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Almost exact state transfer in a spin chain via pulse control
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Quantum communication through spin chains has been extensively investigated. In this scenario, state transfer
through linearly arranged spins connected by uniform nearest-neighbor couplings qualifies as a natural choice,
with minimal control requirements. However, quantum states usually cannot be perfectly transferred through
a uniformly coupled chain due to the dispersion of the chain. Here, we propose an effective quantum control
technique to realize almost exact state transfer (AEST) in a quantum spin chain. The strategy is to add a leakage
elimination operator Hamiltonian to the evolution, which implements a sequence of pulse control acting on a
perfect state transfer subspace. By using the one-component Feshbach PQ partitioning technique, we obtain the
conditions over the required pulses. AEST through a spin chain can then be obtained under a suitable pulse
intensity and duration.

DOI: 10.1103/PhysRevA.102.022601

I. INTRODUCTION

Accurate control of a quantum system is crucial for per-
forming quantum tasks [1,2], such as adiabatic quantum com-
puting [3,4], quantum thermodynamic processes [5,6], stable
energy transfer in quantum batteries [7–9], speedup of quan-
tum circuits [10,11], and acceleration of chemical reactions
[12], among others. In general, quantum control techniques
are employed to constrain quantum evolution towards a target
state or a target path [13]. In adiabatic quantum computation,
the system is slowly evolved to be maintained, with a high
probability, at the lowest-energy instantaneous eigenstate. In
order to speed up the adiabatic dynamics, shortcuts to adi-
abaticity can be implemented through counter-diabatic con-
trol fields [14–17]. Counter-diabatic transitionless driving has
been extensively realized. In particular, it has been applied to
speed up stimulated Raman adiabatic passage in a solid-state
lambda system [18] and in cold atoms [19]. More recently,
counter-diabatic fields have also been used to yield energy-
optimal shortcuts to adiabaticity in trapped ions [20] and to
accelerate quantum gates in nuclear magnetic resonance [21].

In the context of open system control, adiabatic speedup
has recently been implemented in non-Markovian evolution
through an effective set of pulses on the system [22]. In this
scenario, a relevant set of techniques is provided by dynamical
decoupling control, such as bang-bang (B-B) [23,24] and
leakage elimination operator (LEO) control [25]. B-B control
requires unbounded fast and strong pulses, while LEOs are
introduced to counteract leakage from a subsystem to the
rest of a multilevel Hilbert space [25–28]. In this case, only
a finite pulse intensity and time interval are required, since
the effectiveness of the control depends only on the integral
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of the pulse sequence in the time domain [29]. By adding
a LEO Hamiltonian to the adiabatic frame, the transitions
between different instantaneous eigenstates are restrained [30]
and the system undergoes the adiabatic passage. For a two-
level system, the LEO Hamiltonian in the adiabatic frame
is equivalent to adding a global pulse on the Hamiltonian
in the experimental frame [30]. This can be extended to the
open-system realm, where inverse engineering control can be
applied and a time-dependent Hamiltonian can be derived in
order to guide the system to attain an arbitrary target state at a
predefined time [31].

Quantum information processing tasks often require the
active transmission of a quantum state over relatively short
distances [32]. Spin chains can serve as a suitable communi-
cation channel in these cases. In fact, reliable quantum state
transfer through a spin chain has been extensively studied
[33–37]. It was Bose who first suggested the use of an
unmodulated spin chain as a channel for quantum information
transfer [33]. However, in most situations, this method does
not allow for perfect state transfer (PST). The fidelity will
decrease quickly with increasing length of the chain. Thus, a
number of schemes have been proposed to improve the trans-
mission fidelity, such as by using a single local on-off switch
actuator [38], a suitable sequence of two-qubit gates at the
end of the chain [39], optimal control of an external parabolic
magnetic field [40], and optimal state encoding [37]. More
recently, the fastest transmission speed while maintaining
high fidelities has been achieved by reinforcement learning
in a spin chain [41].

The experimental platforms to realize spin systems include
trapped ions [42], ultracold atoms in optical lattices [43],
quantum dots [44], etc. For some physical systems, such
as ultracold atoms in optical lattices, the required couplings
between different sites can be created [45]. Engineering spe-
cial couplings between neighbor sites can realize PST [46] or
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near-PST [45,47,48]. Then a PST or near-PST trajectory can
be obtained. For some other systems, it might be inconvenient
to create the designed couplings. Here, we aim at creating a
LEO Hamiltonian by using either PST or near-PST trajecto-
ries to realize almost exact state transfer (AEST), being able
to drive quantum communication through a set of pulses over
a uniform spin chain. By using the Feshbach PQ partition
technique [49], we obtain the conditions to be obeyed by the
required pulses, which are provided by the pulse intensity,
pulse interval, and total evolution time. Throughout this anal-
ysis, we consider various pulse patterns, including rectangular
pulses and the sine function. Especially, we use the so-called
zero-energy-change pulse, in which the total integration is 0 in
one period. In addition, we show that the pulse control scheme
used in Refs. [22] and [30] to speed up adiabatic processes can
be generalized to the quantum communication domain.

II. CONSTRUCTION OF THE LEO HAMILTONIAN

Define a complete orthonormal basis |�n(0)〉,
〈�m(0)|�n(0)〉 = δmn. Suppose there exists a complete
orthonormal basis |�n(t )〉, 〈�m(t )|�n(t )〉 = δmn(t ), and a
one-to-one correspondence between state |�n(0)〉 and state
|�n(t )〉. For example, |�n(t )〉 could be the instantaneous
eigenstates of a time-dependent Hamiltonian H (t ). Our target
problem is to drive the system along the |�1(t )〉 passage
within a finite time with a high probability.

The LEO Hamiltonian can be constructed as

HLEO(t ) = c(t )|�1(t )〉〈�1(t )|, (1)

where c(t ) is the external control function that describes a
sequence of control pulses. LEOs can be used to reduce
errors from an encoded subspace |�1(t )〉〈�1(t )| to the rest
of the system’s subspace, whether the pulses are ideal [49] or
nonideal [50,51]. The total Hamiltonian is then

H (t ) = H0 + HLEO(t ), (2)

where H0 is the original Hamiltonian of the system, e.g., the
local Hamiltonian of a uniform spin chain.

III. ONE-COMPONENT DYNAMICAL EQUATION

Given a time-dependent Hamiltonian H (t ), the system
dynamics is governed by its corresponding Schrödinger
equation,

i|�̇(t )〉 = H (t )|�(t )〉, (3)

with the overdot denoting the time derivative and h̄ = 1
throughout the paper. The state vector |�(t )〉 can be expanded
in terms of the time-dependent basis {|�n(t )〉}, which reads

|�(t )〉 =
∑

n
an(t )|�n(t )〉, (4)

where an(t ) denotes a complex amplitude probability. Substi-
tuting Eq. (4) in Eq. (3), we obtain

iȧn =
∑

m

[〈�n|H (t )|�m〉 − i〈�n|�̇m〉]am. (5)

Equation (5) can be rearranged in vector form, with the left-
hand side written as |�(t )〉 = [a1, a2, . . . ]′ and the right-hand-

side given in terms of the effective Hamiltonian

Hn,m(t ) = 〈�n|H (t )|�m〉 − i〈�n|�̇m〉. (6)

To trace the footprint of |�1(t )〉, one needs to find an exact
one-component dynamical equation for a1. The Feshbach PQ
partitioning technique provides an effective approach to solve
this problem (see, e.g., Ref. [52]).

Using the PQ partitioning, the n-dimensional state vector
|�(t )〉 can be divided into two parts: a one-dimensional vector
of interest, P(t ), and an (n − 1)–dimensional vector, Q(t ). The
Hamiltonian can be split into three contributions,

H (t ) = HP(t ) + HQ(t ) + HL(t ), (7)

with HP(t ) and HQ(t ) acting on the subspaces defined by P(t )
and Q(t ), respectively, and HL(t ) representing the remaining
off-diagonal contributions. The state vector |�(t )〉 and the
matrix representation of the Hamiltonian H (t ) can then be
written as

|�(t )〉 =
[

P(t )
Q(t )

]
, H (t ) =

[
h(t ) R(t )

W (t ) D(t )

]
, (8)

where the 1 × 1 matrix h(t ) and (n − 1) × (n − 1) matrix
D(t ) are the self-Hamiltonians in the subspaces of P(t ) and
Q(t ), respectively, while the off-diagonal contributions R(t )
and W (t ) denote 1 × (n − 1) and (n − 1) × 1 matrices, re-
spectively. Let the component p(t ) associated with the one-
dimensional contribution P(t ) be written as

p(t ) = exp

[
− i

∫ t

0
h(s′)ds′

]
P(t ). (9)

In the selected one-dimensional subspace, the projected
Schrödinger equation (see, e.g., Ref. [52]) will imply that p(t )
satisfies

ṗ(t ) =
∫ t

0
g̃(t, s)p(s)ds, (10)

where g̃(t, s) is the propagator given by

g̃(t, s) = −g(t, s) exp

[
− i

∫ t

s
h(s′)ds′

]
, (11)

with g(t, s) = R(t )G(t, s)W (s),

G(t, s) = �←{exp[−i
∫ t

s
D(s′)ds′]}, (12)

and �← denoting the time-ordering operator. Specifically,

ṗ(t ) = −
∫ t

0
g(t, s)e−i

∫ t
s h(s′ )ds′

p(s)ds. (13)

IV. PULSE CONTROL CONDITIONS

If ṗ(t ) = 0, the system will be kept in the subspace
|�1(t )〉〈�1(t )|. By adding a control Hamiltonian HLEO(t )
whose control strength is large enough, we have that c(s) will
dominate the exponential term for h(s) in Eq. (13). Moreover,
a strong control function c(s) will ensure that g(t, s)p(s) varies
slowly compared with exp[−i

∫ t
s c(s′)ds′]. Therefore, Eq. (13)

can be simplified to∫ τ

0
ds exp

[
−i

∫ s

0
c(s′)ds′

]
= 0, (14)

where τ corresponds to a single control time interval.
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Here as an example we consider two types of periodic
control: rectangular pulses and the sine function. First, for
rectangular pulses, the control function can be taken as

c(t ) =
{

I,
−I

nτ < t < (n + 1)τ, for n even,

otherwise, (15)

where I represents the control strength and τ is the running
time for applying a single (either positive or negative) pulse.
Note that c(t ) can be realized by a sequence of fast pulses
through an arbitrary physical setup. Inserting Eq. (15) into
Eq. (14), we obtain [53]

Iτ = 2πm for m = 1, 2, 3, . . . . (16)

If the rectangular control pulses satisfy the above conditions,
the transition from state |�1(t )〉 to other states will be re-
strained. For the sine function, we have

c(t ) = I sin(ωt ). (17)

Equation (14) is equivalent to∫ τ

0
ds exp[

iI

ω
cos(ωs)] = 0. (18)

Let ωτ = π . Then Eq. (18) becomes

J0(Iτ/π ) = 0, (19)

where J0(x) is the zero-order Bessel function of the first kind.

V. AEST UNDER LEO CONTROL IN SPIN CHAINS

Now we show that, by choosing an appropriate LEO
Hamiltonian, AEST can be realized with a high fidelity. We
consider the communication channel as a one-dimensional XY
spin chain whose Hamiltonian reads

H =
N−1∑
i=1

Ji,i+1(σ x
i σ x

i+1 + σ
y
i σ

y
i+1), (20)

where Ji,i+1 is the coupling constant between nearest-neighbor
sites, and σ k

i (k = x, y) are Pauli operators acting on the spin
at site i. For a uniformly coupled chain, the Hamiltonian H
can be represented by HUNI, with Ji,i+1 = J a constant. For
simplicity, we take J = 1.

As an example, we can transfer state |1〉 from one end
of the chain to the other end. Initially all the other spins are
in state |0〉. The initial state of the system is then |10..0〉 =
|�1〉. Here we use |�n〉 to denote that the nth spin is in
the up state, while all the other spins are in the down state.
Define the fidelity as F (t ) = √〈�N |ρ(t )|�N 〉, where ρ(t ) is
the instantaneous density operator of the system. The fidelity
will decrease quickly with an increase in the length N of the
chain in a uniform chain [33].

Our aim is then to provide a robust AEST scheme through
a uniform chain by adding a LEO Hamiltonian. This will be
achieved by considering two types of spin-chain Hamiltonians
in Eq. (20): (i) PST couplings Ji,i+1 = √

i(N − i) (HPST) and
(ii) weak couplings J1,2 = JN−1,N = J0 and Ji,i+1 = J else-
where, with J0 � J (HWC). By directly realizing state transfer
through the XY spin chain driven by PST couplings, at time
t = kπ/2 (k is an integer), we have that PST occurs, with state
|1〉 being perfectly transferred from the first site to the last

[46]. Similarly, for the spin chain driven by weak couplings,
AEST can also be realized [45,47,48].

In order to implement AEST with LEO control, we take the
complete orthonormal basis as

|�n(t )〉 = V (t )|�n〉, (21)

where V (t ) = exp(−iHjt ) ( j = PST or WC). Clearly
〈�m(t ) | �n(t )〉 = δmn and we will satisfy the one-to-one
relationship between |�n(t )〉 and |�n〉. In what follows, we
consider the AEST in a uniform chain.

Suppose the orthonormal time-dependent vector basis
{|�n(t )〉} is generated by HPST. The Hamiltonian HUNI can
then be written in the basis {|�n(t )〉}, with matrix elements
reading

Hjn(t ) = 〈� j (t )|HUNI|�n(t )〉 − i〈� j (t )| |�̇n(t )〉

=
N−1∑
k=1

[ f ∗
k, j (t ) fk+1,n(t ) − fk,n(t ) f ∗

k+1, j (t )]

−
√

n(N − n)(δn, j+1 + δn+1, j ), (22)

where

fk,n(t ) = exp[i
π

2
(k − n)]dl

m′,m(t ). (23)

Here dl
m′m(t ) is the Wigner d matrix [54]. As in Refs.

[34] and [36], the indices of the site number of a one-
dimensional chain can be mapped into the magnetic quantum
numbers m of the total angular momentum l , such that l =
(N − 1)/2, m = −l + k − 1, . . . ,+l , and m′ = −l + n −
1, . . . ,+l , with k, n = 1, 2, . . . , N . The off-diagonal terms in
the above matrix are responsible for the transition between
different passages. Observe then that the LEO Hamiltonian
can be added to the diagonal term, e.g., H1,1, so that the state
is kept at |�1(t )〉.

VI. DISCUSSION

First, let us take PST couplings in Eq. (21), namely, V (t ) =
exp[−iHPSTt]. We then plot the fidelity F as a function of the
normalized time t/T in Fig. 1(a), where the density operator
is exactly obtained through the solution of the time-dependent
Schödinger equation. For either rectangular pulses or the sine
function, the total evolution time is taken as T = π/2. For
rectangular pulses, we take the amplitude as I = 40 and the
time period as τ = π/20 according to Eq. (16), while for the
sine function, we take I = 80 and τ = 2.405π/80, according
to Eq. (19). We analyze chains with lengths N = 5, 20. Note
that, from t = 0 to t = T , F increases from 0 to nearly unity
for both kinds of pulses and independently of N . Then, at time
t = T , AEST can be realized with a high fidelity.

In Fig. 1(b) we plot F (t = π/2) as a function of τ . The
fidelity F initially increases as we increase τ and then it
shows an oscillating behavior. These two curves have peaks
for certain periods τ . The parameters are set as T = π/2,
I = 50, and N = 10. For rectangular pulses, the peaks corre-
spond to τ = (2, 4, 6, 8, . . . )π/I . For the sine function, they
are τ = xπ/I , x = 2.405, 5.520, 8.654, . . . . The parameters
x are taken as the zeros of the Bessel function J0(x) of the first
kind. It is noteworthy that the values of τ satisfy Eqs. (16)
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FIG. 1. Fidelity for AEST under LEO control with PST cou-
plings. We adopted T = π/2. (a) Fidelity F as a function of the
normalized time t/T for either rectangular pulses or the sine func-
tion. For rectangular pulses, we used I = 40 and τ = π/20. For the
sinusoidal case, we used I = 80 and τ = 2.405π/80. (b) Fidelity
F (T = π/2) as a function of the control time interval τ for either
rectangular pulses or the sine function. For both cases, we used
I = 50 and N = 10. Note that the peak of F occurs at Iτ = 2mπ ,
m = 1, 2, 3, . . . , for rectangular pulses and at Iτ = xπ , with x =
2.405, 5.520, . . . , for the sine function. The value of x is the zero
point of the Bessel function of the first kind, J0(x).

and (19), in agreement with the theoretical prediction by the
Feshbach PQ partitioning technique. Let us now suppose that
the LEO control is generated by the weak-coupling Hamil-
tonian V (t ) = exp[−iHWCt]. In Figs. 2(a) and 2(b), we then
plot the fidelity F versus the normalized time t/T for either
rectangular pulses or the sine function. We consider chains
with lengths N = 20, 30, and 40. The evolution time is T =
210π . For both kinds of pulses, AEST (F = 0.999) can be
obtained at time T by effective pulse control. For rectangular
pulses, we used I = 60 and τ = π/30, which satisfy Eq. (16).
For the sine function, we used I = 120 and τ = 2.405π/I .
This is the first 0 value of the Bessel function of the first kind
J0(x). Note that Fig. 2 again illustrates the effectiveness of

FIG. 2. Fidelity of AEST under LEO control with WC couplings.
We adopted T = 210π . The fidelity F is plotted as a function of the
normalized time t/T for different kinds of pulses and chain sizes
N . (a) Rectangular pulses. We used I = 60 and τ = π/30. (b) Sine
function. We used I = 120 and τ = 2.405π/120.

the pulse control scheme, with the only requirement being
the adoption of a LEO Hamiltonian implementing PST or
near-PST passage.

The pulses we have used in the above discussion are finite
and continuous, i.e., at any time the pulses are present on
the chain even though they alternate their directions. This
can be regarded as a limit case. The opposite (second) limit
is to utilize a discontinuous and strong pulse sequence, such
as B-B kicks (pulses) c(t ) = π

∑
i(−1)iδ(t − τi ) [53]. As in

the first limit case, again we can use the zero-energy-change
pulse. Two consecutive B-B pulses take positive and negative
values, respectively. We point out that this case is equivalent
to the case where all the negative pulses become positive
[53]. This result can be easily verified by inserting the pulse
function c(t ) = ±I into Eq. (14) and using exp(±iIτ ) = 1.
In the numerical calculation we use rectangular pulses and
a LEO Hamiltonian with PST coupling to simulate the δ-
function pulse. Again, the total evolution time is taken as
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FIG. 3. Fidelity of AEST under B-B pulse control with PST
couplings for different values of N . We adopted T = π/2. The
pulses are present at τ/50 and otherwise absent in the time interval
τ = π/120. The integration in τ satisfies Iτ = π .

T = π/2. For a continuous pulse, we take I = 120 and τ =
π/120. Now we use c(t ) = 50I for nτ < t < (n + 1/50)τ
(odd n), c(t ) = −50I for nτ < t < (n + 1/50)τ (even n), and
c(t ) = 0 otherwise. Note that, for the above choice of c(t ),
the integration still satisfies

∫ τ

0 c(s)ds = π in the time interval
τ . Even though I 	 J , c(t ) oscillates in the range [−I, I].
It is worth emphasizing that the second limit is experimen-
tally feasible, e.g., using dynamical-decoupling techniques to
moderate the dephasing effects of low-frequency noise on a
superconducting qubit [55]. In Fig. 3, we plot the fidelity F
versus the normalized time t/T for the simulated B-B pulses.
We consider chains with lengths N = 10, 20, 30, and 40. The
results again show that the simulated B-B pulses are effective
to realize AEST in a uniform chain.

From the experimental point of view, let us now discuss
how to apply the control. In this direction, we have to write the
LEO Hamiltonian HLEO(t ) in the laboratory frame, e.g., in a
single excitation subspace with basis |�n〉 (n = 1, 2, . . . , N).
The matrix element reads

H j,n
LEO(t ) = c(t )ei π

2 (n− j)d∗l
−l+ j−1,−l (t )dl

−l+ j−1,−l (t ), (24)

where dl
−l+ j−1,−l (t ) is the above-mentioned Wigner d matrix,

l = (N − 1)/2, and j(n) = 1, 2, . . . , N . For example, when
j = n = 1, H1,1

LEO(t ) = c(t )(cos(t/2))N−1. First, for the spin-
chain model, it can be implemented experimentally by ultra-
cold atoms in optical lattices [56,57]. The model corresponds
to the hard-core boson limit of the Bose-Hubbard Hamiltonian
for spinless bosons, and a spin 1/2 variable can be encoded

as the presence or absence of a boson at each site [58].
The LEO Hamiltonian can be realized by an external laser
beam [56]. Furthermore, the total Hamiltonian could even be
simulated by a spatial light modulator technology [59–61],
which, in principle, allows the design of arbitrary potentials
for ultracold atoms [62].

VII. CONCLUSIONS

High-fidelity quantum state transfer through spin chains
is a powerful tool for performing short-distance quantum
communication in a quantum network. We have introduced an
effective pulse control scheme to realize AEST in a uniform
chain by adding a LEO Hamiltonian to the evolution. The
LEO Hamiltonian can be represented by a sequence of pulses
acting on (near-) PST subspaces. By using the Feshbach PQ
partitioning technique, we obtained the conditions over the
pulses to allow AEST, which prevent transitions from the
target state to other undesired states. As an example, we il-
lustrated two kinds of pulses in the XY spin chain: rectangular
pulses and the sine function. For both pulses, the relation of
the pulse intensity and its duration is obtained. Numerical
analysis explicitly shows that, once the pulse satisfies the
required condition, AEST can be successfully obtained in a
uniform chain setup. In a real scenario for a quantum state
transfer task, the communication channel will be naturally
immersed in a noisy environment (see, e.g., Ref. [63]). Typ-
ically, the interactions between the spins and the phonons of
the lattice will induce decoherence effects, such as dephasing
and energy relaxation. As a result, the transmission fidelity is
expected to smoothly decrease in the weak-coupling regime.
A detailed analysis of state transfer under effective pulse
control in a noisy environment is left for a future work.
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