logic gate. More specifically, if the photon is
routed to output 0 (1), that represents logic 0 (1).

Based on the above definitions, with specific designs of
Alice’s device, we can implement the counterfactual NAND,
NOR, and XOR gates whose truth tables are shown in Fig. 1.
The details will be discussed later. Here, we only emphasize
three issues:

(1) In the detailed designs (see Figs. 2, 4, and 7), except
for SWB’s (controlled by Bob) and SWC’s (controlled by
Charlie), all other components belong to Alice.

SWB SWC

Bob Charlie

Alice

Counterfactual Logic Gate

D0

D1

Real photon path
Transmission channel

Output 0

Output 1

S

Bob Charlie Alice Bob Charlie Alice Bob Charlie Alice
0 0 1 0 0 1 0 0 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0

ROXRONDNAN

FIG. 1. The basic model of the counterfactual logic gates and
their corresponding truth tables. Alice, Bob, and Charlie are three
remote parties. At Bob’s (Charlie) end, he blocks or unblocks the
transmission channel that connects him to Alice by means of switch-
able detector SWB(C). Blocking represents input 0, while unblocking
represents input 1. At Alice’s end, S stands for single photon source
and D stands for detector. Inside Alice’s box, there is an optical
device with specific design to suit the chosen counterfactual logic
gate. The details are presented in Figs. 2, 4, and 7. Initially, a single
photon is sent into the device but its path (solid lines) is different
according to Bob’s and Charlie’s inputs. If the photon is routed to
detector D0, that represents output 0. But if it is routed to D1, that
represents output 1.

(2) Due to the quantum Zeno effect, the proposed counter-
factual logic gates require Bob and Charlie to “manipulate”
Alice’s photon many times to obtain the expected output.
Therefore, there are many SWB’s and SWC’s in our designs.
However, the action of all SWB’s are consistent, and so are the
SWC’s.

(3) Since Alice’s initial photon state is fixed, the proposed
logic gates are not quantum gates. But this does not mean
that we cannot use these logic gates to achieve some quan-
tum phenomena such as three-qubit counterfactual quantum
entanglement.

B. Beam splitter

When designing Alice’s device, a key optical component
is the beam splitter, which is denoted by BS(K )

k . Here, the
superscript represents the type of the BS, while the subscript k
represents that BS(K )

k is the kth K-type BS. Suppose now that
the state |LK〉 represents a photon on the left side of the BS(K ),
while the state |RK〉 represents a photon on the right side of
the BS(K ). The function of BS(K ) can be represented as

|LK〉 → cos θK |LK〉 + sin θK |RK〉,
|RK〉 → cos θK |RK〉 − sin θK |LK〉. (1)
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FIG. 2. (a) The chained Mach-Zehnder interferometers com-
posed of 2K beam splitters BS(K ). MR stands for normal mirror.
The right arms of the chain are controlled by SW’s. If the SW is
turned on, it becomes a detector. If it is off, it becomes a mirror so
that the interference in the chain is not interrupted. In addition, the
attenuator is composed of BS(A1) and DA1. (b) The scheme of the
counterfactual NAND gate. It is similar to the SLAZ protocol, except
that the transmission channel is shared and controlled by two parties
Bob (SWB) and Charlie (SWC).

Here, | cos θK |2 is the reflectivity of the BS(K ), while | sin θK |2
is the transmissivity. Therefore, the superscript K refers to the
transmissivity of the BS.

In this work, there are totally five types of BS’s (see Figs. 2,
4, and 7) which have different transmissivities. We use su-
perscripts 2, M, N, A1, A2 to distinguish them. For BS(A1) and
BS(A2), their transmissivities are sin θA1 = cos2N (π/2N ) and
sin θA2 = cos6N (π/2N ), respectively. These two types of BS’s

are used for attenuators [31]. BS(A1) and DA1 form Attenuator
1 (see Fig. 2) while BS(A2) and DA2 form Attenuator 2 (see
Fig. 4). After passing through Attenuator 1 (2), a photon has
a sin2 θA1(2) probability of remaining in Alice’s device. In
Sec. V, we will show these attenuators are essential to the
counterfactual NOR gate. Regarding BS(2), BS(M ), and BS(N ),
their transmissivity is θK = π/2K (K = 2, M, N , where M
and N are integers). Apparently, BS(2) has equal transmis-
sivity and reflectivity. For BS(M ) and BS(N ), we require their
transmissivity to be small. They are used to build up the
interferometer chain, which will be discussed below.

C. Chained interferometers

The optical structure of the interferometer chain is essential
for all proposed counterfactual logic gate designs. In general,
the chain is made up of many Mach-Zehnder interferometers
that are connected in series. With appropriate settings, we can
use that to manipulate a photon’s properties such as its path or
phase. For the convenience of discussion, we show an example
in Fig. 2(a). This chain has 2K number of BS(K )’s with K =
M, N . Accordingly, there are 2K − 1 Mach-Zehnder interfer-
ometers. The right arms of these interferometers are controlled
by SW’s, whose actions are consistent. If SW’s are turned on
(off), these arms are blocked (unblocked), hence we call it
the blocking (unblocking) case. In addition, in the figure, the
Attenuator 1 is on the right side of BS(K )

K , which, however,
is optional. In fact, by adjusting the total number of BS(K )’s,
adding the attenuator, and setting SW’s, we can achieve four
different types of photon control. In the following, we explain
that based on Fig. 2(a) and then we summarize our conclusion
into four working modes.

We assume that initially a single photon is sent to the chain
from the left side. The corresponding initial photon state is
|LK〉.

First, we discuss the unblocking case. If the attenuator is
not considered, it is easy to see that after kth BS(K ) the photon
state becomes

cos(πk/2K )|LK 〉 + sin(πk/2K )|RK〉. (2)

Apparently, when k = K , the photon state is |RK〉, and the
photon appears on the right side. When k = 2K , the photon
state is −|LK 〉, and the photon remains on the left side but
with a π phase shift.

If the attenuator is considered, the evolution of the photon
state can be calculated as follows. We notice that after BS(K )

K
the photon state is |RK〉. Regarding Attenuator 1, its contribu-
tion can be described as |RK〉 → cos2N (π/2N )|RK〉 when DA1

does not find the photon. Here (and in the rest of this paper),
we do not do renormalization to facilitate the calculation of
probability. It is easy to see that the probability of the photon
remaining in the chain is cos4N (π/2N ). Then, after another K
BS(K )’s, the final photon state becomes − cos2N (π/2N )|LK〉
according to Eq. (1).

Second, we discuss the blocking case. After
BS(K )

k , the photon state is cosk (π/2K )|LK〉 +
cosk−1(π/2K ) sin(π/2K )|RK〉, which is correct under the
condition that no photon is found by any SW’s. When K is
large, the probability of the photon being found on the left
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side of the chain is cos2k (π/2K ) ≈ 1 − π2k/4K2, which
tends to 1 when K2 � 2k. In this scenario, it is also easy to
see that the attenuator has no contribution to the result.

To simplify the discussion in the following sections, we
summarize four working modes of the interferometer chain
with K = M, N .

Working mode 1: the blocking case. The photon state
evolution after k BS(K )’s can be approximately written as
|LK〉 → cosk (π/2K )|LK〉.

Working mode 2: the chain contains K BS(K )’s; the un-
blocking case. The photon state evolution can be represented
as |LK〉 → |RK〉. The photon is routed from the left side to the
right side of the chain.

Working mode 3: the chain contains 2M BS(M )’s without the
attenuator; the unblocking case. The photon state evolution
can be represented as |LM〉 → −|LM〉. The photon remains on
the left side of the chain, but with a π phase shift.

Working mode 4: the chain contains 2N BS(N )’s with
Attenuator 1 in the middle; the unblocking case. Attenuator
1 is located on the right side of the N th interferometer.
The photon state evolution can be represented as |LN 〉 →
− cos2N (π/2N )|LN 〉.

III. COUNTERFACTUAL NAND GATE

In this section, we introduce the counterfactual NAND gate,
whose truth table is shown in Fig. 1. Since its basic idea is
similar to the SLAZ protocol, here we only present a brief
discussion. For more analyses and details, including error
analysis, one can consult previous studies [6].

A. Scheme

We present the scheme of the counterfactual NAND gate as
in Fig. 2(b). It is very close to the SLAZ protocol and also
has the structure of double chained Mach-Zehnder interfer-
ometers. The outer chain contains M BS(M )’s. They constitute
M − 1 outer interferometers. On the right arm of each outer
interferometer, there are N BS(N )’s, which is called the inner
chain and contains N − 1 inner interferometers. The only
difference between the present scheme and the SLAZ protocol
concerns how to control the transmission channel, i.e., the
right arms of the inner interferometers. As shown in the figure,
each of these arms is controlled by both Bob and Charlie. If
either of them selects to block, the arm is blocked. In other
words, we can regard that Bob and Charlie share and control
the same transmission channel, but in the SLAZ protocol the
channel is controlled by Bob only.

For the convenience of discussion, we set three zones as in
Fig. 2(b) and assume that the photon state |100〉 represents
a single photon in Zone 1 (the left side of BS(M )’s), |010〉
represents a single photon in Zone 2 (the area between BS(M )’s
and BS(N )’s), and |001〉 represents a single photon in Zone 3
(the right side of BS(N )’s). Alice’s initial photon state is |100〉.
Based on the different status of the transmission channel, the
photon evolves differently.

First, we consider the case where the transmission channel
is unblocked. In such a case, any photon entering the inner
chains must be routed to D2 (working mode 2), and it never
returns to the outer chain. As a result, the outer chain is in

working mode 1, and the final photon state is approximately
cosM (π/2M )|100〉. The probability of D0 clicking tends to 1
when M → ∞.

Second, we consider the case where the transmission
channel is blocked. In such case, any photons entering the
transmission channel must be absorbed by SW’s. As a result,
the inner chains are in working mode 1. If N is sufficiently
large, we can consider that the interference in the outer
chain is not interrupted. In other words, the outer chain is
in working mode 2, which leads D1 to click. Regarding the
probability of D1 clicking, we can approximately calculate it
as follows. We still assume that N is sufficiently large and
the outer chain is in working mode 2. Due to Eq. (2), the
probability of Alice’s photon entering the inner chain in the
mth outer interferometer is sin2(mπ/2M ). We notice that, in
each inner chain, the probability of a photon being detected
in the transmission channel is 1 − cos2N (π/2N ). This leads
to the total probability of Alice’s photon being found in the
transmission channel as [32]

M∑
m=1

sin2 mπ

2M

(
1 − cos2N π

2N

)
≈ Mπ2

8N
. (3)

Then, the probability of D1 clicking is approximately 1 −
Mπ2/8N , which tends to 1 when N � M.

In summary, when the transmission channel is unblocked
(blocked), D0(1) clicks. In the case where only Bob controls
the transmission channel (the SLAZ protocol), according to
the definition in Sec. II, a NOT gate is implemented. In the
case where Bob and Charlie control the transmission channel,
the channel is blocked no matter who selects to block (input
0). In such cases, D1 clicks (output 1), while only when Bob
and Charlie both choose to unblock (input 1) the transmission
channel, D0 clicks (output 0). Consequently, the truth table of
the NAND gate is achieved.

B. Analysis of counterfactuals

Here, we explain why these gates are counterfactual. First
of all, since a single photon is used, as long as any SW
or D2 finds Alice’s photon, D0 and D1 never click. Based
on that fact, we discuss the blocking and unblocking cases,
respectively. When the transmission channel is blocked, any
photons appearing in the transmission channel must be de-
tected by SW’s. If D1 clicks, it means the photon never enters
the transmission channel. When the transmission channel is
unblocked, we have shown that any photon entering the inner
chains must be routed to D2. Then, we can treat each inner
chain and the corresponding D2 [see the yellow rectangle in
Fig. 2(b)] as a combined detector. It is easy to see that when
D0 clicks, the photon never triggers the combined detectors.
In other words, it never enters the inner chains. We emphasize
that the transmission channel is in the right arms of the
inner chains. Thus, the photon never enters the transmission
channel. As a result, the presented NOT gate and NAND gate
are counterfactual.

C. M-type counterfactual NAND gate

We should point out that if there are more than two parties
controlling the transmission channel (say, Bob, Charlie, and

022606-4



COUNTERFACTUAL LOGIC GATES PHYSICAL REVIEW A 102, 022606 (2020)

(a () b)

(c)

(d)

Transmission channel

Entrance

Exit1
Exit2

CGUX

Entrance

Exit1
Exit2

CGUX

Entrance

Exit1
Exit2

CGUX

CGUX  (X= N or 2N)
CGUN
CGU2N

has N BS(N)

has 2N BS(N)

MR

BS1

SWB

SWC

Entrance

Exit1 Exit2

BS2

BSX

MR
OBB

OBC

(N)

(N)

(N)

OBB

OBC

SWB

SWB

SWB

SWC

SWC

SWC

FIG. 3. (a) The details of the counterfactual logic gate unit
(CGUX ), where the subscript X represents that there are X number
of BS(N )’s in the unit. Consequently, there are two types of this unit,
CGUN and CGU2N . In addition, OB stands for optical bridge. If an
OB is activated, it routes the photon to skip the SW on the right
side. As a result, Alice can decide who controls the CGUX simply
by utilizing OB’s. (b) The simplified diagram of CGUX representing
the case when both Bob and Charlie control the CGUX . If either of
them selects to block, the CGUX is in the blocking case. (c) The
simplified diagram representing that only Bob controls the CGUX .
(d) The simplified diagram representing that only Charlie controls
the CGUX .

David), the same result can be obtained, i.e., only when all of
them have input 1 does Alice obtain the output 0. Otherwise,
Alice has the output 1 since the transmission channel must be
blocked, which is the case no matter who chooses to block the
channel. We call such a gate an M-type counterfactual NAND

gate.

IV. COUNTERFACTUAL LOGIC GATE UNIT (CGU)

So far we have presented the counterfactual NAND gate;
when it comes to the counterfactual NOR and XOR gates,
Alice’s device needs to be redesigned. For this reason and to
make the following discussion accessible, we introduce what
we called counterfactual logic gate unit (CGU) in this section.
The detailed scheme is presented in Fig. 3(a), which has one
photon entrance and two exits. The main structure is a chain of

Mach-Zehnder interferometers formed by BS(N ). Depending
on the total number of BS(N )’, there are two types of CGU.

The first type is CGUN , which contains N BS(N ). Accord-
ing to Sec. II, if its right arms are blocked, it is in working
mode 1. If not, it is in working mode 2.

The second type is CGU2N . It consists of 2N BS(N ) and
an Attenuator 1 [not shown in Fig. 3(a)]. The location of the
Attenuator 1 is on the right side of the chain between BS(N )

N

and BS(N )
N+1. Therefore, CGU2N is in working mode 4 if its

right arms are unblocked, while it is in working mode 1 if the
arms are blocked.

Regarding blocking or unblocking, these actions are per-
formed by SWB and SWC . We emphasize that SWB is con-
trolled by Bob and SWC by Charlie, but all other parts of
CGUX (X = N, 2N) belong to Alice. In addition, as shown
in the figure, the transmission channel is in the right arms
of the chained interferometers. If Alice does nothing, the
transmission channel will be shared and controlled by both
Bob and Charlie. However, at Alice’s end, she can use optical
bridges (OB) to bypass either Bob or Charlie’s SW so that
the CGUX is controlled by either Charlie or Bob alone. As
illustrated in Figs. 3(b)–3(d), we use simplified diagrams to
represent the following three situations. Figure 3(b) represents
the case when both Bob and Charlie control the CGUX . If
either of them selects to block, the right arms of the CGUX are
blocked. Panel (c) represents the case where only Bob controls
the CGUX , while (d) represents that only Charlie controls the
CGUX .

V. COUNTERFACTUAL NOR GATE

In this section, we introduce the counterfactual NOR gate,
whose truth table is shown in Fig. 1.

A. Scheme

In Fig. 4, we present the detailed scheme, which has the
structure of triple chained interferometers. The biggest chain
consists of M BS(M )’s, which we still call the outer chain. In
the right arm of each outer interferometer there is a Mach-
Zehnder interferometer composed of two BS(2)’s. We call this
interferometer “the middle interferometer.” In the left arm
of each middle interferometer, there is an Attenuator 2. In
the right arm of each middle interferometer, there are three
CGU2N ’s in series, which are collectively called the inner
chain. Each CGU2N has a detector (D2) for measuring photons
at exit 2, while at exit 1 of the third CGU2N there is a phase
shifter (PS), which adds a π phase shift to any photons passing
through it.

Now, we explain how the counterfactual NOR gate works.
For clarity, we divide Fig. 4 into three zones. If we have a
single photon in Zone 1, i.e., the left side of BS(M )’s, the
corresponding photon state is |100〉. If a photon is in Zone 2,
i.e., the area between BS(M )’s and BS(2)’s, the corresponding
photon state is |010〉, while in Zone 3, i.e., the right side of
BS(2)’s, the corresponding photon state is |001〉.

Initially, a single photon in state |100〉 is sent into
the counterfactual NOR gate. After passing through BS(M )

1

and BS(2)
1 , the photon state becomes cos(π/2M )|100〉 +

sin(π/2M )(|010〉 + |001〉)/
√

2. For the photon in state |010〉,
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FIG. 4. The scheme of the counterfactual NOR gate. PS stands
for phase shifter. BS(A2) and DA2 form Attenuator 2. For the details
of CGU2N , one can consult Fig. 3.

it passes through Attenuator 2, which leads to |010〉 →
cos6N (π/2N )|010〉. The photon in state |001〉 passes through
all the three CGU2N ’s one by one. According to Bob’s and
Charlie’s different inputs, Alice’s photon evolves differently.

Case 1: Both Bob and Charlie have input 0. In this
case, all CGU2N ’s are in working mode 1. The evolution
of the photon state in an inner chain can be described
as |001〉 → − cos6N (π/2N )|001〉, where the minus sign
comes from PS. Then, the photon state before BS(2)

2
is cos(π/2M )|100〉 + sin(π/2M ) cos6N (π/2N )(|010〉 −
|001〉)/

√
2. Here, we can see that, due to Attenuator 2,

the two arms of the middle interferometer are balanced.
After passing through BS(2)

2 , the photon state becomes
cos(π/2M )|100〉 + sin(π/2M ) cos6N (π/2N )|010〉. When N
is sufficiently large, the outer chain can be considered as
being in working mode 2. Similarly to the calculation of
Eq.(3), we can estimate that the probability of D1 clicking is

P00D1 = 1 −
M∑

m=1

sin2 mπ

2M

(
1 − cos12N π

2N

)
≈ 1 − 3π2M

4N
.

(4)

When N � M, Alice’s photon triggers D1 with almost 100%
probability. The corresponding output is 1.

Case 2: Both Bob and Charlie have input 1.
In this case, all CGU2N ’s are in working mode 4.
The photon state evolution in an inner chain can be
described as |001〉 → cos6N (π/2N )|001〉. Accordingly,
the photon state before BS(2)

2 is cos(π/2M )|100〉 +
sin(π/2M ) cos6N (π/2N )(|010〉 + |001〉)/

√
2. Here, the

two arms of the middle interferometer are still balanced due
to the use of the attenuators in CGU2N ’s. However, comparing
with case 1, a π phase difference occurs. Then, after the
photon passes through BS(2)

2 , the photon state becomes
cos(π/2M )|100〉 + sin(π/2M ) cos6N (π/2N )|001〉. Here, the
photon in state |001〉 is measured by D3. Consequently, as for
the outer chain, it is in working mode 1. After M BS(M )’s, the
probability of D0 clicking is

P11D0 = cos2M π

2M
≈ 1 − π2

4M
. (5)

When M → ∞, Alice’s photon triggers D0 with almost 100%
probability. The corresponding output is 0.

Case 3: Bob has input 0 and Charlie has input 1. In this case,
the first and third CGU2N ’s in the inner chain are in working
mode 1, while the second CGU2N is in working mode 4. Tak-
ing the PS into account, the evolution of a photon state in an
inner chain can be described as |001〉 → cos6N (π/2N )|001〉.
Similar to case 2, the probability of Alice’s D0 clicking
(output 0) is P01D0 = cos2M (π/2M ) ≈ 1 − π2/4M. The prob-
ability tends to 1 when M → ∞.

Case 4: Bob has input 1 and Charlie has input 0. In
this case, the first CGU2N in the inner chain is in working
mode 4, while the second and third CGU2N ’s are in working
mode 1. In an inner chain, the photon evolution still obeys
|001〉 → cos6N (π/2N )|001〉. As a result, Alice’s output is 0
when M → ∞. Regarding the probability of D0 clicking, i.e.,
P10D0, it is equal to P01D0 and P11D0.

Consequently, the truth table for the NOR gate can be
implemented.

B. Analysis of counterfactuals

In case that both Bob and Charlie select to block their
transmission channels, any photons entering the transmission
channels must be detected by SW’s. Since the single photon is
used we can see that, when D1 clicks, the photon never enters
the transmission channels. In the case where either Bob or
Charlie selects to unblock his own transmission channel, we
can consider each middle interferometer and its corresponding
D3 as a combined detector. We emphasize that, due to the
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attenuators, the two arms of each middle interferometer are
always balanced for cases 2, 3, and 4, even when N is finite.
In such cases, once a photon enters a middle interferometer,
it is either absorbed by attenuators and D2’s or routed to D3.
The photon never remains in the outer chain. As a result, when
D0 clicks, it is an indication that the photon never enters the
middle interferometers. We emphasize that the transmission
channels are located inside the middle interferometers. Thus,
the photon never enters the transmission channels. Conse-
quently, the presented NOR gate is counterfactual.

In addition, here it is worth mentioning one difference
between the design of the NOR gate and the SLAZ protocol.
In the SLAZ protocol, the path evolution of a single pho-
ton inside Alice’s optical device is interrupted by the status
of the transmission channel (either blocked or unblocked).
Such an interruption occurs many times during the dynamic
evolution of the photon, and all of those interruptions are
of the same type (blocking or unblocking). However, for the
counterfactual NOR gate, the situation is different. The statuses
of the transmission channel during the dynamic evolution of
the photon are no longer the same but rather a mixture of
blocked and unblocked. This is because the channel is now
controlled by Bob and Charlie, and their actions are not
related. Accordingly, the statuses of the transmission channel
can form some specific time-order sequences. Based on that,
we design Alice’s optical device so that it can distinguish
those specific sequences. Consequently, the current design of
the NOR gate implies a different way to achieve counterfactual
quantum control or communication.

C. Numerical simulation

To support our theory, we carry out numerical simulations,
where no approximation is used. First, we consider the ideal
case, except that the parameters M and N are finite, which
means the number of BS we used is limited. In such case,
the probabilities of Alice getting a correct result according to
Bob’s and Charlie’s different actions, i.e., P00D1, P11D0, P01D0,
and P10D0, depend only on M and N . The corresponding sim-
ulation results are given in Fig. 5, which are in line with our
expectations. As M and N increase, the probability of Alice
getting the correct output increases and tends to 1. For the
cases where either Bob or Charlie has input 1, the numerical
simulation results are the same. They are independent of N .
Considering the case M = 30 and N = 2500, the numerical
result is P11D0 = P01D0 = P10D0 = 0.921, while the theoretical
result is 0.918. Clearly, the two results are in good agreement
with each other. The same can be seen for Fig. 5(a): the
numerical result for M = 30 and N = 2500 is 0.918, while the
theoretical result is 0.911. Therefore, our theoretical analyses
are consistent with the numerical results.

In the above, we assume that all experimental equipment
and conditions are perfect. However, we note that the SLAZ-
based communication protocols are very sensitive to channel
noise [6,32], i.e., the transmission channels may be blocked
by some other objects randomly, but by neither Bob nor
Charlie. Therefore, we run numerical simulations to see the
effect of channel noise. In particular, we focus on the effective
probability of the correct clicking of Alice’s detector, which is
defined as Ej j′Dq = Pj j′Dq/(Pj j′D0 + Pj j′D1) ( j, j′, q = 0, 1).

FIG. 5. Numerical simulation results for the counterfactual NOR

gate. (a) P00D1 represents the probability of D1 clicking when both
Bob and Charlie have input 0. (b) P11D0 represents the probability
of D0 clicking when both Bob and Charlie have input 1. (c) P01D0

represents the probability of D0 clicking when Bob has input 0 while
Charlie has input 1. (d) P10D0 represents the probability of D0 clicking
when Bob has input 1 and Charlie has input 0.

Here, Pj j′Dq represents the probability of Dq clicking when
Bob has input j and Charlie has input j′. We discard the
cases where Alice does not get any output (neither D0 nor D1

clicks).
We plot Fig. 6 for E11D0 (black solid line), E01D0 (red

dashed line), and E10D0 (blue dotted line) versus γ with M = 8
and N = 70, where γ is defined as the probability of the
transmission channels being blocked unexpectedly [6,32]. For
each γ value, we take multiple samples and calculate the
average effective probabilities. E00D1 is not plotted since it is
not affected by channel noise; its numerical result is 91.5%.
As shown in the figure, when γ is lower than 3%, the effective
probabilities E11D0, E01D0, and E10D0 are all above 80%.

VI. COUNTERFACTUAL XOR GATE

In this section, we introduce the counterfactual XOR gate,
and its corresponding truth table can be seen in Fig. 1.

A. Scheme

In Fig. 7, we present the detailed scheme, which has the
structure of triple chained interferometers. The biggest Mach-
Zehnder interferometer has two BS(2)’s, and we call it the
outer interferometer. On the right arm of the outer interferom-
eter, there are chained interferometers containing 4M BS(M )’s,
and we call them the middle chain. In the middle chain, there
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FIG. 6. Numerical simulation of the influence of channel noise
on the counterfactual NOR gate. It is assumed that the transmission
channels are blocked by some objects other than Bob and Charlie
with probability γ . E11D0 represents the effective probability of D0

clicking when both Bob and Charlie have input 1. E01D0 represents
the effective probability of D0 clicking when Bob has input 0 while
Charlie has input 1. E10D0 represents the effective probability of D0

clicking when Bob has input 1 but Charlie has input 0. The curves of
E01D0 and E10D0 are almost identical.

are 4M − 2 middle interferometers. We call the first 2M − 1
middle interferometers the upper half-chain (from BS(M )

1 to
BS(M )

2M ), while the last 2M − 1 middle interferometers are the
lower half-chain (from BS(M )

2M+1 to BS(M )
4M ). The two half-chains

have the same optical structure but are controlled by Bob and
Charlie, respectively. In addition, in the right arm of each
middle interferometer, there is a CGUN .

For clarity, we divide Fig. 7 into three zones. The photon
state |100〉 represents a photon in Zone 1 (the left side of
BS(2)’s). The state |010〉 represents a photon in Zone 2 (the
area between BS(2)’s and BS(M )’s), and the state |001〉 repre-
sents a photon in Zone 3 (the right side of BS(M )’s).

Before getting into a more detailed discussion, we first
consider the evolution of a single photon in a half-chain.

First, we assume that all CGUN ’s are in the unblocking
case, i.e., they are in working mode 2. In this case, any photons
entering a CGUN must be routed to D2 and absorbed. This
leads the half-chain to be in working mode 1, and the function
of the half-chain can be described as |010〉 → √

1 − P1|010〉,
where P1 = 1 − cos4M (π/2M ) ≈ π2/2M is the photon loss
probability of the half-chain for the unblocking case.

Second, we consider the situation where all CGUN ’s are
in the blocking case, i.e., now they are in working mode 1.
Under the condition that N is sufficiently large, the photon
is very likely to remain in the half-chain. Now, the half-
chain is in working mode 3. Similar to the calculations
of Eqs. (3) and (4), here we can estimate the photon loss
probability of the half-chain in the blocking case, which
is P0 = ∑2M

m=1 sin2(πm/2M )[1 − cos2N (π/2N )] ≈ π2M/4N .
The function of the half-chain can be roughly written as

Transmission channel

BS1

BS2

BS1
SWB

SWB

SWC

BS2

BS3

BS2M-1

BS2M

BS2M+1

BS2M+2
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BS4M

D3

D2

D3

D2PS

D0
Output 0

D1
Output 1

CGUN

S

CGUN

CGUN

CGUN

CGUN

CGUN

Zone 1 Zone 2 Zone 3

(M)

(M)

(M)

(M)

(M)

(M)

(M)

(M)

(M)

(M)

(2)

(2)

SWC

D2

D2

D2

D2

SWB

SWC

FIG. 7. The scheme of the counterfactual XOR gate. The details
of CGUN can be found in Fig. 3.

|010〉 → −√
1 − P0|010〉. Comparing to the unblocking case,

a π phase shift occurs.
In summary, when a single photon in state |010〉 is sent

into a half-chain, the final state is (−1) j+1
√

1 − Pj |010〉 with
j = 0, 1 for the blocking and unblocking cases, respectively.

Now, we explain how the counterfactual XOR gate works.
Initially, a single photon in state |100〉 is sent into the coun-
terfactual XOR gate. After passing through BS(2)

1 , the photon
state becomes (|100〉 + |010〉)/

√
2. The photon in state |100〉

remains in the left arm of the outer interferometer, while the
photon in state |010〉 enters the middle chain. Considering that
the middle chain includes two half-chains and a PS, the photon
evolution in the middle chain can be described as |010〉 →
−(−1) j+ j′√1 − Pj

√
1 − Pj′ |010〉, where the “−” comes from
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FIG. 8. Numerical simulation results for the counterfactual XOR

gate. (a) P00D0 represents the probability of D0 clicking when both
Bob and Charlie have input 0. (b) P11D0 represents the probability
of D0 clicking when both Bob and Charlie have input 1. (c) P01D1

represents the probability of D1 clicking when Bob has input 0 but
Charlie has input 1. (d) P10D1 represents the probability of D1 clicking
when Bob has input 1 while Charlie has input 0.

the PS, and j, j′ = 0, 1 represent Bob’s and Charlie’s inputs,
respectively. Then, after passing through BS(2)

2 , Alice’s photon
state becomes

1
2 [1+(−1) j+ j′√1 − Pj

√
1 − Pj′ ]|100〉

+ 1
2 [1−(−1) j+ j′√1 − Pj

√
1 − Pj′ ]|010〉. (6)

In particular, when N � M → ∞, the photon state is

1
2 [1+(−1) j+ j′ ]|100〉 + 1

2 [1−(−1) j+ j′ ]|010〉. (7)

Equation (7) indicates that if Bob and Charlie have the same
inputs, D0 clicks (output 0), while if they have different inputs,
D1 clicks (output 1). Hence, the XOR gate is achieved. When
M and N are finite, we have the following results.

Case 1: Both Bob and Charlie have input 0. Here, D0 clicks
with the probability P00D0 = |2 − P0|2/4 ≈ 1 − π2M/4N .

Case 2: Both Bob and Charlie have input 1. In this
case, D0 clicks with the probability P11D0 = |2 − P1|2/4 ≈
1 − π2/2M.

Cases 3 and 4: Bob and Charlie have different inputs. For
such cases, D1 clicks with the probability P01D1 = P10D1 =
|1 + √

1 − P0
√

1 − P1|2/4 ≈ 1 − π2M/8N − π2/4M.

B. Analysis of counterfactuals

Here the transmission channels are in the right arms of the
CGUN ’s. Considering a CGUN , we assume that a photon is

FIG. 9. Numerical simulation of channel noise influence on the
counterfactual XOR gate. It is assumed that the transmission channels
are blocked by some objects other than Bob and Charlie with the
probability γ . E11D0 represents the effective probability of D0 click-
ing when both Bob and Charlie have input 1. E01D1 is the effective
probability of D1 clicking, when Bob has input 0 but Charlie has
input 1. E10D1 is the effective probability of D1 clicking when Bob
has input 1 while Charlie has input 0. The curves of E01D1 and E10D1

are almost identical.

sent into it initially. If the transmission channel is blocked, the
photon entering the transmission channel must be absorbed
by SW’s so it cannot remain in the CGUN . If the transmission
channel is unblocked, however, the photon must be routed to
D2 and absorbed. The photon cannot remain in Alice’s device.
Consequently, regardless of what Bob’s and Charlie’s actions
are, when either D0 or D1 clicks, the photon never enters the
transmission channels. This leads to the conclusion that the
presented XOR gate is counterfactual.

C. Numerical simulation

Again in order to support our theoretical analyses, we show
numerical simulation results in Fig. 8 without any approx-
imation, where P00D0, P11D0, P01D1, and P10D1 are plotted.
As shown in the figure, when M and N increase, Alice’s
probability of getting correct output increases and tends to
1. To compare our numerical results with the theoretical
analyses, we consider the case M = 100 and N = 3000. For
Fig. 8(a), the numerical result is P00D0 = 0.923, while it is
0.918 theoretically. For Fig. 8(b), the numerical result gives
P11D0 = 0.952, while it is 0.951 theoretically. For Figs. 8(c)
and 8(d), the numerical result is P01D1 = P10D1 = 0.937, while
the theoretical result gives 0.934. All these results are in good
agreement with each other.

Furthermore, we plot Fig. 9 to show the influence of chan-
nel noise. We plot E11D0 (black solid line), E01D1 (red dashed
line), and E10D1 (blue dotted line) versus γ with M = 10 and
N = 50. The numerical simulation results show that when γ

is around 3%, E11D0 is around 80%, while E01D1 and E10D1

are around 87%. E00D0 is not affected by channel noise and its
numerical simulation result is 94.4%.
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FIG. 10. The preparation of (a) a CHZ state and (b) a W state
utilizing counterfactual logic gates. QO stands for quantum object,
which can be a V-type three-level atom with ground state |g〉 and two
excited states |u〉 and |e〉. Only the transition between |g〉 and |u〉 is
coupled by Alice’s photon. We assume that if the atom jumps to state
|u〉, it must alert the detector Du. Utilizing counterfactual logic gates
(NOR, XOR, and NAND gates), Bob, Charlie and David’s QO’s can be
entangled counterfactually.

VII. COUNTERFACTUAL MULTIPARTY
ENTANGLEMENT

In all the above counterfactual logic gates, the transmission
channels are controlled using classical objects. One would
ask, what happens if these classical objects are replaced by
quantum objects, which are in superposition states of blocking
and unblocking the transmission channels? In this section, we
show that this was achieved before, but for just one party and
that is Bob, and the results are not difficult to obtain according
to [18–20]. We show that three remote quantum objects held
by Bob, Charlie, and David can be counterfactually entangled
with the assistance of Alice’s photon, thereby achieving the
GHZ state or the W state.

Here, for the simplicity, we utilize a V-type three-level
atom as the quantum object, which is shown in Fig. 10, where
|g〉 is the ground state and |e〉 and |u〉 are two excited states.
Only the transition between the atomic states |g〉 and |u〉 is
coupled by Alice’s photon. Consider the case where the atom
is placed in the transmission channel and Alice’s photon also
appears in the channel. If the atom is in state |g〉, it absorbs
Alice’s photon and jumps to |u〉. We assume that this must
cause Du to click. As a result, the transmission channel is
blocked. The opposite scenario is that when the atom is in
state |e〉, it has no influence on Alice’s photon. Then, the
photon just passes through the atom and is reflected by a

mirror (not shown in the figure), which corresponds to the
unblocking case. Obviously, when the atom is prepared in a
superposition state of |g〉 and |e〉, the transmission channel is
in a superposition state of being blocked and unblocked.

Before getting into some discussions, we need to empha-
size two issues. First, the V-type three-level atom is a good
model for illustration, while generic experiments need better
and realistic candidates such as a Rydberg atom [18,23,24]
or a single-side cavity with a three-level atom [19,25–27].
Second, in the presented counterfactual logic gates, Bob (or
Charlie) must manipulate Alice’s photon many times. The key
point here is that Bob (or Charlie) must use the same quantum
object to manipulate Alice’s photon all the time. That requires
the quantum object to be movable from one interferometer to
another. Hence, a better alternative to go around this issue is
to consider using nested Michelson interferometers, which is
not difficult to achieve according to previous results [6,19,20].

Next, we discuss the counterfactual NOR, XOR, and NAND

gates one by one. We assume that initially Bob, Charlie
and David each have an atom prepared in an arbitrary state
C(g)

s |g〉 + C(e)
s |e〉, where C(g)

s and C(e)
s are probability ampli-

tudes satisfying |C(g)
s |2 + |C(e)

s |2 = 1. Here the subscript s =
B indicates that the atom belongs to Bob, while s = C, D
indicate Charlie and David, respectively. Regarding Alice, we
emphasize that for each type of counterfactual logic gate,
there is only one photon entrance. Therefore, we just set
Alice’s initial photon state to be |iA〉. For the state of the
photon after passing through the logic gate, we assume that
|0A〉 (|1A〉) represents Alice’s photon appearing at output 0 (1)
(see Figs. 2, 4, and 7).

First, we consider the NOR gate. Initially, the whole atom-
photon state is

|iA〉(C(g)
B |gB〉 + C(e)

B |eB〉)(C(g)
C |gC〉 + C(e)

C |eC〉)

= C(g)
B C(g)

C |iA〉|gB〉|gC〉 + C(e)
B C(e)

C |iA〉|eB〉|eC〉
+ C(g)

B C(e)
C |iA〉|gB〉|eC〉 + C(e)

B C(g)
C |iA〉|eB〉|gC〉. (8)

We emphasize that, during the information processing, Bob’s
and Charlie’s atomic states do not change unless one of the
atoms absorbs Alice’s photon, which leads to |g〉 → |u〉. As
a result, the four terms in the second and third lines of
Eq. (8) are always orthogonal to each other no matter what the
evolution of Alice’s photon is. They indicate four subsystems
[19], and the photon evolutions in these subsystems are inde-
pendent. Moreover, we notice that |e〉 means unblocking while
|g〉 means blocking. The evolution of Alice’s photon obeys the
rules presented in Sec. V. After the NOR gate, and in the ideal
case (N � M → ∞), Eq. (8) becomes

NOR→ C(g)
B C(g)

C |1A〉|gB〉|gC〉 + C(e)
B C(e)

C |0A〉|eB〉|eC〉
+ C(g)

B C(e)
C |0A〉|gB〉|eC〉 + C(e)

B C(g)
C |0A〉|eB〉|gC〉. (9)

Similar results can also be found for the counterfactual XOR

and NAND gates. For the counterfactual XOR gate, we have

|iA〉(C(g)
B |gB〉 + C(e)

B |eB〉)(C(g)
C |gC〉 + C(e)

C |eC〉)
XOR→ C(g)

B C(g)
C |0A〉|gB〉|gC〉 + C(e)

B C(e)
C |0A〉|eB〉|eC〉

+ C(g)
B C(e)

C |1A〉|gB〉|eC〉 + C(e)
B C(g)

C |1A〉|eB〉|gC〉. (10)

022606-10



COUNTERFACTUAL LOGIC GATES PHYSICAL REVIEW A 102, 022606 (2020)

Regarding the M-type counterfactual NAND gate that is
controlled by Bob, Charlie, and David, we have

|iA〉(C(g)
B |gB〉 + C(e)

B |eB〉)

× (
C(g)

C |gC〉 + C(e)
C |eC〉)(C(g)

D |gD〉 + C(e)
D |eD〉)

NAND→ C(e)
B C(e)

C C(e)
D |0A〉|eB〉|eC〉|eD〉 − C(e)

B C(e)
C C(e)

D |1A〉
× |eB〉|eC〉|eD〉 + |1A〉(C(g)

B |gB〉 + C(e)
B |eB〉)

× (
C(g)

C |gC〉 + C(e)
C |eC〉)(C(g)

D |gD〉 + C(e)
D |eD〉). (11)

In other words, only in the case when Bob, Charlie, and David
have input 1 is the output for Alice’s photon |0A〉. For all other
initial states related to the M-type counterfactual NAND gate,
the final state of Alice’s photon is always |1A〉.

In the following, based on Eqs. (9)–(11), we show
how to use the counterfactual logic gates to counter-
factually entangle three remote quantum objects held by
Bob, Charlie, and David, thereby achieving the three-qubit
GHZ state (|gB〉|gC〉|gD〉 + |eB〉|eC〉|eD〉)/

√
2 and the W

state (|gB〉|gC〉|eD〉 + |gB〉|eC〉|gD〉 + |eB〉|gC〉|gD〉)/
√

3. We
assume that all optical and atomic systems are perfect.

A. Preparation of three-qubit GHZ state

In Fig. 10(a), we present a scheme on how to generate
a GHZ state counterfactually. Initially, Bob, Charlie, and
David prepare their atoms in the same superposition state
(|e〉 + |g〉)/

√
2. The state of the whole system is

|iA〉 (|gB〉 + |eB〉)√
2

(|gC〉 + |eC〉)√
2

(|gD〉 + |eD〉)√
2

. (12)

At Alice’s end, she sends her single photon into the first
counterfactual XOR gate, which is controlled by Bob and
Charlie. According to Eq. (10), the whole system state evolves
to

1

2
√

2
|0A〉(|gB〉|gC〉 + |eB〉|eC〉)(|gD〉 + |eD〉)

+ 1

2
√

2
|1A〉(|gB〉|eC〉 + |eB〉|gC〉)(|gD〉 + |eD〉). (13)

The photon in the path of output 1 (|1A〉) is measured by
DF . If DF clicks, the entanglement process fails. If DF

does not click, the remaining system state is |0A〉(|gB〉|gC〉 +
|eB〉|eC〉)(|gD〉 + |eD〉)/2

√
2 without renormalization. The

surviving photon enters the second counterfactual XOR gate,
which is controlled by Charlie and David. After the gate, the
whole system state becomes

1

2
√

2
|0A〉(|gB〉|gC〉|gD〉 + |eB〉|eC〉|eD〉)

+ 1

2
√

2
|1A〉(|gB〉|gC〉|eD〉 + |eB〉|eC〉|gD〉). (14)

The photon in state |0A〉 is measured by D0, while the
photon in state |1A〉 is measured by D1. Apparently, when
D0 clicks, the state of the three quantum objects must be
(|gB〉|gC〉|gD〉 + |eB〉|eC〉|eD〉)/

√
2, while the probability of

successfully generating the GHZ state counterfactually is
25%.

B. Preparation of W state

Figure 10(b) shows the scheme that can generate the
W state counterfactually. Initially, Bob, Charlie, and David
still prepare their atoms in the same superposition state
(|e〉 + |g〉)/

√
2. At Alice’s end, she sends her single photon

into the first counterfactual NOR gate, which is controlled by
Bob and Charlie. According to Eq. (9), the whole system state
evolves to

1

2
√

2
|1A〉|gB〉|gC〉(|gD〉 + |eD〉) + 1

2
√

2
|0A〉

× (|gB〉|eC〉 + |eB〉|gC〉 + |eB〉|eC〉)(|gD〉 + |eD〉). (15)

Then, the photon in state |1A〉 is measured by DF1, and if
DF1 clicks, it is an indication of entanglement failure. If DF1

does not click, the surviving photon is routed to the second
counterfactual NOR gate, which is controlled by Bob and
David. After the second counterfactual NOR gate, the system
state becomes

1

2
√

2
|1A〉|gB〉|eC〉|gD〉+ 1

2
√

2
|0A〉(|gB〉|eC〉|eD〉+|eB〉|gC〉|gD〉

+|eB〉|gC〉|eD〉 + |eB〉|eC〉|gD〉 + |eB〉|eC〉|eD〉). (16)

Now, the photon in state |1A〉 is measured by DF2. If DF2

does not click, then the surviving photon is sent to the third
counterfactual NOR gate, which is controlled by Charlie and
David. After the third counterfactual NOR gate, the system
state becomes

1

2
√

2
|1A〉|eB〉|gC〉|gD〉+ 1

2
√

2
|0A〉(|gB〉|eC〉|eD〉+|eB〉|gC〉|eD〉

+|eB〉|eC〉|gD〉 + |eB〉|eC〉|eD〉). (17)

This time, DF3 eliminates the photon in state |1A〉. The photon
in state |0A〉 is sent to an M-type counterfactual NAND gate,
which is controlled by Bob, Charlie, and David. After the
NAND gate, we have

1

2
√

2
|1A〉(|gB〉|eC〉|eD〉 + |eB〉|gC〉|eD〉 + |eB〉|eC〉|gD〉)

+ 1

2
√

2
|0A〉|eB〉|eC〉|eD〉. (18)

It is not difficult to see that when D1 clicks, the W state
is almost achieved. Bob, Charlie, and David only need to
flip their bits (|e〉 ↔ |g〉) to get the state (|eB〉|gC〉|gD〉 +
|gB〉|eC〉|gD〉 + |gB〉|gC〉|eD〉)/

√
3. The probability that the W

state is generated successfully and counterfactually is 37.5%.

VIII. DISCUSSION ABOUT THE EXPERIMENT

After discussing and showing how to achieve NAND, NOR,
and XOR logic gates counterfactually, one question of inter-
est is how to carry out an actual experimental implemen-
tation bearing in mind all of the required interferometric
structures. SLAZ, which as we pointed out can be used
as logical NOT operation, was demonstrated in a beautiful
experiment by Jian-Wei Pan’s group in 2017 [7]. Another pro-
tocol is the quantum counterfactual communication without a
weak trace [33], again implemented using a programmable
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nanophotonic processor, which is based on reconfigurable
silicon-on-insulator waveguides that operate at telecommuni-
cations wavelengths [34]. These are two examples just to illus-
trate the fact that, despite having a number of interferometric
structures, we can still have proof of principle experiments
for these counterfactual quantum protocols. Needless to say
that there is growing interest in having most if not all the
quantum protocols implemented on chips. One of the growing
technologies is the photonic integrated circuit architecture for
a quantum programmable gate array [35], this can be a good
candidate to implement the aforementioned counterfactual
gates. Clearly, what we have proposed is not a far reach
from being done experimentally within the scope of present
technology.

IX. CONCLUSION

In this work, we show that by independently controlling the
blocking and unblocking of the transmission channels, two

remote parties (Bob and Charlie) can completely determine
the state of a real photon that is confined to a third party’s
(Alice’s) station without any need for prearranged entangle-
ment nor any real physical particles traveling among these
three parties. Based on that, we show how to implement basic
logic gates including NAND, NOR, and XOR gates counterfactu-
ally. It is Bob’s and Charlie’s actions that determine the gate
inputs, while Alice’s photon state determines the gate outputs.
The nature of the chosen counterfactual logic gates depends
only on the specific design of Alice’s device. In addition, we
show that utilizing the proposed counterfactual logic gates, we
can counterfactually entangle three remote quantum objects
and hence realize the GHZ state and the W state.
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