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High quality, fully programmable quantum processors are available with small numbers (<1000) of qubits, and
the scientific potential of these near-term machines is not well understood. If the small number of physical qubits
precludes practical quantum error correction, how can these error-susceptible processors be used to perform
useful tasks? We present a strategy for developing quantum error detection for certain gate imperfections that
utilizes additional internal states and does not require additional physical qubits. Examples for adding error
detection are provided for a universal gate set in the trapped-ion platform. Error detection can be used to certify
individual gate operations against certain errors, and the irreversible nature of the detection allows a result of a
complex computation to be checked at the end for error flags.
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For the near-term future, it is likely that the quantum
information processors that become available will be capable
of running intermediate-scale algorithms in the presence of
multiple (possibly numerous) errors [1]. For beyond-classical
computations in this paradigm, the result reported by the
quantum computer is almost guaranteed to be wrong, and the
recent observation of quantum advantage by the Google group
[2] was made possible only by arguing that, after repeating the
algorithm many times, the algorithmic error probability could
be made statistically distinguishable from 1. For algorithms
where the result can be tested directly for correctness (such as
Shor’s factoring algorithm [3]), this may be useful, at least
up to the point where the ratio of the runtime-to-success
probability exceeds practical timescales. However, for many
applications of quantum computers (such as the sampling
problem used to demonstrate quantum advantage, and much
of quantum simulation), the user has very little idea which
results are the trustworthy ones, potentially rendering any
purported quantum advantage effectively useless. Quantum
advantage is likely necessary, but not generally sufficient, to
realize quantum utility beyond classical machines.

Here, following recent work that demonstrated a related
technique to herald and suppress asymmetric leakage of pop-
ulation from the qubit subspace [4], we consider the issue
of how to deal with errors in quantum processors caused by
imperfections in the applied gates. While the techniques we
outline below are applicable to other hardware platforms, we
present them in the context of trapped-ion hyperfine qubits,
which are effectively free of errors outside of those caused by
the gates themselves. In particular, since frequency stability
is typically easier to distribute, assess, and achieve than am-
plitude stability, errors caused by frequency drifts are usually
unlikely compared with errors in the areas of pulses applied to
perform gates, and we therefore focus primarily on amplitude
errors. Composite pulse sequences [5] can be used to suppress
amplitude (and frequency) errors that are common mode for
the duration of a composite pulse sequence but do not perform

well against correlated errors that are not constant during the
sequence, such as amplitude drifts from amplifier temperature
changes or laser intensity noise. Far from being exotic or
implausibly insidious, these types of amplitude-drift errors,
which degrade the protection afforded by composite pulse
sequences, have posed obstacles for a number of experiments
working at the forefront of fidelity [6–8].

In this paper, we present a strategy for designing certifiable
gates that uses auxiliary states in each qubit host and does
not require additional physical qubits. The larger Hilbert space
afforded by including ancillary states allows us to restructure
a gate as a series of population-transfer steps that are each
followed by dissipation of the error state through coupling
to a bath or detector. Specifically, each step is designed as a
rotation from the initial state |ψn〉 to an orthogonal target state
|ψn+1〉. By choosing |ψn〉 and |ψn+1〉 to reside in orthogonal
Hilbert spaces, this rotation can be attempted and certified
without acquiring knowledge of the information encoded in
either state. If the execution of this rotation is imperfect due
to an error in the degree of the rotation (i.e., the amplitude),
the system will be left in |φn+1〉 ≈ |ψn+1〉 + ε|ψn〉, and sub-
sequent detection that the system is not in the error state
|ψn〉 certifies the step against the rotation error. Since the
dissipative detection step is irreversible, testing for errors can
be done either during the computation or at the end, and
checking a result for error flags can serve as a limited test
of the trustworthiness of the result.

We begin with an example that illustrates the main idea
in the form of arbitrary single-qubit gates that the user can
certify against single-pulse amplitude errors. Examples of
how to certify against errors in multiqubit contexts such as
addressing errors and two-qubit entangling gate errors are
also presented, demonstrating that a complete set of gates
for universal quantum computing can be augmented with
certification against some classes of errors.

We consider a system consisting of a qubit (|0〉 and |1〉) and
two additional long-lived auxiliary states |A(+)〉 and |A(−)〉 that
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FIG. 1. Example 2F o
7/2 state encoding of the qubit and auxiliary

states in 171Yb+. For storage, the qubit can be encoded in the two
clock states and then transferred to and from this arrangement before
and after gates. All four transitions are within Zeeman shifts of the
zero-field hyperfine splitting of 3.602(2) GHz [9].

can each be coupled to both qubit states via resonant radiation.
For concreteness, we suppose that the qubit and auxiliary
states are encoded in Zeeman sublevels of the effectively
stable 2F o

7/2 state of 171Yb+, shown in Fig. 1. The qubit states
can be defined as |0〉 ≡ |F, MF 〉 = |3, 0〉 and |1〉 ≡ |3, 1〉,
and the auxiliary states as |A(+)〉 ≡ |4, 0〉 and |A(−)〉 ≡ |4, 1〉.
A stable, static magnetic field provides the qubit splitting,
and the qubit and auxiliary manifolds are separated by the
2F o

7/2 hyperfine splitting (≈3.6 GHz; we refer to the cou-
pling fields as microwaves). Furthermore, we require that
the system possess a means by which projective quantum
measurement can be performed selectively for population in
each of these two manifolds. In this example, detection can
be effected by hyperfine-selective transfer to the ground 2S1/2

state via optical pumping at λ = 760 nm on 1[3/2]o
3/2 ← 2F o

7/2,
followed by spontaneous emission on 1[3/2]o

3/2 � 2S1/2. We
have confirmed experimentally that this measurement can be
accomplished in a few milliseconds with greater than 95%
hyperfine manifold selectivity [10], and the theoretical limit
is greater than 1 − 10−5.

Without loss of generality, we adopt a state vector descrip-
tion of the gate operation for clarity. Before we describe the
certified gate protocol, we can consider the action of a general,
unitary, single-qubit gate U (n̂,�) ≡ exp(−i� n̂ · σ/2) on an
arbitrary pure input state |ψ0〉 ≡ α|0〉 + β|1〉. If we rewrite
the initial state in the basis of |±n〉 (the ± eigenvectors of
n̂ · σ), we have

|ψ0〉 = c(+)|+n〉 + c(−)|−n〉, (1)

where c(±) ≡ 〈±n|ψ0〉. The states |±n〉 can likewise be writ-
ten in terms of the polar (θ ) and azimuthal (φ) angles of n̂ on
the Bloch sphere as

|+n〉 = cos

(
θ

2

)
|0〉 + ei φ sin

(
θ

2

)
|1〉,

|−n〉 = sin

(
θ

2

)
|0〉 − ei φ cos

(
θ

2

)
|1〉. (2)

This choice of basis simplifies the expression describing the
effect of the gate to

U (n̂,�)|ψ0〉 = e−i �
2 c(+)|+n〉 + ei �

2 c(−)|−n〉. (3)

For a certifiable version of the gate U (n̂,�), first, a mi-
crowave pulse with four simultaneous tones ( fi, see Fig. 1)
transfers (ideally all) the population from the qubit states to
the auxiliary states according to |±n〉 → |A(±)〉. Each of the
|±n〉 basis states is paired with only one of the auxiliary states
|A(±)〉 by two of the four tones fi and acts as a coherent
dark state with respect to the other two. The relative phases
ϕ12 and ϕ34 and Rabi frequencies �i chosen for the four
frequencies depend only on the angles used to describe n̂,
φ, and θ [respectively, see Eq. (2)]. Specifically, ϕ12 = ϕ34 −
π = φ, �1 = �4 = � cos(θ/2), and �2 = �3 = � sin(θ/2).
In the rotating frame with respect to the four splittings, the
interaction Hamiltonian is

H = |A(+)〉
(

�1

2
〈0| + �2

2
e−i φ〈1|

)

+ |A(−)〉
(

�3

2
〈0| + �4

2
e−i (φ+π )〈1|

)
+ H.c. (4)

= �

2

(|A(+)〉〈+n| + |A(−)〉〈−n| + H.c.
)
, (5)

where we assume the splittings are such that the four frequen-
cies are nondegenerate.

Since these four sinusoids can be generated by a single
synthesizer (for instance, a digital arbitrary waveform gener-
ator utilizing a single voltage reference) and can be made to
share a single transmission system, amplifier chain, antenna,
etc., we consider the case in which the amplitude error of this
step is a fractional amplitude error that is shared by all four
coupling terms. Since we seek full transfer from the qubit
manifold to the auxiliary manifold, we represent the pulse area
as

∫
dt� = π + δπn, where δπn is the result of an amplitude

error for the nth step of the gate. We can write the state of the
system after the (possibly imperfect) transfer as

|φ1〉 = −i cos

(
δπ1

2

)
(c(+)|A(+)〉 + c(−)|A(−)〉)

− sin

(
δπ1

2

)
|ψ0〉, (6)

which is in the desired form for error detection,

|φn+1〉 =
√

1 − |ε|2 |ψn+1〉 + ε|ψn〉, (7)

if we identify the error as ε = − sin(δπ1/2).
Next, any population left in the qubit manifold (|0〉 and

|1〉, see Fig. 1) is dissipatively transferred to 2S1/2 via optical
pumping. This “clean out” process will be accompanied by
subsequent fluorescence detection of ground-state population
at some point—right away or potentially even up until the
very end of an algorithm. If the ion is queried immediately,
it will yield fluorescence (a “bright-state ion”) with small
probability sin2(δπ1/2). If the ion is not in the bright state,
the dissipative process has completed the successful transfer
of all qubit population to the auxiliary manifold, yielding the
desired target state free of that error, |ψ1〉 = −i(c(+)|A(+)〉 +
c(−)|A(−)〉).

For the third step, a second pulse with the same four
tones is applied to transfer (ideally all) the population from
the auxiliary manifold back to the qubit manifold. The only
difference between the waveform for the first and second
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pulses is that a common phase shift π − �/2 is added to tones
f1 and f2 only, and a common phase shift of π + �/2 is added
to tones f3 and f4 only. Again keeping track of a potential
(possibly different) amplitude error that gives rise to finite δπ2

in the nominal π pulse, the system is left in

|φ2〉 = cos

(
δπ2

2

)(
e−i �

2 c(+)|+n〉 + ei �
2 c(−)|−n〉)

− sin

(
δπ2

2

)
|ψ1〉, (8)

which is in form (7) for ε = − sin(δπ2/2).
As the final step, any population left in the auxiliary mani-

fold (|A(±)〉, viz. |ψ1〉) is optically pumped to the ground state,
either yielding a bright state (with probability sin2(δπ2/2)) or
completing the transfer to produce

|ψ2〉 = U (n̂,�)|ψ0〉 = e−i �
2 c(+)|+n〉 + ei �

2 c(−)|−n〉, (9)

the ideal gate with no contribution from the amplitude errors.
The gate protocol above provides a means for certifying the

operation against fractional amplitude errors that are shared
by the four tones in either of the two pulses. With respect
to this error model, whether we check for a bright state
immediately or delay the flag query, the dissipative transfer
of leftover population to the bright state either leaves the ion
in the bright state or accomplishes errorless operation of the
gate. The overall probability of error-free operation is [1 −
sin2(δπ1/2)][1 − sin2(δπ2/2)] ≈ 1 − 2(δπ/2)2 (where δπ is
an average error during this sequence) and for uncorrelated
errors, the overall error probability is

√
2 larger than the case

without the out-coupling for error detection [≈√
2(δπ/2)2].

For single, isolated gates, this accomplishes no error correc-
tion, but the error detection can be used as a means to select
instances that are trustworthy against this type of error. For
instance, the high-quality rotations that are required to per-
form quantum state or process tomography could be certified
against conflating errors in the state or process with this type
of error introduced by the tomography process. Perhaps more
importantly, more trustworthy NISQ-era [1] computational
results can be sorted from those that are flagged by this
process as containing errors, which may prove a useful way
to assess the confidence of a result.

The gate certification idea above is also extendable to
multiqubit gates and other types of errors. Next, we consider
two examples of particularly troublesome error sources in the
trapped ion platform: qubit addressing errors, and errors in
two-qubit entangling gates.

For trapped ions with hyperfine qubits, an addressed
single-qubit gate can be driven by a focused laser beam where
the “microwave” signals are actually in optical beat notes that
drive stimulated Raman transitions. If the first step of the
certified single-qubit gate described earlier is applied to ion j
by one such laser beam, there can be a non-negligible amount
of light that illuminates neighboring ions and moves a small
amount of their qubit populations to their auxiliary manifolds.
To deal with this, the optical pumping beam addressed to ion
j can be augmented by a series of optical pumping beams
on the neighboring ions (or further) that are tuned to clean
out those ions’ auxiliary manifolds. This will either flag an
addressing error by producing a bright state, or, more likely,

undo any errant transfer from imperfect addressing by the
stimulated Raman beam. The same process can then be ap-
plied for the second half of the gate being run on ion j, except
that now the clean out will have all optical pumping beams
(including j) set to clean out the auxiliary manifolds. Ad-
dressing errors of the optical pumping beams themselves are
still possible in the first half of the gate, but these will also
be flagged by the appearance of a bright state. A lack of
bright-state qubits, therefore, certifies the gate against both
Raman beam and optical pumping beam addressing errors—if
all ions are found to be dark, these addressing errors have been
eliminated.

For multiqubit gates, we choose as an example the Cirac-
Zoller (CZ) gate [11] since it maps easily onto a series
of discrete population transfer steps. We consider two ions
(m and n) in arbitrary initial qubit states and one motional
mode of frequency ν prepared in its ground state. Frequency
selectivity can be used to drive “carrier” (σ+ + σ−), “red
sideband” (aσ+ + a†σ−), or “blue sideband” (a†σ+ + aσ−)
transitions, where σ± and a†, a are the atomic and motional
raising and lowering operators, respectively. To be consistent
with the original proposal by Cirac and Zoller and to avoid
confusion with motional Fock state labels, we adopt |em/n〉
and |gm/n〉 as the notation for the qubit states.

A certifiable version of the CZ gate proceeds in four trans-
fers, shown in Fig. 2. We start with an initial (possibly entan-
gled) state |ψ0〉 = (cee|em, en〉 + cge|gm, en〉 + ceg|em, gn〉 +
cgg|gm, gn〉) ⊗ |0〉. First, two simultaneous tones (on a non-
copropagating stimulated Raman beam) are applied to only
ion m such that f1 + ν transfers |em, 0〉 → |A(+)

m , 1〉 (i.e., on
a blue sideband) and f4 drives |gm, 0〉 → |A(−)

m , 0〉 (carrier).
This is followed by hyperfine-resolved optical pumping of
any residual population in qubit manifold of ion m to 2S1/2.
If ion m is not found in the bright state after this process [the
probability of which is 1 − sin2(δπ1/2)], the system will be
left in the state

|ψ1〉 = −i(cee|A(+)
m , en, 1〉 + ceg|A(+)

m , gn, 1〉
+ cge|A(−)

m , en, 0〉 + cgg|A(−)
m , gn, 0〉). (10)

Second, three frequencies will be applied simultaneously
and individually addressed as follows: Ion m will be driven
with f4 to transfer |A(−)

m , 0〉 → |gm, 0〉, while f1 − ν and f4 −
ν are applied to ion n to drive sidebands |en, 1〉 → |A(+)

n , 0〉
and |gn, 1〉 → |A(−)

n , 0〉. After this transfer, assuming it is
imperfectly executed due to a pulse area error shared by all
three tones, the system is in the state

|φ2〉 = cos

(
δπ2

2

)
|ψ2〉 − sin

(
δπ2

2

)
|ψ1〉, (11)

where

|ψ2〉 ≡ −(cgg|gm, gn〉 + cge|gm, en〉
+ ceg|A(+)

m , A(−)
n 〉 + cee|A(+)

m , A(+)
n 〉) ⊗ |0〉, (12)

and which is in form (7) with ε = − sin(δπ2/2).
At this point, the residual populations that need to be opti-

cally pumped to the ground state (|A(−)
m , 0〉, |gn, 1〉, and |en, 1〉)

are close in energy to populated levels. If the resolution of
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FIG. 2. Protocol for a certified Cirac-Zoller entangling gate be-
tween ion m (left) and ion n (right). The top panel shows the
first transfer, which would be followed by optical pumping of any
remaining population in the qubit manifold of ion m. The second
transfer is shown in the bottom panel, which would also be followed
by state-selective optical pumping of leftover population to the 2S1/2

state. Transfer three is the reverse of the lower panel (with a phase
shift of π added to f1 − ν), and transfer four is the reverse of the
upper panel.

the optical pumping step is sufficient for this, they can be
cleaned out directly; if not, a multistep transfer-then-pump
process involving additional resolvable auxiliary states may
be required. In either case, once this step has been completed

(and assuming neither ion is in the bright state), the system is
left in |ψ2〉.

The next step is almost identical to the preceding one: f4

is applied to ion m and f1 − ν and f4 − ν are applied to ion
n. However, a phase shift of π is added to tone f1 − ν (which
is on ion n only) for this transfer. Once the transfer attempt
is completed, clean out of the auxiliary manifold of ion n and
the |gm〉 level of ion m will leave the system in

|ψ3〉 = icgg|A(−)
m , gn, 0〉 + icge|A(−)

m , en, 0〉
+ iceg|A(+)

m , gn, 1〉 − icee|A(+)
m , en, 1〉. (13)

The last step is the same as the first, but with the subsequent
clean out occurring on the auxiliary manifold of ion m. Again
conditioned on the fact that the ions are not in the bright state,
the motion factors and the final state of the two-ion system is

|ψ4〉 = UCZ|ψ0〉 = (cgg|gm, gn〉 + cge|gm, en〉
+ ceg|em, gn〉 − cee|em, en〉) ⊗ |0〉. (14)

The state in Eq. (14) is identical to the result of an ideally
executed the CZ gate, which can perform a CNOT gate with the
addition of some single-qubit rotations [11]. However, each
step can now be checked for errors that affect the pulse area of
the simultaneous tones the same way, such as a drift in signal
strength. Upon passing the check, subsequent gates will not
be susceptible to correlated error accumulation from the errors
removed by this scheme.

We have introduced here methods that allow certification
of all of the gates required for universal quantum computation
against common-mode pulse area errors. However, the classes
of errors that are encountered in implementations of quantum
processors go well beyond the limited class addressed here, as
do the details for how these systems are made to execute their
universal set of gates. The general approach we have sketched
for developing certification should be adaptable to some of
these situations, and extensions of these ideas may be possible
moving forward.

W.C.C. acknowledges helpful discussions with Dave
Hayes, Eric Hudson, Paul Hamilton, David Hucul, and David
Allcock. This work was supported by the U.S. Army Research
Office under Grant No. W911NF-19-S-0011 and the U.S. Na-
tional Science Foundation under Awards No. PHY-1912555
and No. 2016245.

[1] J. Preskill, Quantum 2, 79 (2018).
[2] F. Arute et al., Nature (London) 574, 505 (2019).
[3] P. W. Shor, SIAM J. Comput. 26, 14841509 (1997).
[4] J. A. Sherman, M. J. Curtis, D. J. Szwer, D. T. C. Allcock, G.

Imreh, D. M. Lucas, and A. M. Steane, Phys. Rev. Lett. 111,
180501 (2013).

[5] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005).

[6] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J.
Mizrahi, K. Fortier, and P. Maunz, Nat. Commun. 8, 14485
(2017).

[7] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M.
Meier, E. Knill, D. Leibfried, and D. J. Wineland, Phys. Rev. A
84, 030303(R) (2011).

[8] J. E. Christensen, D. Hucul, W. C. Campbell, and E. R. Hudson,
npj Quantum Inf. 6, 35 (2020).

[9] P. Taylor, M. Roberts, G. M. Macfarlane, G. P. Barwood,
W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2829
(1999).

[10] Conrad Roman et al. (personal communication).
[11] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091

(1995).

022426-4

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevLett.111.180501
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1038/ncomms14485
https://doi.org/10.1103/PhysRevA.84.030303
https://doi.org/10.1038/s41534-020-0265-5
https://doi.org/10.1103/PhysRevA.60.2829
https://doi.org/10.1103/PhysRevLett.74.4091

