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Generation of nonclassical states in nonlinear oscillators via Lyapunov control
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In this paper, we propose a scheme to generate nonclassical states in a nonlinear oscillator system, such
as Fock states, squeezed coherent states, Schrödinger-cat states, etc. These nonclassical states are achieved by
directly applying the classical field to the nonlinear oscillator, where the amplitude of the field is customized
through a state-based Lyapunov control. For generating Fock states, there is no need to precisely control the
operation time. As for the generation of other nonclassical states, we resort to a unitary transformation to design
the control field, resulting in the requirement of a specific time. The Wigner function of the generated states
shows the nonclassical property and shape that matches well with the target. Numerical simulations suggest that
the scheme is robust against the field fluctuations and immune to variations in the initial state. In addition, the
time-varying control field can be replaced by a square pulse based on the characteristics of the Lyapunov control,
which may reduce the difficulty of the experiment.
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I. INTRODUCTION

The generation and manipulation of nonclassical states of
the single-mode fields is one of the most important subjects in
quantum optics [1]. Among these states, Fock states play an
important role in quantum information processing, including
in quantum key distribution [2], quantum memory [3], and
quantum communication [4]. In addition, superpositions of
Fock states, which give rise to new nonclassical features due
to their quantum interference, are also of great interest in
the field of quantum science. Particularly, the superpositions
with a definite phase relationship between Fock states are the
most appealing ones, e.g., coherent states [5], Schrödinger-
cat states [6], displaced Fock states [7], squeezed states [8],
squeezed coherent states [9], etc. These superpositions are the
key ingredients for the foundational tests of quantum theory,
such as squeezed states enabling high-precision measurement
[10] and a Fock-state superposition with the binomial distribu-
tion facilitating quantum error correction [11]. Therefore, the
generation of Fock states and their superpositions has drawn
much attention in recent years [12–16].

Generally, the dynamics of harmonic oscillators can be
described by Fock states. However, the generation of such
states and their specific superpositions is a nontrivial task,
since classical excitations may lead to a thermal state when
they are directly applied to an oscillator system. To overcome
the difficulties, one always interposes a nonlinear quantum
system (such as a two-level atomic system or a spin-1/2
system) to the resonator [17,18]. Then, the classical pulse is
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applied to the nonlinear system to create a quantum state that
can subsequently be transferred to the resonator. Here, the
nonlinear quantum system plays the role of intermediary be-
tween the classical microwave source and the resonator. Such
a technique has been demonstrated for the preparation of Fock
states for an optical cavity with Rydberg atoms [19,20] and
for a superconducting resonator with a superconducting phase
qubit [21]. Arbitrary superpositions have also been synthe-
sized in this way [22–24]. In addition, controlled hole burning
(erasing one or multiple Fock-state in a coherent state) has
been realized via resonant [25] and dispersive interaction [26].
The Schrödinger-cat states of a cavity have been generated
by dispersively coupling atoms to the cavity mode [27] and
observed in the strongly coupled qubit-oscillator circuits [28].
Moreover, the generation of squeezed states has been the-
oretically investigated [29] and experimentally implemented
[30] in superconducting resonators. Notably, the preparation
of Fock states and their superpositions sometimes combines
the driving nonlinear quantum system with measurements
[31,32], adiabatic passage [33,34], and postselection [35].

Recently, there have been attempts to generate the non-
classical states such as Fock states and their superpositions
by directly applying a classical field to the oscillator without
auxiliary nonlinear driving systems [36]. Periodical Gaussian
pulses were forced on the single-mode oscillator, with the de-
generacy of the energy-level spacings being avoided through
strong Kerr nonlinearities. By setting the parameters to meet
a near-resonant condition, the low-lying Fock states and their
superpositions were produced. Notably, the periodical driving
scheme may have difficulty in producing the high-lying Fock
states and the superpositions with a definite phase relationship
between Fock states. Although the high-lying Fock states can
be realized by adiabatically varing the detuning of the cavity
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and the strength of the field [37], a simple and versatile proto-
col that can achieve both Fock states and their superpositions
is desirable.

In this paper, we propose a feasible scheme to generate
nonclassical states in the nonlinear oscillator systems, such
as Fock states, superpositions of Fock states, coherent states,
squeezed coherent states and Schrödinger-cat states. The
scheme is also suitable for the production of other nonclassical
states, such as squeezed Fock states, displaced Fock states,
etc. Instead of coupling a two-level driving system to the
resonator, we directly apply the external classical field to
the nonlinear oscillator system, where the strength of the
driving field is customized using the Lyapunov control the-
ory. Lyapunov control has been proven to be a sufficiently
simple control technology [38–44]. By designing an external
controller in open- and closed-loops, one can avoid impossible
or difficult measurements and feedback. Thus, it has been
applied comprehensively in various tasks such as such as
quantum state preparation [45–49], quantum gate implemen-
tation [50–52], quantum decoherence suppression [53], strong
mechanical squeezing [54], and machine learning [55]. Using
this powerful control technology, we show that arbitrary Fock
states can be generated from their adjacent Fock states, while
the generation of other nonclassical states is accomplished
with a specific unitary transformation. One feature of the
scheme is that the external nonlinear driving system is not nec-
essary. Thus, the scheme avoids the decaying and decoherence
effects of the external two-level driving system and sidesteps
the infidelity caused by the higher-order terms of qubit-cavity
coupling [35].

The rest of this paper is organized as follows: In Sec. II, we
present the system model and review the general Lyapunov
control theory. In Sec. III, we present a few examples by
generating several typical nonclassical states. In Sec. IV, we
investigate the robustness of the scheme. Conclusions are
presented in Sec. V.

II. SYSTEM MODEL AND LYAPUNOV CONTROL THEORY

A. A driven anharmonic oscillator system

We consider an anharmonic oscillator which is driven by
an external field with frequency ω. The Hamiltonian of the
system is described by [56,57]

Ĥ = h̄ω0â†â + h̄χ (â†â)2 + h̄ f (t )[�e−iωt â† + H.c.], (1)

where â (â†) is the boson annihilation (creation) operator, ω0

is the oscillatory frequency, χ is the strength of the anhar-
monicity, i.e., the strength of the photon-photon interaction
proportional to the real part of the third-order nonlinear sus-
ceptibility Re[χ (3)], and � f (t ) is the time-dependent coupling
strength, which is proportional to the amplitude of the external
field. Note that the nonlinearity breaks the degeneracy of
the oscillatory energy-level spacings in the absence of the
drive. Here, we assume that the oscillator is driven by a
single-photon process as described by the last term in Eq. (1)
without considering the multi-photon driving process [58] and
the higher order nonlinearities [59].

The Hamiltonian in Eq. (1) can be implemented in several
physical systems. For instance, it can be used to describe the
nanomechanical oscillator with â and â† related to the position

and momentum operators of a mode quantum motion [36],

x̂ =
√

h̄

2mν
(â + â†), p̂ = −i

√
2h̄mν(â − â†), (2)

where m is the effective mass of the nanomechanical res-
onator, ν is the linear resonator frequency, and χ is pro-
portional to the duffing nonlinearity. In addition, an optical
cavity involving third-order nonlinearity under coherent driv-
ing is described by Eq. (1). The anharmonicity of the mode
dynamics arises from its self-phase modulation caused by
photon-photon interaction in the nonlinear medium [60]. The
operators â and â† are the annihilation and creation operators
for the single-mode of the cavity at frequency ω0, and �

is the Rabi frequency corresponding to a classical coherent
driving field. Quantum behaviours can be observed when
cooling down the temperatures for which thermal energy is
comparable to the energy of the oscillator quanta [61–63].
It also describes the variants of nano-oscillators based on
a double-clamped platinum beam [64,65] and a single-light
mode propagated in Kerr media [66,67].

Formally, the Hamiltonian in Eq. (1) can be written as

Ĥ = Ĥ0 + Ĥc(t ), (3)

where Ĥ0 = h̄ω0â†â + h̄χ (â†â)2 describes the static Hamilto-
nian, and Ĥc(t ) = h̄ f (t )(�e−iωt â† + H.c.) illustrates the con-
trol part of the system. The driven anharmonic oscillator
system has been widely studied in the context of stochastic
resonance [68] and quantum dissipative chaos [69,70]. In the
absence of classical driving, i.e., f (t ) = 0, the quantized vi-
bration states of the nonlinear oscillator are the Fock states |n〉.
Namely, the static Hamiltonian H0 satisfies the eigenequation
Ĥ0|n〉 = En|n〉, where the eigenenergy En = h̄ω0n + h̄χn2

with n = 0, 1, 2, · · · . The levels |n〉 form an anharmonic
ladder with the anharmonicity given by E21 − E10 = 2h̄χ ,
where Emn = Em − En. Regardless of the anharmonicity, the
energetic spectrum also shifts in the case of monochromatic
excitation [36].

B. Field design based on Lyapunov control

Lyapunov control is a powerful technique for quantum
control tasks, which consists of two steps. The first step is the
numerical calculation of the time-dependent control fields by
simply simulating the system dynamics in the feedback form.
In the second step, the generated control fields are used in
an open-loop. We introduce the general formula of quantum
Lyapunov control for the closed quantum system described by
the Liouville equation (we assume h̄ = 1 hereafter),

d ρ̂(t )

dt
= −i[Ĥ0 +

K∑
k=1

fk (t )Ĥk, ρ̂(t )], (4)

where Ĥ0 is the drift Hamiltonian of the system, Ĥk are the
control Hamiltonians, and fk (t ) are the corresponding control
fields which are realizable, scalar, real-valued time-dependent
functions. The basic principle of Lyapunov control is to find
proper control fields fk (t ) to steer the quantum system into
a target state ρ̂T , one of the eigenstates of Ĥ0. To find such
control fields, we should first select a real function called
Lyapunov function V (t ). Notice that the choice of Lyapunov
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function is not unique. Here we consider the following form
of Lyapunov function based on the trace distance (state-based
Lyapunov control in the density matrix form) [53],

V (t ) = 1 − Tr[ρ̂(t )ρ̂T ]. (5)

Obviously, the Lyapunov function V (t ) is semidefinite
[V (t ) � 0] and takes the minimum value only when the
system converges to the target state. The control fields are
designed by means of the first-order time derivative of V (t ),
which satisfies V̇ (t ) � 0. It is not hard to calculate that

V̇ (t ) = −
K∑

k=1

fk (t )Tr(ρT {−i[Ĥk, ρ̂(t )]}). (6)

Then the control fields can be chosen as the following form

fk (t ) = AkTr(ρT {−i[Ĥk, ρ̂(t )]}), (7)

where the positive parameters Ak are adopted to adjust the
amplitude of the control fields. An increase in the value of
Ak leads to a reduction of the duration of the control. With
the designed control fields in Eq. (7), the Lyapunov function
V (t ) keeps nonincreasing in the controlled dynamics. In other
words, any initial state ρ(0) [except for the one that satisfies
V̇ (0) = 0] will asymptotically converge to the target state ρ̂T .

The convergence behavior can be analyzed by LaSalle’s
invariant principle [71,72]. As a prerequisite of Lyapunov
control, the drift Hamiltonian Ĥ0 and the control Hamiltonian
Ĥk should satisfy certain conditions. The drift Hamiltonian
Ĥ0 should be strongly regular, i.e., the transition frequencies
between the target state and other eigenstates are distinguish-
able [44]. At the same time, the control Hamiltonian Ĥk

should contain a direct coupling between the target state and
other eigenstates of Ĥ0. When these conditions are satisfied,
the system will necessarily converge to an invariant set E =
{ρ̂T : V̇ (t ) = 0} with the designed control fields.

C. Generation of nonclassical states in a nonlinear oscillator

To generate the target Fock state |n〉 in the considered
anharmonic oscillator system, we chose the drift Hamilto-
nian Ĥ0 = Ĥ0 in Eq. (3). The control part of the system
is Ĥc(t ) = f (t )(�e−iωt â† + H.c.), where the strength of the
external driving field f (t ) is designed by Lyapunov control. It
is seen from the Hamiltonian Ĥ0 that the oscillatory levels are
well resolved in the case of nonvanishing anharmonicity, i.e.,
Emn �= El j (m �= n �= l �= j). Thus, the transition frequencies
between the target Fock state and other eigenstates (Fock
states) are distinguishable. For the control Hamiltonian of the
considered anharmonic oscillator system, however, the condi-
tion that there should exist direct coupling between the target
Fock state and other eigenstates of Ĥ0 is not strictly satisfied.
We can see from Ĥc that Fock state |n〉 is only directly coupled
to the adjacent Fock states |n ± 1〉. Therefore, we cannot
generate the target Fock state |n〉 with an arbitrary initial state
by using state-based Lyapunov control. In other words, the
generation of the target Fock state |n〉 relies on the initial state
of the system due to the limitation of the control Hamiltonian
of the system. However, the high-lying arbitrary Fock state
|n〉 is realizable step-by-step, i.e., the target Fock state |n〉 can
be generated in certain conditions by choosing the initial state

as |n − 1〉 (n = 1, 2, · · · ). Alternatively, due to the flexibility
in choosing the Lyapunov function, the dependence of the
generation of the target Fock state on the initial state can be
avoided by using an average-value-based Lyapunov control
[73,74].

On the other hand, the Lyapunov control can also be used to
generate the superpositions of Fock states, |ψT 〉 = ∑

n cn|n〉,
where the complex coefficients cn satisfy

∑
n |cn|2 = 1. Note

that the target superposition state is no longer the eigenstate
of Ĥ0, which leads to the first-order time derivative of V (t ) as

V̇ (t ) = − f (t )Tr(ρ̂T {−i[Ĥc, ρ̂(t )]}) − Tr{−iρ̂T [Ĥ0, ρ̂(t )]},
(8)

where ρ̂T = |ψT 〉〈ψT |. Due to the existence of the sec-
ond term on the right-hand side, it is difficult to guaran-
tee V̇ (t ) � 0 and then design the control fields. To deter-
mine the sign of V̇ (t ) and obtain control fields that are
suitable for the generation of arbitrary superpositions of
Fock states, we resort to a specific unitary transformation
for the system, with the unitary operator defined as Û (t ) =
diag{e−iE0t , e−iE1t , · · · , e−iEnt } [75]. The evolution of the sys-
tem with respect to the rotating frame is (we refer to such a
frame as the “rotating frame”)

d ρ̂ ′(t )

dt
= −i[Ĥ ′

0 + f (t )Ĥ ′
c − �̂, ρ̂ ′(t )], (9)

where Ĥ ′
0 = Û †Ĥ0Û , Ĥ ′

c = Û †ĤcÛ , ρ̂ ′(t ) = Û †ρ̂(t )Û , and
�̂ = diag{E0, E1, · · · , En}. Then the first-order time deriva-
tive of V (t ) is

V̇ (t ) = − f (t )Tr(ρ̂ ′
T {−i[Ĥ ′

c, ρ̂
′(t )]}), (10)

where ρ̂ ′
T = Û †ρ̂T Û . Now it is easy to choose the control field

that satisfies the condition of V̇ (t ) � 0, such as

f (t ) = AcTr(ρ̂ ′
T {−i[Ĥ ′

c, ρ̂
′(t )]}). (11)

Based on the Lyapunov control, in the rotating frame,
we can deterministically drive the initial state ρ̂ ′(0) to the
state ρ̂ ′

T with the designed control field shown above. It is
clear from Eq. (10) that when the system approaches ρ̂ ′

T ,
the first-order time derivative of V̇ (t ) → 0. In that case, the
control field given by Eq. (11) vanishes. Notice that since the
target state ρ̂T is no longer the eigenstate of Ĥ0, the system
is unstable if we move back to the original frame; even the
control field vanishes. In other words, d ρ̂(t )

dt = −i[Ĥ0, ρ̂(t )] �=
0 even if ρ̂(t ) → ρ̂T due to [Ĥ0, ρ̂T ] �= 0. However, the target
superpositions of Fock states |ψT 〉 in the original frame can
be achieved at a specific time. Concretely, in the rotating
frame, we can set the target state as |ψ ′

T 〉 = ∑
n cne−iH0t f |n〉 =∑

n cne−iEnt f |n〉. Such a state can be obtained in the rotating
frame with the designed control field given by Eq. (11). Then
the target superpositions of Fock state |ψT 〉 is achieved at time
t f when we move back to the original frame, i.e.,

|ψ (t )〉 = Û †(t )|ψ ′(t )〉 |ψ ′(t )〉−→|ψ ′
T 〉−−−−−−−→ Û †(t )

∑
n

cne−iEnt f |n〉
t=t f−−→

∑
n

cn|n〉. (12)

It is worth mentioning that the time t f is adjustable, but it
should be long enough for completing the driving process:
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FIG. 1. Fidelity (a) and the corresponding control field (b) as a
function of time for the generation of target Fock state |1〉. Fidelity
(c) and the corresponding control field (d) as a function of time for
the generation of target Fock state |2〉. The parameters are as follows:
α = 0.1, ω0 = 11�, ω = −2ω0, χ = 15�, and Ac = 0.8/�.

|ψ ′(0)〉 → |ψ ′
T 〉. Clearly, when we choose particular complex

coefficients cn, we can obtain different desired nonclassical
states, such as Schrödinger-cat states, displaced Fock states,
squeezed coherent states, etc., since these nonclassical states
are the superpositions that have a definite phase relationship
between Fock states.

III. NUMERICAL EXAMPLES

A. Fock states

In the previous section, we showed the feasibility of the
scheme with respect to generating nonclassical states such as
Fock states and arbitrary superpositions of Fock states. In the
following, we demonstrate the generation of these states in
the anharmonic oscillator system with concrete examples. To
begin with, we generate Fock states by taking the two states
|1〉 and |2〉 as examples. The simulation results of the fidelity

FTn =
√√

ρ̂Tn ρ̂(t )
√

ρ̂Tn are presented in Fig. 1, where the tar-
get Fock state ρ̂Tn = |n〉〈n| (n = 1, 2), and ρ(t ) is numerically
solved from Eq. (4). Figure 1(a) shows the production of
Fock state |1〉 by considering the initial system in a coherent
state |α〉 = D̂(α)|0〉, where D̂(α) = eαâ†−α∗â is the Glauber
displacement operator with α being a small complex number.
The corresponding control field for generating Fock state |1〉
is obtained from Eq. (7) and shown in Fig. 1(b). From the
simulation, one observes that the high fidelity of the target
Fock state |1〉 is achieved after a time evolution of about
6/�. The control field approaches zero when the target state
is obtained [see from Fig. 1(b)]. In addition, the fidelity FT2

of target Fock state |2〉 is shown in Fig. 1(c) with the initial
system in a displaced Fock state |αd〉 = D̂(α)|1〉, and the
corresponding control field is plotted in Fig. 1(d). We can see
that the fidelity of target Fock state |2〉 assumes a consistent
evolution with a high value after evolution time 4/� [see
Fig. 1(c)] due to the nearly zero control field [see Fig. 1(d)].
Clearly, there is no need to precisely control the evolution time
for generating Fock states.

FIG. 2. (a) Fidelity FT1 as a function of time and α for the
generation of target Fock state |1〉. (b) Fidelity F〈α j〉 and FT0−2 as a
function of α. The parameters are as follows: ω0 = 11�, ω = −2ω0,
χ = 15� and Ac = 0.8/�.

Note that two aspects should be emphasized in the gen-
eration of Fock states. On the one hand, since the density
matrix form of the state-based Lyapunov control is indepen-
dent of the phase factor of the system state, i.e., V (|ψ (t )〉) =
V (eiφ|ψ (t )〉) (φ ∈ R), we cannot achieve state steering if the
initial state of the system is an eigenstate of Ĥ0 and satisfies
〈ψ (0)|ψT 〉 = 0 [44]. Therefore, we are unable to generate the
target Fock state from another Fock states. For instance, the
generation of Fock state |n〉 from |m〉 (n �= m) is unavailable.
This is a result of the fact that both Fock states are the
eigenstate of the drift Hamiltonian Ĥ0 and they are orthogonal
to each other, resulting in the null control fields in Eq. (7)
all the time. Therefore, we prepare the system initially in a
coherent (displaced Fock) state with a small amplitude α =
0.1 to avoid such a situation in the production of Fock state |1〉
(|2〉). In this case, one can note that the initial state |α〉 (|αd〉)
is not strictly orthogonal to target Fock state |1〉 (|2〉), with
the overlap |〈α|1〉|2 
 10−3 (|〈αd |2〉|2 
 10−2). To directly
generate Fock state |n〉 from |m〉, an alternative technique is to
add a small disturbance to the initial control field to trigger the
evolution of the system [50]. This is exactly the technique that
is used for the transmission of photons between two cavities,
where the coupling coefficient has nonzero initial values [76].

On the other hand, we are unable to generate the target
Fock state |n〉 from other Fock states except for |n ± 1〉
even at the case that the orthogonal problem is solved due
to the fact that there are no direct couplings between the
target Fock state and other Fock states except |n ± 1〉 in the
control Hamiltonian Ĥc. We verify this point in Fig. 2 by
simulating the fidelity FT1 as a function of amplitude α and
time. According to Fig. 2(a), we obtain the following results:
(i) We cannot generate the target Fock state |1〉 if the system is
initially in vacuum state |0〉 [see from Fig. 2(a) where FT1 = 0
in the case of α = 0]. (ii) The high fidelity of target Fock
state |1〉 is obtained by increasing the value of α in certain
ranges. For instance, FT1 reaches 0.999 if 0 < α < 0.47 after
enough operation time, which can be seen from the white
line in Fig. 2(a). (iii) When further increasing the value of
α, the target fidelity gradually decreases, meaning that the
target state is unreachable if the value of α is too large. (iv)
The time for generating the high-fidelity target state decreases
when increasing the value of α, such as FT1 = 0.98, shown by
the white line.
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Result (i) is due to the aforementioned orthogonal problem,
and the reasons for the remaining results can be illuminated by
simulating the fidelity F〈α j〉 = |〈α| j〉|2 and FT0−2 = ∑

j F〈α j〉
( j = 0, 1, 2) as a function of amplitude α, as shown in
Fig. 2(b). Upon inspection of the dash-cyan line in Fig. 2(b),
one can note that the fidelity FT0−2 is closest to the unit if
the value of α is less than 0.5, and it decreases when further
increasing the value of α. This is why we obtain the results
(ii) and (iii). Then, in turn, it illustrates the point that we
are unable to produce the target Fock state |n〉 from other
Fock states except |n ± 1〉. To be specific, one can note that
the fidelity FT1 in Fig. 2(a) matches well the fidelity FT0−2 in
Fig. 2(b) after enough operational time with the same value of
α. For instance, as shown by the black points in Fig. 2(a),
the fidelity FT1 = 0.9681 (FT1 = 0.6301) when α = 0.8265
(α = 1.5) at the time 6.8/� (10/�). In such a case, the fidelity
almost coincides with the fidelity FT0−2 in Fig. 2(b), if we
choose the same value of α [see from the black points in
Fig. 2(b)]. This means that only the components of states
|0〉 and |2〉 can be transferred to target state |1〉, while the
component of state |1〉 in the initial coherent state remains
unchanged. This is exactly the reason why we obtain the result
(iv). We can see from the blue-dash line in Fig. 2(b) that the
fidelity F〈α1〉 increases when increasing the value of α in the
range [0, 1]. Thus, in generating the high-fidelity target Fock
state |1〉, there are fewer components (states |0〉 and |2〉) to be
transferred when increasing the value of α, resulting in less
time for generating the high-fidelity target state as shown in
Fig. 2(a).

Here, we characterize the nonclassical property of the
generated states by the Wigner function, which describes the
quasi-probability distribution in the complex phase space for
quantum states [77]. The Wigner function associated with the
density operator ρ̂(t ) is described by

W (t, r, θ ) =
∑
m,n

ρmn(t )Wnm(r, θ ), (13)

where ρmn(t ) = 〈m|ρ̂(t )|n〉 are the matrix elements of the
density operator in the Fock state representation, (r, θ ) are the
polar coordinates in the phase space plane X = r cos θ , Y =
r sin θ , whereby the coefficients Wnm are the Fourier transform
of the matrix elements of the Wigner characteristic function
[36]. This quantity is always nonnegative if the state ρ̂(t ) is
a classical mixture, and the observation of negative values in
regions of phase space is a signature of quantum interference.

We display the Wigner function of the pure Fock states |1〉
and |2〉 in Figs. 3(a) and 3(c), respectively. For contrast, the
Wigner functions W (tF , r, θ ) of the corresponding generated
Fock states |1〉 and |2〉 at final time tF are presented in
Figs. 3(b) and 3(d), respectively. Clearly, upon observation of
Figs. 3(a) and 3(b) [as well as Figs. 3(c) and 3(d)] one can
draw the conclusion that the shape of the Wigner functions
for the pure Fock state |1〉 (|2〉) and the generated state
match well. This demonstrates that these nonclassical states
are successfully obtained by the Lyapunov control.

B. Arbitrary superpositions of Fock states

Next, we show the performance of the scheme for the
generation of arbitrary superpositions of Fock states in the an-

FIG. 3. (a) The Wigner function for the pure Fock state |1〉.
(b) The calculated Wigner function W (tF , r, θ ) in generating target
Fock state |1〉 at evolution time tF . (c) The Wigner function for the
pure Fock state |2〉. (d) The calculated Wigner function W (tF , r, θ ) in
generating target Fock state |2〉 at evolution time tF . The parameters
are as follows: α = 0.1, ω0 = 11�, ω = −2ω0, χ = 15�, Ac =
0.8/�, and tF = 10/�.

harmonic oscillator system. We take the target superposition
states |T s

1 〉 and |T s
2 〉 as examples. The simulation is performed

by numerically solving Eq. (9) with the field given by Eq. (11).
Note that during the generation of target state |T s

1 〉, in the
rotating frame, we choose the state ρ̂ ′

T = |ψ ′
T 〉〈ψ ′

T | to design
the control field, with |ψ ′

T 〉 = e−iEnt f1 |T s
1 〉. The simulation

results of the fidelity F R
T s

1
=

√√
ρ̂ ′

T ρ̂ ′(t )
√

ρ̂ ′
T in the rotating

frame are presented in Fig. 4(a), with the system initially in a
coherent state |αs

0〉. The corresponding control field is shown
in Fig. 4(b). From the simulation results, we can observe that

FIG. 4. For the generation of target superposition state |T s
1 〉 =

(|1〉 + 2|2〉 + 3|3〉)/
√

14, (a) fidelity F R
T s

1
and (b) the corresponding

control field as a function of time. (c) Fidelity F O
T s

1
as a function

of time. For the generation of target superposition state |T s
2 〉 =

(|0〉 + |1〉 + 2|2〉 + 3|3〉 + 5|4〉)/
√

40, (d) fidelity F R
T s

2
, and (e) the

corresponding control field as a function of time. (f) Fidelity F O
T s

2

as a function of time. The parameters are as follows: αs
0 = 2.5,

ω0 = 11�, ω = −2ω0, χ = 15�, t f1 = t f2 = 8/�, and Ac = 15/�.
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FIG. 5. (a) The Wigner function for the pure superposition state
|T s

1 〉. (b) The calculated Wigner function W (tF , r, θ ) in generating
target state |T s

1 〉 at evolution time tF . (c) The Wigner function for
the pure the pure superposition state |T s

2 〉. (d) The calculated Wigner
function W (tF , r, θ ) in generating target state |T s

2 〉 at evolution time
tF . The parameters are as follows: αs

0 = 2.5, ω0 = 11�, ω = −2ω0,
χ = 15�, t f1 = t f2 = 8/�, and Ac = 15/�.

the fidelity F R
T s

1
rapidly reaches 0.99 after time 2/�. The con-

trol field is approximate to zero when the fidelity reaches that
high value. Notice that due to [Ĥ0, |T s

1 〉〈T s
1 |] �= 0, the system

in the original frame would evolve under the Hamiltonian Ĥ0

so that even the control field vanishes. However, the target
state |T s

1 〉 can be obtained at a specific time. To illustrate this
point, the evolution of fidelity F O

T s
1

=
√√

ρ̂T ρ̂(t )
√

ρ̂T in the
original frame is depicted in Fig. 4(c), where ρ̂T = |T s

1 〉〈T s
1 |. It

is clear that the target state |T s
1 〉 is achieved at time t f1 = 8/�.

Similarly, for the generation of |T s
2 〉, in the rotating frame, the

state |ψ ′
T 〉 = e−iEnt f2 |T s

2 〉 is chosen to design the control field.

The simulation result of the fidelity F R
T s

2
=

√√
ρ̂ ′

T ρ̂ ′(t )
√

ρ̂ ′
T is

presented in Fig. 4(d), with the corresponding control field
shown in Fig. 4(e). We can observe that the fidelity F R

T s
2

gradually increases to 0.996 after time 8/�, indicating that
the state ρ̂ ′

T is obtained in the rotating frame. When we
move back to the original frame, the target state |T s

2 〉 is also
achieved at t f2 = 8/�, as seen from the red point in Fig. 4(f)
in which the fidelity F O

T s
2

=
√√

ρ̂T ρ̂(t )
√

ρ̂T is plotted, where
ρ̂T = |T s

2 〉〈T s
2 |.

In addition, to show the nonclassical property of the tar-
get superposition states |T s

1 〉 and |T s
2 〉, we plot the Wigner

function of pure |T s
1 〉 in Fig. 5(a) and |T s

2 〉 in Fig. 5(c).
The corresponding states generated by Lyapunov control are
shown in Figs. 5(b) and 5(d), respectively. As apparent from
Figs. 5(a) and 5(b), as well as from Figs. 5(c) and 5(d), the
states generated by the Lyapunov control match well the pure
target superposition states |T s

1 〉 and |T s
2 〉, respectively.

C. Coherent states

In the following, we investigate the performance of the
scheme in generating nonclassical states that have a definite
phase relationship between Fock states, and we discuss their

FIG. 6. Fidelity F R
T c

2
(a) and the corresponding control field (the

inset) as a function of time for generating target coherent state |ζ2〉.
(b) Fidelity F O

T c
2

as a function of time. (c) The calculated Wigner
function of the generated coherent state |ζ2〉 at evolution time t f .
(d) The probabilities of the Fock state components in the generated
coherent state |ζ2〉, fitted by a Poissonian distribution (the red-dash
line) with n̄ 
 3.4. The parameters are as follows: ζ1 = 0.5, ζ2 =
1.85, ω0 = 11�, ω = −2ω0, χ = 15�, Ac = 10/�, and t f = 8/�.

nonclassical properties. As an example, we first show that the
scheme is feasible for generating the coherent state |ζ2〉 from
another coherent state |ζ1〉. For the coherent states, it is well
known that the distribution among Fock states is Poissonian,
Pn = n̄n exp(−n̄)/n!, where n̄ is the average quantum number
[78].

In Fig. 6(a), in the rotating frame, we show the pro-
cess of |ζ1〉 → e−iEnt f |ζ2〉 by simulating the fidelity F R

T c
2

=√√
ρ̂ ′

T c
2
ρ̂ ′(t )

√
ρ̂ ′

T c
2

as a function of time, where ρ̂ ′
T c

2
=

|ψ ′
T 〉〈ψ ′

T | with |ψ ′
T 〉 = e−iEnt f |ζ2〉. The corresponding con-

trol field for this transferring process is given in the inset
of Fig. 6(a). It is evident that the state |ψ ′

T 〉 is determin-
istically obtained after enough time. When moving back
to the original frame, we display the evolution of fidelity

F O
T c

2
=

√√
ρ̂T c

2
ρ̂(t )

√
ρ̂T c

2
in Fig. 6(b), where ρ̂T c

2
= |ζ2〉〈ζ2|. As

expected, the target coherent state |ζ2〉 is achieved at time
t f = 8/�. In addition, we show the Wigner function of such
a generated coherent state |ζ2〉 in Fig. 6(c), which displays
small negative values in the phase space. Figure 6(d) shows
the probabilities Pn of the Fock state components for the
generated coherent state |ζ2〉. These amplitudes display the
expected Poissonian dependence on n.

D. Squeezed coherent states

As another example, we next show the generation of
squeezed coherent states, since these states can also be rep-
resented by the superposition of Fock states. The combined
action of D̂(α) followed by Ŝ(ξ ) on the vacuum state |0〉
produces a class of squeezed coherent states [79],

|ξ, α〉 = Ŝ(ξ )D̂(α)|0〉, (14)
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FIG. 7. Fidelity F R
T s

c
(a) and the corresponding control field (the

inset) as a function of time for generating target squeezed coherent
state |ξ, α〉. (b) Fidelity F O

T s
c

as a function of time. (c) The Wigner
function for the pure target squeezed coherent state |ξ, α〉. (d) The
calculated Wigner function of the generated squeezed coherent state
via Lyapunov control at evolution time t f . The initial state of system
is in a coherent state |α〉. The parameters are as follows: α = √

5,
r = 0.85, φ = 0, ω0 = 11�, ω = −2ω0, χ = 15�, Ac = 10/�, and
t f = 8/�.

where Ŝ(ξ ) = exp(− ξ

2 â†2 + ξ∗
2 â2) is the squeezing operator

with ξ = r exp(iφ), r is the squeezing parameter and φ de-
fines the direction of the quadrature phase squeezing. The
result for the generation of squeezed coherent state |ξ, α〉
is presented in Fig. 7. Figure 7(a) displays the evolution of

fidelity F R
T s

c
=

√√
ρ̂ ′

T s
c
ρ̂ ′(t )

√
ρ̂ ′

T s
c

(in the rotating frame), and

the inset shows the corresponding control field, where ρ̂ ′
T s

c
=

|ψ ′
T 〉〈ψ ′

T | with |ψ ′
T 〉 = e−iEnt f |ξ, α〉. It can be observed that

the fidelity F R
T s

c
rapidly approaches unity, indicating that the

state |ψ ′
T 〉 is achieved. Our goal is the generation of target

state |ξ, α〉, and thus in Fig. 7(b) we depict the evolution of

fidelity F O
T s

c
=

√√
ρ̂T s

c
ρ̂t )

√
ρ̂T s

c
(in the orignal frame), where

ρ̂T s
c

= |ξ, α〉〈ξ, α|. As can be seen, the target state |ξ, α〉 is
achieved at time t f = 8/� with F O

T s
c


 0.99.
To show the nonclassical property of the target state |ξ, α〉

and the generated state, we plot the Wigner functions of the
pure target state |ξ, α〉 and the generated state in Figs. 7(c)
and 7(d), respectively. From the results, we can observe that
the Wigner function of the generated state is very similar to
the Wigner function of the pure target state |ξ, α〉. We observe
the negative values of the Wigner function in phase space,
indicating the nonclassical feature of the squeezed coherent
state.

E. Schrödinger-cat states

Whether dead or alive, Schrödinger’s cat is clearly a
macroscopic object, and the state of being alive is distin-
guishable from the state of being dead. Therefore, to realize
a Schrödinger cat, we require a superposition of two macro-
scopically distinguishable quantum states. Coherent state |ζ 〉

FIG. 8. Fidelity F R
T s

o
(a) and the corresponding control field (the

inset) as a function of time for generating target even coherent state
|�o〉. (b) Fidelity F O

T s
c

as a function of time. (c) The Wigner function
for the pure target even coherent state |�o〉. (d) The calculated
Wigner function of the generated even coherent state via Lyapunov
control at evolution time t f . The initial state of system is in a coherent
state |ζ 〉. The parameters are as follows: ζ = √

5, ω0 = 11�, ω =
2ω0, χ = 15�, Ac = �, and t f = 10/�.

seems to be a suitable candidate since its amplitude |ζ |2 can
be arbitrarily large. As the distinguishable state, we chose
another coherent state with the same amplitude but with
a phase shift of π : | − ζ 〉. For definiteness, we take the
Schrödinger-cat state as the superposition [6],

|�〉 = N [|ζ 〉 + eiφ | − ζ 〉], (15)

where N = [2 + 2 cos(φ) exp(−2|ζ |2)]−1/2 is the normaliza-
tion factor. The relative phase φ can be arbitrary. For φ = 0,
we obtain the even coherent states,

|�e〉 = Ne[|ζ 〉 + | − ζ 〉], (16)

and for φ = π , we obtain the odd coherent states,

|�o〉 = No[|ζ 〉 − | − ζ 〉], (17)

where Ne and No are the normalization factors.
Here, we chose the generation of the odd coherent states

as an example. Figure 8(a) shows the evolution of fidelity

F R
T s

o
=

√√
ρ̂ ′

T s
o
ρ̂ ′(t )

√
ρ̂ ′

T s
o

in the rotating frame, where ρ̂ ′
T s

o
=

|ψ ′
T 〉〈ψ ′

T | with |ψ ′
T 〉 = e−iEnt f |�o〉. The inset of Fig. 8(a)

shows the corresponding control field which is given by
Eq. (11). We can observe that the state |ψ ′

T 〉 in the rotating
frame is rapidly obtained, and the control field vanishes when
achieving the goal. Figure 8(b) exhibits the evolution of

fidelity F O
T s

o
=

√√
ρ̂T s

o
ρ̂(t )

√
ρ̂T s

o
in the original frame, where

ρ̂T s
o

= |�o〉〈�o|. The achieved high fidelity of F O
T s

o
at time t f =

10/� indicates that the scheme is successful in generating
Schrödinger-cat states. Figures 8(c) and 8(d) are the Wigner
functions of the pure odd coherent state |�o〉 and the generated
state at time t f , respectively. The Wigner functions match
very well and show ranges of negative values, indicating the
nonclassical nature of these states.
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FIG. 9. Fidelity F O
T s

o
versus the time t f under different value of Ac.

The parameters are as follows: ζ = √
2(1 + i), ω0 = 11�, ω = 2ω0,

and χ = 15�.

IV. DISCUSSION

In the previous section, we showed that nonclassical states,
including Fock states and superpositions of Fock states, can
be obtained by using a Lyapunov control in the absence of
any fluctuations and dissipation. In practice, the parameters
in the drift Hamiltonian Ĥ0 may not faultlessly be obtained
and the dissipation caused by decoherence mechanisms is
ineluctable. These factors may cause a detrimental effect on
the generation of nonclassical states. Therefore, we would
like to check the performance of the scheme when these
factors are taken into account.

We begin our discussion by showing the influence of
different t f on generating superpositions of Fock states. As
we have pointed out, to achieve the target nonclassical state in
the original frame, time t f is adjustable, but it should be long
enough for completing the generation of target state |ψ ′

T 〉 in
the rotating frame. Here, we would like to check this point
by taking the generation of Schrödinger-cat state |�o〉 as an
example. In Fig. 9, we plot the fidelity F O

T s
o

versus time t f with
different values of Ac. It is clear from the plot that a high
fidelity of target state is obtained when t f is large enough.
Moreover, to obtain the high fidelity of the target state in a
short time, we can choose a large value of Ac. For instance,
it requires t f > 5/� for F O

T s
o

> 0.98 when Ac = 0.5/�, while
we can ensure F O

T s
o

> 0.98 as long as t f > 2/� when Ac =
2/�. This is a result of from the fact that the larger the value
of Ac, the stronger the control field will be, resulting in a faster
driving process of ρ̂ ′(0) → ρ̂ ′

T in the rotating frame.
To discuss the influence of anharmonicity χ on the gen-

eration of nonclassical states without loss of generality, we
take the generation of superposition state |ψ ′

T 〉 = |T s
1 〉 in the

rotating frame as an example. Figure 10 shows the fidelity F R
T s

1

versus the strength of the anharmonicity χ and evolution time.
Obviously, the superposition state |ψ ′

T 〉 is unreachable when
the strength of anharmonicity χ vanishes, indicating that the
existence of anharmonicity is important for the scheme. This
is a consequence of the fact that the strong anharmonicity
facilitates the resolution of the oscillatory levels and makes
the drift Hamiltonian Ĥ0 strongly regular, i.e., the transition
frequencies between the target state and other eigenstates are
distinguishable, which is a prerequisite for Lyapunov control.

FIG. 10. Fidelity F R
T s

1
as a function of time and χ for generating

target superposition state |T s
1 〉 in the rotating frame. The system is

initially prepared in coherent state |α〉. The parameters are as follows:
α = 0.5, ω0 = 11�, ω = −2ω0, and Ac = 1/�.

We next discuss the influence of perturbations in the con-
trol field on generating the nonclassical states. We define the
control field with perturbations as fη(t ) = (1 + η) f (t ), where
η quantifies the strength of the perturbation. As an example,
the effects of η on the generation of superposition state |T s

1 〉,
squeezed coherent state |ξ, α〉, and odd coherent state |�o〉,
are shown in Fig. 11. As clearly seen from Fig. 11 the fidelities
F R

T s
1
, F R

T s
c
, and F R

T s
o

are insensitive to the perturbations of the
field, since these fidelities are only slightly changed even
when |η| = 5%, indicating that the present scheme is robust
against perturbations in the control field. This stems from
the principle of Lyapunov control, according to which the
convergence process is more sensitive to the sign rather than
the amplitude of the control field [74].

To illustrate the examples above, we assume that the initial
state is the coherent state. For the nonlinear system, the
initial finite dimensional coherent state can be generated by
a weak external coherent field [80]. Specifically, a perfect
initial coherent state is not required for the present scheme.
To demonstrate this point, we assume that the initial state
of the nonlinear system is |ψ (0)〉 = 1

N

∑Nt
n0=0 cn0 |n0〉 with N

being the normalization factor and Nt the truncated number.
Using the generation of Fock state |1〉 and superpositions of

-0.05 -0.025 0 0.025 0.05
η

0.98

0.985

0.99

0.995

1

F
id

el
it
y

FR
Ts

1
FR

Tc
2

FR
Ts

c

FIG. 11. The behavour of fidelities F R
T c

2
, F R

T s
c
, and F R

T s
1

versus η.

The parameters are the same with that given in Fig. 6 for F R
T c

2
, Fig. 7

for F R
T s

c
, and Fig. 8 for F R

T s
1
.
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FIG. 12. Evolution of fidelity (a) FT1 and (b) F R
T s

1
with 20 random

initial states. The other parameters are the same with that given in
Fig. 1 for FT1 and Fig. 4 for F R

T s
1
.

Fock states |T s
1 〉 as examples, we plot in Figs. 12(a) and 12(b)

the evolution of fidelities FT1 and F R
T s

1
, respectively. In the

simulations, 20 random initial states are considered with cn0

being the random numbers uniformly created between 0 and 1.
We set Nt = 3 for the generation of Fock state |1〉 and Nt = 5
for |T s

1 〉. The simulations show that all initial states converge
to the target state, indicating that it is not necessary to prepare
a perfect coherent state for the scheme.

In the above discussions, we did not take into account the
interactions between the anharmonic oscillator system and the
environment, which will inevitably affect the availability of
the scheme. We now investigate the influence of dissipation
and decoherence on the generation of nonclassical states.
When these actual decoherence factors are taken into account,
the accurate Lindblad master equation of the system can be
expressed as [56,68]

d ρ̂(t )

dt
= −i[Ĥ0 + f (t )Ĥc, ρ̂(t )]

+
∑
l=1,2

[
L̂l ρ̂(t )L̂†

l − 1

2
L̂†

l L̂l ρ̂(t ) − 1

2
ρ̂(t )L̂†

l L̂l

]
,

(18)

where L̂1 = √
γ (n̄ + 1)â and L̂2 = √

γ n̄â† are the Lindblad
operators, γ is the dissipation rate, and n̄ represents the mean
number of quanta of a heat bath.

As an example, we display the simulation results of the
achieved nonclassical states, coherent state |ζ2〉, squeezed
coherent state |ξ, α〉, and odd coherent state |�o〉, by showing
contour plots of the fidelities F R

T c
2
, F R

T s
c
, and F R

T s
o

as a function
of γ and n̄ in Figs. 13(a), 13(b), and 13(c), respectively.
We can see from the results that the fidelities F R

T c
2
, F R

T s
c
,

and F R
T s

o
decrease with the increase in the dissipation rate γ

when fixing n̄, and the rate of decrease increases with n̄.
In addition, the dissipation and decoherence effect on the
generation of the odd coherent state |�o〉 is greater than on
the generation of coherent state |ζ2〉 and squeezed coherent
state |ξ, α〉. The results indicate that the influence of the
dissipation and decoherence effect is different for the gen-
eration of different nonclassical states. However, we can see
from Fig. 13(a) that the scheme is robust against the dissi-
pation and decoherence effect for the generation of coherent
state |ζ2〉, in which the fidelity is maintained at 93.5% even
when {n̄, γ } = {0.5, 0.01�}. The simulation result shows that

FIG. 13. The fidelity (a) F R
T c

2
, (b) F R

T s
c
, and (c) F R

T s
o

as a function of
n̄ and γ . The parameters are the same with that given in Fig. 6 for
F R

T c
2

, Fig. 7 for F R
T s

c
, and Fig. 8 for F R

T s
o
.

although dissipation and decoherence have a detrimental ef-
fect on generating the nonclassical states, high-fidelity target
nonclassical states are achievable in a certain range of dissi-
pation rates.

We can now estimate the viability of the scheme in ref-
erence to the real parameters of a system of interest, such
as a nonlinear oscillator composed of an optical cavity or
superconducting cavity. We take the strength of anharmonicity
χ to be 2π × 0.016 MHz. In Figs. 14(a) and 14(b), we
show the fidelities FT1 and F R

T c
2

as a function of time under
different dissipation rate γ , respectively. We can observe that
the fidelity of the generated Fock state |1〉 can be as high as
90% at time 100 μs when the coherence time of the cavity
T1 = 0.5 ms, which corresponds to γ = 1/(0.5 × 10−3) MHz
(the red-solid-dot line). Although the fidelity FT1 decreases
with the time due to the dissipation, it can be improved by
increasing the coherence time. When the coherence time T1

of the cavity is increased to 10 ms, the nearly unit fidelity
can be obtained (the magenta-dot-triangle line). Contrary to
the behavior of FT1 , which falls rapidly with time, F R

T c
2

can be
maintained at a high value even when the coherence time T1

is as short as 0.5 ms, which can be observed from Fig. 14(b).
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FIG. 14. (a) The fidelity FT1 as a function of time under different
dissipation rate γ . The initial state of the system is prepared in a
coherent state |α〉 with α = 0.1. (b) The fidelity F R

T c
2

as a function of
time under different dissipation rate γ . The initial state of the system
is prepared in a coherent state |ζ1〉 and the final state is |ζ2〉 with
ζ1 = 0.5 and ζ2 = 1.85. The other same parameters are: � = 2π ×
0.01 MHz, ω0 = �, ω = −2�, Ac = 0.8/�, n̄ = 0.0013, and χ =
2π × 0.016 MHz.
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FIG. 15. (a) Discrete Fourier transform of the fields for gen-
erating the Fock states |1〉 and |2〉 with the same parameters of
Fig. 1. (b) Discrete Fourier transform of the fields for generating the
superpositions of Fock states |T s

1 〉 and |s2〉 with the same parameters
of Fig. 4.

This means that the scheme is more robust against dissipation
for the generation of coherent states than for the generation of
Fock states. Recent experiments on circuit quantum electro-
dynamics systems have shown that these real parameters can
be obtained [81,85]. It has been shown by Xu et al. that the
strength of anharmonicity χ 
 2π × 0.016 MHz and the co-
herence time T1 
 0.5 ms are observed in the superconducting
cavity system [81].

In superconducting circuit experiments, the typical exter-
nal control (GHz-level Digital-Analog-Convertor) dependent
on the high-speed field programmable gate array (FPGA)
based signal generator running at 1 GHz and with a bandwidth
of 400 MHz is enough to generate the waveform for the
specific control fields [81–84]. However, for other systems,
such as optical cavities, it may be difficult to implement
the scheme due to the complex waveform of the designed
control fields. It can be seen from Figs. 1(b) and 1(d) that
the waveforms of the fields for generating Fock states |1〉 and
|2〉 are simple, but the fields for generating other nonclassical
states are relatively complex, such as the fields in Figs. 4(b)
and 4(e) for the generation of arbitrary superpositions of Fock
states. In Figs. 15(a) and 15(b), we plot the discrete Fourier
transform of the fields for generating the Fock states and the
superpositions of Fock states, respectively. It can be seen from
Fig. 15(a) that the field for generating Fock states only exists
one peak in the frequency domain, regardless of the symmetry.
While, many peaks exist for generating the superpositions
of Fock states, leading to a significant broadening of the
field spectrum, as seen from Fig. 15(b). We would like to
mention that the frequency of the signal for generating target
|2〉 is not twice as that for target |1〉, although the two states
are one- and two-photon states. This is a result of the fact
that the nonlinearity breaks the degeneracy of the oscillatory
energy-level spacings. Below, we present a brief discussion
on how to reduce the complexity of the waveform of the
control field.

As shown above, the control fields fk (t ) are designed based
on the condition of V̇ (t ) � 0, and it is clear that there are
many cases that satisfy the inequality. This kind of feature
provides us the possibility of designing much simpler fields.
For instance, based on Eq. (7), the waveform of the control
fields can be replaced by square pulses which satisfy the
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FIG. 16. (a) The fidelity F R
T c

2
and (b) The square pulse as a

function of time. The initial state of the system is prepared in a
coherent state |ζ1〉 and the final state is |ζ2〉 with ζ1 = 0.5 and
ζ2 = 1.85. The other same parameters are: � = 2π × 0.01 MHz,
ω0 = �, ω = −2�, n̄ = 0.0013, γ = 1/(10 × 10−3) Hz, and χ =
2π × 0.016 MHz. The control field with square pulse are removed
when the fidelity reaches 99%.

condition

fk (t ) =
⎧⎨
⎩

Fk, fk (t ) > 0
0, fk (t ) = 0

−Fk, fk (t ) < 0
(k = 1, 2, · · · K ), (19)

where Fk = max | fk (t )| is the maximum admissible strength
of conventional control fields fk (t ) in Eq. (7). This kind of
bang-bang Lyapunov control ensures V̇ (t ) � 0. The results
for generating |ζ2〉 by using the bang-bang Lyapunov control
with the real parameters are shown in Fig. 16. Again, we can
achieve the target coherent state |ζ2〉 with the square pulse.
In addition, we would like to point out that there are many
other unconventional Lyapunov control techniques, such as
the power-type and strength-type control laws [86], as well as
the switching Lyapunov control law [87]. The square pulses
in Eq. (19) belong to the strength-type control law, which
has been widely used in experiments [88,89]. Compared to
the waveform of the control field in Eq. (7), which varies
at each moment, the amplitude of the square pulses remains
unchanged. Thus, one can add a phase modulator to produce a
π -phase difference in the control field and employ a waveform
generator to make the value of the phase modulator meet the
shape of square pulses.

V. CONCLUSION

In conclusion, we have proposed a scheme to generate
various nonclassical states in nonlinear oscillator systems
by using a state-based Lyapunov control. These nonclassical
states are achieved by directly applying the customized ex-
ternal classical field to the nonlinear oscillator, which avoids
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the requirement of interposing a nonlinear driving system to
the resonator. We have shown that Fock states are achiev-
able without precise time operation, while the generation of
their superpositions requires a specific unitary transformation.
The power of the scheme was demonstrated by numerically
simulating the dynamics of the oscillator system and the
Wigner functions of the oscillatory mode. The relatively larger
energy gaps play an important role in the scheme, since
the nonlinearity makes frequencies of transitions between
adjacent oscillatory energy levels different, which is one of the
prerequisite conditions of the scheme. The simulation results
demonstrated that the scheme possesses the ability to generate
the nonclassical states even in the presence of field fluctuation.
In addition, we have shown that it is not necessary to prepare a
perfect coherent state for the scheme. Moreover, the feasibility
of the scheme with current experimental technology in super-

conducting systems has been discussed. To further simplify
the realization of the scheme for other quantum systems, we
have explored the possibility of replacing the control fields
with square pulses. Thus, the scheme may offer an alternative
way for the generation of nonclassical states in anharmonic
oscillator systems.
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[60] A. Imamoḡlu, H. Schmidt, G. Woods, and M. Deutsch, Phys.

Rev. Lett. 79, 1467 (1997).
[61] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A.

Clerk, and K. C. Schwab, Nature (London) 463, 72 (2010).
[62] J. D. Teufel, T. Donner, L. Dale, J. H. Harlow, M. S. Allman, K.

Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Nature (London) 475, 359 (2011).

[63] X. Wang, S. Vinjanampathy, F. W. Strauch, and K. Jacobs, Phys.
Rev. Lett. 107, 177204 (2011).

[64] H. W. Ch. Postma, I. Kozinsky, A. Hussian, and M. L. Roukes,
Appl. Phys. Lett. 86, 223105 (2005).

[65] I. Kozinsky, H. W. Ch. Postma, O. Kogan, A. Husain, and M. L.
Roukes, Phys. Rev. Lett. 99, 207201 (2007).

[66] P. D. Drummond and D. F. Walls, J. Phys. A 13, 725 (1980).
[67] L. Mandel and E. Wolf, Optical Coherence and Quantum

Optics, Chap. 22 (Cambridge University Press, Cambridge, UK,
1995).

[68] H. H. Adamyan, S. B. Manvelyan, and G. Y. Kryuchkyan, Phys.
Rev. A 63, 022102 (2001).

[69] H. H. Adamyan, S. B. Manvelyan, and G. Yu. Kryuchkyan,
Phys. Rev. E 64, 046219 (2001).

[70] G. Yu. Kryuchkyan and S. B. Manvelyan, Phys. Rev. Lett. 88,
094101 (2002); Phys. Rev. A 68, 013823 (2003).

[71] J. La Salle and S. Lefschetz, Stability by Lyapunov’s Direct
Method with Applications (Academic Press, New York, 1961).

[72] D. d’Alessandro, Introduction to Quantum Control and Dynam-
ics (CRC Press, Boca Raton, FL, 2007).

[73] D. Ran, W. J. Shan, Z. C. Shi, Z. B. Yang, J. Song, and Y. Xia,
Ann. Phys. 396, 44 (2018).

[74] Z. C. Shi, X. L. Zhao, and X. X. Yi, Phys. Rev. A 91, 032301
(2015).

[75] C. Shuang, Control of Quantum Systems: Theory and Methods
(Wiley, New York, 2014).

[76] Y. X. Zeng, T. Gebremariam, M. S. Ding, and C. Li, JOSA B
35, 2334 (2018).

[77] W. P. Schleich, Quantum Optics in Phase Space (Wiley, Berlin,
2001).

[78] S. M. Barnett and P. M. Radmore, Methods in Theoretical
Quantum Optics (Cambridge University Press, Cambridge, UK,
1997).

[79] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1999).

[80] W. Leon-acuteski, Phys. Rev. A 55, 3874 (1997).
[81] Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X.

Li, J. Han, H. Wang, Y. P. Song, Z.-B. Yang, S.-B. Zheng, and
L. Sun, Phys. Rev. Lett. 124, 120501 (2020).

[82] C. Deng, J. L. Orgiazzi, F. Shen, S. Ashhab, and A. Lupascu,
Phys. Rev. Lett. 115, 133601 (2015).

[83] W. Ning, X. J. Huang, P. R. Han, H. Li, H. Deng, Z. B. Yang,
Z. R. Zhong, Y. Xia, K. Xu, D. Zheng, and S. B. Zheng, Phys.
Rev. Lett. 123, 060502 (2019).

[84] Z. B. Yang, P. R. Han, X. J. Huang, W. Ning, H. Li, K. Xu, D.
Zheng, H. Fan, S. B. Zheng, arXiv:1909.03170v2.

[85] Y. Ma, Y. Xu, X. Mu, W. Cai, L. Hu, W. Wang, X. Pan, H. Wang,
Y. P. Song, C.-L. Zou, and L. Sun, Nat. Phys. 16, 827 (2020), .

[86] S. C. Hou, M. A. Khan, X. X. Yi, D. Dong, and Ian R. Petersen,
Phys. Rev. A 86, 022321 (2012).

[87] S. Kuang, D. Y. Dong, and Ian R. Petersen, Automatica 81, 164
(2017).

[88] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T.
Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschne, and
R. Blatt, Nature 422, 408 (2003).

[89] J. J. Morton, A. M. Tyryshkin, A. Ardavan, S. C. Benjamin, K.
Porfyrakis, S. A. Lyon, and G. A. D. Briggs, Nat. Phys. 2, 40
(2006).

022603-12

https://doi.org/10.1016/S1874-1029(09)60052-5
https://doi.org/10.1063/1.4884300
https://doi.org/10.1016/j.automatica.2007.05.013
https://doi.org/10.1103/PhysRevA.88.063823
https://doi.org/10.1103/PhysRevE.93.062221
https://doi.org/10.1142/S0217979216501770
https://doi.org/10.1103/PhysRevLett.112.223603
https://doi.org/10.1016/S1874-1029(13)60035-X
https://doi.org/10.1016/j.physleta.2014.01.008
https://doi.org/10.1142/S1230161216500050
https://doi.org/10.1109/JAS.2018.7511084
https://doi.org/10.1103/PhysRevA.80.052316
https://doi.org/10.1364/PRJ.8.000151
https://doi.org/10.1007/s11128-019-2470-8
https://doi.org/10.1103/PhysRevA.79.053828
https://doi.org/10.1103/PhysRevA.87.023809
https://doi.org/10.1103/PhysRevA.90.033831
https://doi.org/10.1080/09500349708231872
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1038/nature08681
https://doi.org/10.1038/nature10261
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1063/1.1929098
https://doi.org/10.1103/PhysRevLett.99.207201
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1103/PhysRevA.63.022102
https://doi.org/10.1103/PhysRevE.64.046219
https://doi.org/10.1103/PhysRevLett.88.094101
https://doi.org/10.1103/PhysRevA.68.013823
https://doi.org/10.1016/j.aop.2018.07.005
https://doi.org/10.1103/PhysRevA.91.032301
https://doi.org/10.1364/JOSAB.35.002334
https://doi.org/10.1103/PhysRevA.55.3874
https://doi.org/10.1103/PhysRevLett.124.120501
https://doi.org/10.1103/PhysRevLett.115.133601
https://doi.org/10.1103/PhysRevLett.123.060502
http://arxiv.org/abs/arXiv:1909.03170v2
https://doi.org/10.1038/s41567-020-0893-x
https://doi.org/10.1103/PhysRevA.86.022321
https://doi.org/10.1016/j.automatica.2017.02.041
https://doi.org/10.1038/nature01494
https://doi.org/10.1038/nphys192

