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Hyperentanglement has a higher information density than conventional single-degree-of-freedom entan-
glement, which has attracted much attention due to its fascinating applications in quantum communication.
However, since the inevitable interactions between quantum entangled systems and the environment will drive
hyperentangled systems into less hyperentangled states or even mixed hyperentangled states, the efficiency and
security of quantum communication will be greatly depressed. The currently existing distillation protocols are
not universal, i.e., they only work for the lossy hyperentangled states in specific systems. In this paper, based on
local positive-operator-valued measures (POVMs), we present a distillation protocol for lossy hyperentangled
photonic Bell and Greenberger-Horne-Zeilinger (GHZ) states. The intrinsic property of our protocol is twofold,
i.e., the POVM nature of the protocol guarantees that the protocol is a universal one, and the distillation operation
on only one of the two degrees of freedom (DOFs) can enhance the fidelity of the system in both DOFs.
Furthermore, in the implementation level, our hyperentanglement distillation protocol (HEDP) has other two
merits: no auxiliary local entanglement resources and sophisticated single-photon detectors are required, and
only one copy of the lossy state will be operated in each distillation round, which show that our HEDPs are
relatively simple and feasible.
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I. INTRODUCTION

Quantum entanglement is a crucial physical resource in
quantum information processing, which has been widely ap-
plied in quantum teleportation [1], quantum key distribution
[2], quantum computation [3], quantum cryptography [4,5],
quantum repeaters [6], and so on. Maximally entangled states
connecting two or more adjacent nodes in a quantum network
are generally prepared locally, but they need to be shared
nonlocally for accomplishing these quantum information pro-
cessing tasks effectively. However, during the practical en-
tanglement distribution, the inevitable interactions between
quantum systems and the environment will deteriorate the
maximally entangled states into partially entangled pure states
or even mixed states [7].

To improve entanglement or fidelity of noisy entangled
states, researchers have proposed several solutions, such as
entanglement purification (EP) [8–17], entanglement distil-
lation [18,19], entanglement concentration [20–22], etc. En-
tanglement purification is the process of extracting a subset
of higher-fidelity entangled states from a set of mixed en-
tangled states. In 1996, Bennett et al. [8] put forward the
first entanglement purification protocol based on bilateral
controlled-NOT (CNOT) gates on two copies of the Werner
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state. Subsequently, Deutsch et al. [9] improved this scheme
based on special joint operations. To avoid the complicated
CNOT and other joint operations, Pan et al. [10] proposed an
efficient EP protocol based on linear optical elements by using
parity-check measurement in polarization degree of freedom
(DOF). Although all of the above-mentioned schemes have
effectively improved the fidelity of noisy states, two new
problems still exist, i.e., two copies of the initial entanglement
resources are needed in each purification round and the lim-
ited fidelities of purifiable initial states are within the range
(1/2, 1]. Aiming at these two issues, Gisin [18] and Huang
et al. [19] put forward a single-copy-based entanglement
distillation protocol for bipartite and multipartite entangled
states, respectively, where the fidelities of purifiable initial
states are extended to the whole range (0,1]. These schemes
solve the above-mentioned two problems and greatly loosen
the threshold condition of initial fidelity and the complexity
of its realization. But, because these schemes only work for
quantum states entangled in a single DOF, one may wonder
whether there exist similar purification or distillation schemes
which can work for quantum states entangled in multiple
DOFs, i.e., hyperentangled states.

Hyperentangled states have attracted considerable atten-
tion, owing to their advantages of larger information ca-
pacity, higher security of quantum communication, stronger
resistance against noise [23–28], etc. A hyperentangled
state is defined as a quantum state entangled in multi-
ple DOFs simultaneously, such as polarization-spatial-mode-
time-energy DOF [29], polarization-momentum DOF [30],
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polarization-time-bin DOF [31], polarization-orbital-angular-
momentum DOF [32], hyperentanglement between two quan-
tum memories [33], etc. However, hyperentangled states
also suffer from the environment, and thus maximally hy-
perentangled states will decay into partially hyperentangled
mixed states. Therefore, several hyperentanglement purifica-
tion (HEP) schemes have also been proposed [34–37]. Sim-
ilarly, the two weaknesses still exist in these schemes, i.e.,
the fidelity of the purifiable initial state has to be greater than
1/2 in each DOF, and two copies of the noisy hyperentangled
state are needed in each purification round. So it is of great
importance to design a single-copy-based hyperentanglement
distillation scheme working in the whole range of initial
fidelities. Wang et al. proposed a linear-optical scheme for
distilling single-photon two-qubit states and hyperentangled
states undergoing inherent channel losses in a heralded dis-
tillation strategy [38], but the lossy mixed entangled state
they distilled is only mixed in spatial DOF and the state in
polarization DOF is still pure, and it requires W states as local
auxiliary resources. Very recently a single-copy-based her-
alded amplification protocol for a two-photon spatial-mode-
polarization hyperentangled mixed state was proposed, which
can transform an input mixed hyperentangled state into an
output mixed hyperentangled state with higher fidelity [39].
The teleportation property of these two heralded protocols
indicates that they are not universal and only work for lossy
photonic hyperentangled states. It is of great importance to
design a universal scheme to distill hyperentangled mixed
states (mixed in multiple DOFs) in a single-copy manner
without auxiliary resources. In this paper, we will propose
a single-copy-based hyperentanglement distillation protocol
for two-photon lossy Bell state mixed entangled in both
polarization and spatial-mode DOFs, in which the vacuum
errors caused by the transmission losses can be corrected
by performing local positive-operator-valued measurements
(POVMs) only on the spatial-mode or the polarization DOF of
one copy of the mixed hyperentangled state. Furthermore this
protocol can be generalized to lossy N-photon hyperentan-
gled Greenberger-Horne-Zeilinger (GHZ) states. The POVM
nature of our protocol indicates that our hyperentanglement
distillation protocol (HEDP) is a universal one, which applies
to the lossy hyperentangled states in any quantum system.
In addition, our HEDP has the following advantages in the
implementation level: the distillable range of initial fidelity
is broadened to the whole range (0,1], only one copy of the
mixed hyperentangled photon sources (Bell state and GHZ
state) is required in each distillation round, the key operation
of our protocol is the POVM measurements rather than the
complicated CNOT operations, and no auxiliary local entan-
glement resources and sophisticated single-photon detectors
are involved. All of these merits indicate that our scheme is
relatively simple and implementable with a wider application
range.

This paper is organized as follows. In Sec. II, we introduce
the single-copy-based distillation scheme for a lossy two-
photon hyperentangled Bell state. As a generalization, a hy-
perentanglement distillation scheme for a noisy three-photon
GHZ state is presented in Sec. III. The analysis and discussion
are presented in Sec. IV, and the results are summarized
in Sec. V.

II. SINGLE-COPY-BASED DISTILLATION SCHEME FOR
LOSSY HYPERENTANGLED BELL STATE

Since the inevitable interaction between a quantum entan-
gled system and its environment will cause the degradation
of entanglement and coherence of the quantum system in
the practical entanglement distributed process, the quantum
entangled states actually available are almost mixed states.
Usually, the ideal hyperentangled state can be generated
locally before entanglement distribution. Here, we consider
a pure hyperentangled two-photon source generated at Al-
ice’s side whose state is expressed as |ϕ0〉AB = 1

2 (|HH〉 +
|VV 〉)ApBp (|a1b1〉 + |a2b2〉)AsBs , where the subscripts A and B
indicate the hyperentangled photons, and the first and second
terms indicate hyperentangled two-photon states in polariza-
tion and spatial-mode DOFs, respectively. a1, a2 (b1, b2) are
the spatial modes of the photon A (B). Suppose that the photon
B is sent to Bob through two lossy spatial channels described
by two independent transmission coefficients T1[∈ (0, 1)]
and T2[∈ (0, 1)]. As we only consider the vacuum errors of
photons caused by transmission losses, corresponding to the
energy dissipation process, we can describe this case by using
a typical amplitude-damping noise model [40]. As a result, the
spatial-mode and polarization DOFs of the transmitted pho-
tons will be affected by channel noises. After the transmission,
the channel noises would deteriorate the pure hyperentangled
state into the following mixed hyperentangled state:

ρAB =
(

1 − T1

4
|a1〉〈a1| + 1 − T2

4
|a2〉〈a2|

)
⊗ IA

p

+ T1 + T2

2
|τ 〉AB〈τ | ⊗ |φ+〉AB〈φ+|, (1)

where |τ 〉AB = (α0|a1b1〉 + β0|a2b2〉)AB with two coeffi-
cients α0 = √

T1/(T1 + T2) and β0 = √
T2/(T1 + T2), IA

p =
(|H〉〈H | + |V 〉〈V |), and |φ+〉 = 1√

2
(|HH〉 + |VV 〉)AB is one

of the four Bell states in the polarization DOF. It can be
easily seen that the photon B was lost with probability P =
(2 − T1 − T2)/2 after the transmission. The fidelity of the
damped two-photon hyperentangled state ρAB with respect to
the initial ideal hyperentangled state |ϕ0〉AB is F (2)

0 = (α0 +
β0)2(T1 + T2)/4.

From the noisy hyperentangled photonic state in Eq. (1),
one can see that the spatial channel loss will lead to the
decoherence not only in the spatial DOF but also in the
polarization DOF of the photon pair. To enhance the fidelity
of the state in Eq. (1), Bob needs to implement a POVM
measurement on the polarization or spatial-mode DOF of
photon B. The POVM measurements performed in the spatial-
mode or polarization DOF can be described by the POVM
elements EB

s1
= |b1〉〈b1| + (1 − λ)|b2〉〈b2|, EB

s2
= λ|b2〉〈b2| or

EB
p1

= |H〉〈H | + (1 − λ)|V 〉〈V |, EB
p2

= λ|V 〉〈V |, respectively.
Here λ is a parameter indicating the strength of the POVM in
disturbing the state under consideration, and when λ = 1 it be-
comes a strong (projective) measurement, which destroys the
superposition between the two eigenvectors of the measure-
ment operator. When λ = 0, it becomes an identity operator,
which does not disturb the state. Evidently, in order to make
the expression a positive operator, the value of λ should be
within the scope 0 < λ < 1. The following analyses of our
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scheme show that the hyperentanglement distillation effect
in the spatial-mode DOF is equal to that in the polarization
DOF when the transmission coefficients T1 and T2 are equal,
so we will mainly discuss the HEDP with POVMs on only one
DOF, such as the spatial-mode DOF. In addition, notice that
in our HEDP POVM measurements are only required at Bob’s
side, so classical communication is not required during the
whole hyperentanglement distillation process, which greatly
simplifies the realization complexity of it. In order to enhance
the fidelity of the noisy hyperentangled state ρAB, we will
select the measurement result Es1 for the spatial-mode DOF
of photon B, and the corresponding output state is

ρ̃AB = IA
s IA

p

√
EB

s1
IB

p ρABIB
p

√
EB

s1
IA

p IA
s/

tr
(
IA
s IA

p

√
EB

s1
IB

p ρABIB
p

√
EB

s1
IA

p IA
s

)
= |̃ϕ〉AB 〈̃ϕ|, (2)

where |̃ϕ〉AB = (m1|a1b1〉 + n1|a2b2〉)AB ⊗ |φ+〉AB, whose co-
efficients are

m1 = α0√
α2

0 + β2
0 (1 − λ)

, n1 = β0
√

1 − λ√
α2

0 + β2
0 (1 − λ)

. (3)

From Eq. (2), we can see that the output state ρ̃AB is
actually a less-hyperentangled pure state relative to the ini-
tial maximally hyperentangled source |ϕ0〉AB, which indicates
that the vacuum part of the noisy state ρAB is eliminated
successfully. Furthermore, this unknown state ρ̃AB can be
concentrated into a maximally hyperentangled state using the
Schmidt-projection method [41].

The new fidelity F1 of the output state ρ̃AB can be
expressed as

F (2)
1 = (α0 + √

1 − λβ0)2

2
[
α2

0 + β2
0 (1 − λ)

] . (4)

To clearly show the effect of the hyperentanglement distil-
lation scheme, we plotted (in Fig. 1) the fidelity difference
F (2)

1 − F (2)
0 as a function of the transmission coefficient T

and the POVM parameter λ in the case of T1 = T2 = T . The
figure shows that the scheme succeeds, i.e., F (2)

1 − F (2)
0 > 0,

for most of the values of T and λ. Furthermore, as long as T1 =
T2 = T and λ = 1 − T , our hyperentanglement distillation
scheme works for the noisy states with arbitrary values for
T and λ in (0,1). This means that all of the noisy states ρAB

within the fidelity range F (2)
0 ∈ (0, 1) can be distilled under

the condition of T1 = T2 = T and λ = 1 − T .
Although fidelity is the most important parameter of the

output state in entanglement distillation, the success proba-
bility is crucial for the distillation scheme too. The success
probability of the HEDP for the noisy two-photon Bell state
is P(2) = T (2 − λ)/2. In order to clearly illustrate the rela-
tionship between the fidelity difference and the success prob-
ability, we also numerically simulated P(2) and F (2)

1 − F (2)
0

in the cases of the POVM parameters λ = 0.2, λ = 0.5, and
λ = 0.8, respectively, in Fig. 1(b). The figure shows that the
fidelity gain of our HEDP is acquired at the cost of success

FIG. 1. For the noisy hyperentangled Bell state, (a) the fidelity
difference F (2)

1 − F (2)
0 in the POVM-based hyperentanglement distil-

lation scheme as a function of the transmission coefficient T and the
POVM parameter λ with T1 = T2 = T . (b) The success probability
P(2) (P) versus the fidelity difference F (2)

1 − F (2)
0 (F ) in the cases of

the POVM parameters λ = 0.2, λ = 0.5, and λ = 0.8.

probability, there does exist a tradeoff between the success
probability and the fidelity gain, e.g., a high fidelity gain
means a low success probability.

III. SINGLE-COPY-BASED DISTILLATION SCHEME FOR
LOSSY HYPERENTANGLED GHZ STATE

As a generalization of our scheme in the preceding section,
a single-copy-based scheme for distilling noisy hyperentan-
gled GHZ states will be proposed in this section. Similarly, we
first introduce the noisy state induced by the lossy channels.
Suppose that the initial hyperentangled three-photon GHZ
source is generated at Alice’s side, |ϕ0〉ABC = 1

2 (|HHH〉 +
|VVV 〉)ApBpCp (|a1b1c1〉 + |a2b2c2〉)AsBsCs , and the photon B
(C) is sent to Bob (Charlie) through two lossy spatial chan-
nels b1, b2 (c1, c2) described by two independent transmis-
sion coefficients T1, T2 (T3, T4). So, the noisy state for the
hyperentangled three-photon system can be expressed as
follows:
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ρABC = T1T3 + T2T4

2
|τ1〉s

ABC〈τ1| ⊗ |GHZ〉ABC〈 GHZ|

+
[

(1 − T1)T3

4
|a1c1〉〈a1c1| + (1 − T2)T4

4
|a2c2〉〈a2c2|

]
⊗ |(|HH〉〈HH | + |VV 〉〈VV |)AC

+
[

(1 − T3)T1

4
|a1b1〉〈a1b1| + (1 − T4)T2

4
|a2b2〉〈a2b2|

]
⊗ (|HH〉〈HH | + |VV 〉〈VV |)AB

+
[

(1 − T2)(1 − T4)

4
|a2〉〈a2| + (1 − T1)(1 − T3)

4
|a1〉〈a1|

]
⊗ (|H〉〈H | + |V 〉〈V |)A, (5)

where, |τ1〉ABC = (α1|a1b1c1〉 + β1|a2b2c2〉)ABC with
two coefficients α1 = √

T1T3/(T1T3 + T2T4) and β1 =√
T2T4/(T1T3 + T2T4), and |GHZ〉ABC = 1/

√
2(|HHH〉 +

|VVV 〉)ABC . The fidelity of the noisy hyperentangled GHZ
state relative to the initial maximally hyperentangled source
|ϕ0〉ABC can be written as F (3)

0 = (T1T3 + T2T4)(α1 + β1)2/4.
To distill the noisy hyperentangled state in Eq. (5), both

Bob and Charlie would implement a POVM measurement on
the polarization or spatial-mode DOF of the photons B and C,
respectively. Similarly, we only consider the case where the
local POVM measurements, i.e., the distillation operations,
are performed on the spatial-mode DOF. Moreover, classical
communication is allowed in this scheme so that the two users
Bob and Charlie can coordinate their POVM measurements
and post-select their measurement results. Assume that the
POVM measurements carried out by the two users are the
same form of the spatial-mode DOF, and can be expressed
by the POVM elements Ei

s1
= |k1〉i〈k1| + (1 − λ)|k2〉i〈k2| and

Ei
s2

= λ|k2〉i〈k2|, k = b, c, i = B,C. We will select the mea-
surement events where both of two users get the same result
Es1 , and the corresponding output state is

ρ̃ABC = IA
s IA

p

√
EC

s1

√
EB

s1
IC

p IB
p ρABCIB

p IC
p

⊗
√

EB
s1

√
EC

s1
IA

p IA
s

/
tr

(
IA
s IA

p

√
EC

s1

√
EB

s1
IC

p

⊗IB
p ρABCIB

p IC
p

√
EB

s1

√
EC

s1
IA

p IA
s

)
= |̃ϕ〉ABC 〈̃ϕ|, (6)

where |̃ϕ〉ABC = (m2|a1b1c1〉 + n2|a2b2c2〉)ABC ⊗ |GHZ〉ABC

with coefficients

m2 = α1√
α2

1 + β2
1 (1 − λ)2

, n2 = β1(1 − λ)√
α2

1 + β2
1 (1 − λ)2

.

Obviously, the state |̃ϕ〉ABC is still a less-hyperentangled pure
state, which can be concentrated into maximally hyperentan-
gled state |ϕ0〉ABC via the schemes in Ref. [42,43]. The fidelity
of this post-selected state ρ̃ABC is

F (3)
1 = [α1 + (1 − λ)β1]2

2
[
α2

1 + β2
1 (1 − λ)2

] . (7)

The fidelity difference F (3)
1 − F (3)

0 is plotted in Fig. 2 as
a function of the transmission coefficient T and the POVM
parameter λ with T1 = T2 = T3 = T4 = T . From Fig. 2, we
can see that, if we also choose the POVM parameter λ such

that λ = 1 − T , our hyperentanglement distillation scheme
can work for the noisy states with arbitrary T ∈ (0, 1). That
is to say, all of the noisy states ρABC within the fidelity
range F (3)

0 ∈ (0, 1) can be distilled if T1 = T2 = T3 = T4 =

FIG. 2. For the noisy three-photon hyperentangled GHZ state,
(a) the fidelity difference F (3)

1 − F (3)
0 in the POVM-based hyper-

entanglement distillation scheme as a function of the transmission
coefficient T and the POVM parameter λ with T1 = T2 = T3 = T4 =
T . (b) The success probability P(3) (P) versus the fidelity difference
F (3)

1 − F (3)
0 (F ) in the cases of the POVM parameters λ = 0.2, λ =

0.5, and λ = 0.8.
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T . In this case, the success probability can be expressed as
P(3) = T 2[1 + (1 − λ)2]/2, which is plotted in Fig. 2(b) as
a function of the transmission coefficient T in the cases of
the POVM parameters λ = 0.2, λ = 0.5, and λ = 0.8, with
T1 = T2 = T3 = T4 = T . Similarly, the figure shows that there
does exist a tradeoff between the success probability and the
fidelity gain for the distillation of noisy hyperentangled GHZ
states too.

In principle, the above-proposed POVM-based hyperentan-
glement distillation scheme can be generalized to the noisy N-
photon GHZ state as well. When the transmission coefficients
Ti (i = 1, 2, · · · , 2N − 2) of spatial modes are all equal, i.e.,
T1 = T2 = · · · = T2(N−1) = T , the fidelities of the input noisy
N-photon mixed GHZ states and the output state of our HEDP
can be expressed, respectively, as

F (N )
0 = T (N−1), (8)

F (N )
1 =

[
1 + (1 − λ)

N−1
2

]2

2[1 + (1 − λ)(N−1)]
. (9)

The success probability of this HEDP is:

P(N ) = 1
2 T (N−1)[1 + (1 − λ)(N−1)]. (10)

Figure 3 shows that our scheme still has a good hyper-
entanglement distillation effect for noisy ten-photon mixed
GHZ states, and there exists a tradeoff between the success
probability and the fidelity gain too. As long as the transmis-
sion coefficient T is not very small, one can distill the noisy
states into pure high-fidelity output states with a relatively
considerable probability.

IV. ANALYSIS AND DISCUSSION

The key operation of our HEDP is the POVM mea-
surement, whose optical realization only involves conven-
tional single-photon detectors instead of complicated photon-
number-resolution detectors [39,44,45]. More notably no aux-
iliary local entanglement resources are needed, such as the
GHZ state or W state in [36,37,46].

For simplicity, we have only presented the special case
where Ti = Tj so far. However, the transmission coefficients
Ti for different spatial modes are not equal in general, so it is
necessary to consider the case where T1 �= T2. To investigate
the influence of Ti �= Tj on our HEDP we take the noisy
hyperentangled Bell state as an example. To clearly show
the effect of our HEDP for the T1 �= T2 case, we plotted (in
Fig. 4) the fidelity difference F (2)

1 − F (2)
0 as a function of the

transmission coefficient T1 and T2 in the cases of λ = 0.2
(a), λ = 0.5 (b), and λ = 0.8 (c), respectively. As in the
case of T1 = T2, Fig. 4 shows that our HEDP succeeds, i.e.,
F (2)

1 − F (2)
0 > 0, for most of the values of T and λ in the case

of T1 �= T2.
Up to now we only considered the HEDP with the POVMs

on the spatial-mode DOF of photon. If the POVMs are per-
formed on the polarization DOF or on both the polarization
and the spatial-mode DOFs simultaneously, can we realize a
better distillation effect? A detailed calculation shows that our
HEDP with POVM on the polarization DOF has a distillation
effect similar to the HEDP with POVM on the spatial-mode
DOF in both success probability and fidelity gain aspects.

FIG. 3. For the noisy ten-photon hyperentangled GHZ state,
(a) the fidelity difference F (10)

1 − F (10)
0 in the POVM-based hyper-

entanglement distillation scheme as a function of the transmission
coefficient T and the POVM parameter λ with T1 = T2 = · · · =
T18 = T . (b) The success probability P(10) (P) versus the fidelity
difference F (10)

1 − F (10)
0 (F ) in the cases of the POVM parameters

λ = 0.2, λ = 0.5, and λ = 0.8.

Meanwhile, the distillation effect of the HEDP with POVM
on one DOF is better than that of the HEDP with POVMs on
both DOFs. It is not difficult to understand these comparison
results. The lossy hyperentangled state to be distilled is a
mixture of a pure near-ideal hyperentangled state and the
vacuum noise state, and in this state the two DOFs play
the same role. So neither of these two DOFs is superior
to the other, and thus the POVMs on the two DOFs have
similar hyperentanglement distillation effects. Our HEDP is
a single-copy-based protocol, and the POVM can filter out
the noise component and keep the success case with some
probability. That is to say, the hyperentanglement fidelity gain
during our HEDP is acquired at the cost of success probability.
So in most of the cases, the output fidelities and the success
probabilities are smaller than unity when the POVM is per-
formed on only one DOF, and thus the HEDP with POVMs
on both the polarization and the spatial-mode DOFs will
succeed with a relatively smaller probability and fidelity gain.
To show this point more clearly, we calculated the fidelities
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FIG. 4. For the noisy hyperentangled Bell state, the fidelity dif-
ferences F (2)

1 − F (2)
0 of our HEDP for the POVM parameters λ = 0.2

(a), λ = 0.5 (b), and λ = 0.8 (c).

F ′(N )
1 and success probabilities P′(N ) of output states for N-

photon hyperentangled GHZ cases after performing POVM
measurements on two DOFs, and found that they are smaller
than those [F (N )

1 in Eq. (9), P(N ) in Eq. (10)] of output states
after performing POVM measurements on single DOF:

F ′(N )
1 =

[
1 + (1 − λ)

N−1
2

]4

4[1 + (1 − λ)(N−1)]2
= (

F (N )
1

)2
, (11)

P′(N ) = T (N−1)

4
[1 + (1 − λ)(N−1)]2. (12)

FIG. 5. The schematic diagram for realizing the POVMs on
polarization DOF (a) and spatial-mode DOF (b) of photon B, respec-
tively. BW is a Brewster window tilted near Brewster’s angle θ such
that sin 2θ = √

1 − λ. UBS represents an unbalanced beam splitter
with the transmission coefficient

√
1 − λ. D denotes the conventional

single-photon detector.

Here all of the 2(N − 1) transmission coefficients are
supposed to be equal too. Since the POVM parameter λ and
F (N )

1 are smaller than 1, we have F ′(N )
1 < F (N )

1 and P′(N ) <

P(N ) for an arbitrary value N . In addition, the HEDP with
POVM on one DOF is easier to implement than the HEDP
with POVMs on both DOFs, which will reduce the realization
complexity of the scheme. Therefore, in this paper, we only
focus on the HEDP with POVM on only one DOF (say, the
spatial-mode DOF).

To demonstrate the feasibility of the POVM-based hyper-
entanglement distillation protocols, we design the correspond-
ing example schemes for realizing the local filtering opera-
tions, i.e., local POVMs, in the linear optical system. For the
hyperentanglement distillation scheme of noisy two-photon
Bell state, the distillation operation, i.e., the local POVM
on the polarization DOF can be realized by two Brewster
window (BW) pairs placed on two spatial modes (b1, b2)
of the B photon [Fig. 5(a)], respectively, where the BWs
are tilted near Brewster’s angle θ such that sin 2θ = √

1 − λ

and are symmetrically arranged in pairs to compensate for
transverse displacements. Usually, the refractive index of the
BW material is larger than that of air, so Brewster’s angle
θ is larger than 45◦, which means that λ is increasing with
the increase of θ . Meanwhile, from the distillation effects of
our HEDP, we can see that our HEDP has a better fidelity
gain and a wider distillable range when λ is smaller. So we
will choose the appropriate BW material so that the value of
Brewster’s angle θ is slightly larger than 45◦, and thus the
value of the realized POVM parameter λ is slightly larger
than zero. Similarly, as shown in Fig. 5(b), the distillation
operation, i.e., the local POVM, on the spatial-mode DOF of B
photon can be realized by using an unbalanced BS (i.e., UBS)
[47] on spatial mode b2 with transmission coefficient

√
1 − λ.

When the photons B do not emit from the spatial mode b′
2,

this POVM on the spatial-mode DOF succeeds. In addition,
because the POVMs performed by the operational users are
considered to be the same in the corresponding DOF, in the
optical realization scheme for three-photon hyperentangle-
ment distillation Charlie uses the same optical filtering device
as Bob (as depicted in Fig. 6).
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FIG. 6. The optical realization of a hyperentanglement distilla-
tion scheme for noisy three-photon GHZ states, where Charlie uses
the same optical device as Bob. All required optical elements are the
same as those of Fig. 5.

Notice that the success of the HEDP can be read from
the event where there is no photon detected at the detectors.
However, the efficiency of a single-photon detector is lower
than 100% in practice, and thus a photon arriving at the de-
tector may cause a no-photon-detection result because of the
error induced by the quantum efficiency of the single-photon
detector, so the success events maybe mixed with the failure
events by error, which will lead to a higher success probability
and a lower fidelity of the output state than those of the ideal
case. Fortunately, the post-selection process is an alternative
way of judging the success of the HEDP, i.e., the HEDP
succeeds if Bob (and Charlie) detect the photons B (and C)
emitting from the spatial modes b1, b2 (c1, c2), respectively,
when Alice, Bob, and Charlie use the three photons ABC
to complete their tasks in quantum communication. That is
to say, the post-selection process of our HEDP and the next
quantum communication tasks can be verified simultaneously.
So, in this post-selection based judging scenario, the quantum
efficiency of the single-photon detectors will lead to a lower
success probability, but the fidelity of the output state is
exactly the true one.

Although our single-copy-based HEDP is proposed for the
two-photon lossy Bell hyperentangled state and three-photon
lossy GHZ hyperentangled state in polarization and spatial-
mode DOFs, it applies to any remote lossy hyperentangled
state caused by the transmission loss. This point can be
understood as follows. Any remote lossy hyperentangled state
caused by the transmission loss can be regarded as a mixture
of a pure partially hyperentangled state and the vacuum noise
state, and the local POVM designed in our HEDP can be used
to filter out the vacuum noise state caused by the transmission
loss, so our HEDP is applicable to any remote lossy hyper-
entangled state caused by the transmission loss. In addition,
the transmission loss will cause the decoherence of all the
DOFs involved in the hyperentanglement, so our HEDP can
be extended to other DOFs.

V. CONCLUSION

In conclusion, we proposed an efficient single-copy-based
hyperentanglement distillation protocol for a two-photon
lossy Bell state and a three-photon lossy GHZ state in po-
larization and spatial-mode DOFs, where the vacuum errors
caused by the transmission loss can be filtered out via lo-
cal POVM measurements performed on only one DOF. The
POVM nature of our HEDP indicates that our HEDP can
be applied to the lossy hyperentangled states in any quan-
tum system, i.e., it is a universal HEDP, and the distillation
operation on only one DOF will enhance the fidelity of the
system in both DOFs. Besides these two intrinsic advantages,
our HEDP also possesses the following advantages in the
implementation level. Because only one copy of the lossy state
will be needed in each round of our HEDP, our scheme has
a wider range of distillable fidelities, and no auxiliary local
entanglement resources are involved. All of these properties
suggest that our HEDP is relatively simple and feasible in
quantum communication.

One may want to know the detailed situations where our
HEDP can be applied. These situations include quantum com-
munications and quantum computation. Here, we will give
two detailed situations where our HEDP can be applied.

The first one is that our HEDP can help us to enhance the
information capacity of a practical quantum channel in quan-
tum superdense coding. In a standard quantum superdense
coding process, only 1.585 (rather than 2) classical bits will be
sent by sending one qubit because of the impossibility of the
complete and deterministic Bell state measurement with linear
optics. With the assistance of hyperentanglement, complete
and deterministic Bell state measurements become possible in
an optical system [31,48,49], and thus the channel capacity
of a hyperentangled quantum state is larger than that of an
entangled state in single DOF in linear photonic superdense
coding [50]. But the channel quality of the hyperentangled
state will deteriorate during the transmission of the photon
propagating between two users (the information decoder Alice
and the encoder Bob), which will subsequently reduce the
channel capacity. Alice will generate an ideal two-photon
hyperentangled state and send one of the two photons to
Bob. Due to the loss during the transmission process, Alice
and Bob can only share a noisy two-photon hyperentangled
state. Before information encoding, Alice and Bob can apply
our HEDP to distill a high-quality hyperentangled state from
the noisy one. If the distillation process succeeds, Bob will
continue the information encoding process, otherwise they
will discard the pair and start a new round of the superdense
coding process.

The second one is hyperentanglement-assisted quantum
error correction. Here, the unknown-state information photon
will be protected via hyperentanglement-assisted quantum
error correction code during the noisy transmission from
the sender Alice to the receiver Bob [26,51]. To this end,
Alice and Bob must share an ideal two-photon hyperentangled
state. Usually the ideal two-photon hyperentangled state will
be generated locally, and distributed among Alice and Bob.
Due to the loss during the transmission process, Alice and
Bob can only share a noisy two-photon hyperentangled state,
which will inevitably reduce the protection effects of the
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hyperentanglement-assisted quantum error correction code.
To partially or completely recover the error-correction func-
tion of the code, one needs our HEDP before the encoding
process.

In addition, remote hyperentangled states also can be used
as the quantum channels to teleport the states of multiple
degrees of freedom of a single photon [52] and to realize
the superdense teleportation of quantum state parameters [53],
and the hyperentanglement quantum channel must be gener-
ated locally and distributed among remote users. However,
during the practical entanglement distribution, the inevitable
transmission loss will deteriorate maximally hyperentangled
states into partially hyperentangled mixed states. So our

HEDP provides an efficient way to overcome the transmission
loss problem of quantum communication.
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