
PHYSICAL REVIEW A 102, 022424 (2020)

Reduction of qubits in a quantum algorithm for Monte Carlo simulation
by a pseudo-random-number generator

Koichi Miyamoto *

Mizuho-DL Financial Technology Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan

Kenji Shiohara†

Division of Physics, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan

(Received 20 January 2020; accepted 3 August 2020; published 27 August 2020)

It is known that quantum computers can speed up Monte Carlo simulation compared to classical counterparts.
There are already some proposals of application of the quantum algorithm to practical problems, including
quantitative finance. In many problems in finance to which Monte Carlo simulation is applied, many random
numbers are required to obtain one sample value of the integrand, since those problems are extremely high-
dimensional integrations, for example, risk measurement of credit portfolio. This leads to the situation that the
required qubit number is too large in the naive implementation where a quantum register is allocated per random
number. In this paper, we point out that we can reduce qubits keeping quantum speed up if we perform calculation
similar to the classical one, that is, estimate the average of integrand values sampled by a pseudo-random-number
generator (PRNG) implemented on a quantum circuit. We present not only the overview of the idea but also
concrete implementation of PRNG and application to credit risk measurement. Actually, reduction of qubits is
a trade-off against increase of circuit depth. Therefore, full reduction might be impractical, but such a trade-off
between speed and memory space will be important in adjustment of calculation setting considering machine
specs, if large-scale Monte Carlo simulation by quantum computer is in operation in the future.

DOI: 10.1103/PhysRevA.102.022424

I. INTRODUCTION

Among applications of quantum computers to numerical
problems providing higher speed than classical computation is
Monte Carlo simulation [1]. It has been shown that estimation
error in the quantum-based Monte Carlo is proportional to
O(N−1), where N is the number of computational steps,
compared with O(N−1/2) in the classical one. Quantitative
finance is one of the fields where Monte Carlo simulation
is heavily used and there are some proposals to apply the
quantum algorithm to financial problems, for example, risk
measurement of portfolio [2,3] and derivative pricing [4,5].

In the application of the quantum algorithm for Monte
Carlo to financial problems, required qubit number might be
problematic due to the following two points. First, in the meth-
ods proposed in the previous works [2–5], a quantum register
is allocated to represent a random number, so the required
qubit number is proportional to the number of the random
numbers required to obtain one sample value of the integrand
(in other words, the dimension of the integral). Second, many
of the problems in finance are extremely high-dimensional
integrations and require many random numbers. One of the
most prominent examples is risk measurement of credit port-
folio [3]. Credit portfolio consists of many loans or debts
and banks suffer losses when obligors default. Banks monitor

*koichi-miyamoto@fintec.co.jp
†k-shiohara@particle.sci.hokudai.ac.jp

such credit risks estimating some risk measures, for example,
expected loss (EL), value-at-risk (VaR), which represents
percentile point (say, 99%) of loss distribution, conditional
VaR (CVaR), expectation value of loss conditioned it exceeds
the VaR, and so on. One of popular mathematical models
describing probability distribution of loss is the Merton model
[6] and risk measures under the model are usually estimated
by Monte Carlo. We describe the model in a later section,
but an important point is that the required number of random
numbers to determine a default pattern of obligors is nearly
equal to the number of obligors. In other words, it is necessary
to generate as many random numbers as obligors to obtain
a sample value of the integrand, that is, loss. The number
of obligors can be O(106) for large portfolios, and so is the
required random number. The qubit number of today’s largest
quantum computer is O(10), so it will be the far future when
machines with so many qubits are realized. Therefore, it is
meaningful to consider the possibility to reduce qubits.

In this paper, we propose a way to reduce qubits. Although
we will explain the detail in the next section, we here describe
the outline. In short, it is classical Monte Carlo on a quantum
computer. In classical Monte Carlo, we usually generate some
sampled patterns of values of random numbers, but not all
patterns. More concretely, we generate sequences of pseudo-
random number (PRN) using some pseudo-random-number
generator (PRNG) and use each sequence to obtain one sam-
ple value of the integrand. Finally, we calculate the average
of the sample values and consider it as an approximation
of the integral. An important point is that in this way we

2469-9926/2020/102(2)/022424(12) 022424-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2478-0841
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022424&domain=pdf&date_stamp=2020-08-27
https://doi.org/10.1103/PhysRevA.102.022424

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

sequentially generate PRNs and do not require the memory
space proportional to the number of the required random
numbers. We can do the same thing on a quantum circuit. That
is, we can sequentially generate pseudorandom bit strings on
a quantum register and calculate the integrand into another
register. On a quantum computer, we can parallelly perform
such computation and finally obtain the superposition of states
in which each of the sampled integrand values is realized on a
register. Then, we can estimate the average of sample values
by the quantum amplitude estimation methods [7,8], which
are commonly used in the quantum algorithm for Monte
Carlo. This procedure leads to the estimation result the same
as classical Monte Carlo, but with quadratic speedup.

We present not only the idea but also concrete implemen-
tation. We propose an example of PRNG which can be easily
implemented on a quantum circuit. It is permuted congruential
generator (PCG) [9] and explained in detail in a later section.
This is the combination of the linear congruential method and
permutation of bit string and has advantages in the aspect of
memory (that is, required qubit number) and computational
load (that is, circuit depth) compared to other types of PRNG,
for example, Mersenne Twister [10]. It is possible to construct
the quantum gate which progresses the PCG sequence as we
present later.

We also consider application to concrete problems. The
first one is credit risk measurement, which is mentioned
above. We later present the quantum circuit which calculates
sampled values of loss of a credit portfolio using PRNG. The
second one is the integration of a simple multivariable func-
tion, that is, a trigonometric function whose phase depends
on two variables. We consider this for demonstrative purpose
and present not only the circuit but also the numerical result
calculated by a simulator.

The rest of this paper is organized as follows. Section II
explains the overview of our idea. Section III presents con-
crete implementation of the gate which realizes PCG. In
Secs. IV and V we consider application to credit risk mea-
surement and a simple integration, respectively. Section VI
contains conclusion and discussion on some issues. Espe-
cially, we discuss the trade-off between qubit number and
circuit depth and importance of such a memory-speed trade-
off on adjustment of calculation configuration, which will be
often necessary when large-scale Monte Carlo by quantum
computer is in practical operation in the future.

II. OVERVIEW OF THE IDEA: QUANTUM ALGORITHM
FOR MONTE CARLO USING PSEUDO-RANDOM NUMBER

A. Our idea

Applications of the quantum algorithm for Monte Carlo
to high-dimensional integration in financial problems can be
found in previous works, especially credit risk measurement
in [3]. In the paper, independent random numbers necessary
to obtain a value of integrand are represented by different
quantum registers, so the number of required qubits Nqubit is
proportional to the number of random numbers Nran. If Nran is
large as in the aforementioned cases, this can lead to shortage
of qubits.

Let us see the method in more detail. The way to represent
a random number by quantum register is as follows. For
example, a qubit with state

√
1 − p |0〉 + √

p |1〉 can be seen
as a Bernoulli random number taking 1 with probability p. We
can also represent a discretized approximation of a continuous
random number like a normal random number on a quantum
register [11]. Then, referring to these registers, the value of the
integrand is computed into another register and its expectation
value is estimated by methods such as [1,8]. Note that this
procedure intends to make a superposition of all possible
patterns of random numbers1 and the integrand value and
estimate the exact expectation value, which we hereafter write
as Etrue.

In order to perform Monte Carlo enjoying quantum speed-
up and reducing qubits, we first note that what we calculate
in classical Monte Carlo is different from that in the quantum
way. That is, we do not consider all patterns of random num-
ber values in the classical Monte Carlo. We sample only a part
of patterns of the random numbers and the integrand and take
a simple arithmetic average of the sampled integrand values as
an approximation for Etrue. In other words, we calculate Esamp,
the expectation value under the sample space which consists
of a part of samples and the probability measure under which
equal probability is allocated to each sample. Besides, in
most cases, we use a sequence of PRN on behalf of random
numbers to calculate the integrand, since strict randomness is
difficult to realize on a classical computer. More concretely,
we usually generate a PRN sequence with NsampNran elements
and divide them into Nsamp subsequences with Nran elements,
then use each subsequence to calculate a sample value of the
integrand.2

Our idea is that we estimate not Etrue but Esamp using
a quantum computer in the way similar to classical Monte
Carlo. Before we describe the calculation flow in this method,
let us state two assumptions necessary for it. The first assump-
tion is that on the integrand. We assume that it takes Nran

random numbers as arguments and is sequentially computed
in Nran steps, each of which requires a random number and
the output of the previous step as inputs. That is, using
the intermediate functions fn, n = 1, . . . , Nran − 1, the value
of the integrand fNran for a given sequence x1, . . . , xNran is
calculated as

y1 = f1(x1),

yn = fn(yn−1, xn) for n = 2, . . . , Nran. (1)

We also assume that fNran is normalized so that 0 �
fNran (y, x) � 1 for any x, y. Second, we assume that we can
choose some PRNG which consumes nPRN bits, including the
random number itself and working space, and construct two

1If a continuous random number is approximated discretely, “all
patterns” means those of the discretized value.

2Mathematically, using such subsequences might raise a statistical
concern for large Nran, in terms of homogeneity of the distribution
of tuples of consecutive PRNs in a high-dimensional space [10].
However, such a way to use PRN is often adopted in practice in
banks. We consider that using a tiny part in a large period PRN
mitigates the concern [12].

022424-2

REDUCTION OF QUBITS IN A QUANTUM ALGORITHM … PHYSICAL REVIEW A 102, 022424 (2020)

types of quantum gate. One is PPRN, which progresses a PRN
sequence by one step, that is,3

|xn〉nPRN
→ |xn+1〉nPRN

, (2)

where xn is the nth element of the PRN sequence. The other is
JPRN, which gives xiNran+1 for given i, that is,

|i〉nsamp
|0〉nPRN

→ |i〉nsamp
|xiNran+1〉nPRN

, (3)

where nsamp is an integer which satisfies 0 < nsamp < nPRN.
We show a concrete example of PRNGs which satisfies this
assumption in Sec. III.

Then, the calculation flow in our method is as follows.
We take Nsamp, the number of samples, as Nsamp = 2nsamp for
simplicity.

(1) Prepare a register Rsamp with nsamp qubits and generate
a superposition of |0〉 , |1〉 , . . . , |Nsamp − 1〉 with equal am-

plitudes, that is, 1√
Nsamp

∑Nsamp−1
i=0 |i〉nPRN

. This can be done by

operating a Hadamard gate to each of the nsamp qubits.
(2) Operate JPRN; then the (iNran + 1)th element of the se-

quence is set to the register RPRN, where i is determined by the
state of Rsamp. These are the starting points of subsequences.

(3) Perform a calculation step of the integral referring to
RPRN and reflect the result into a register Rint. Here, we assume
that the integrand is calculated step by step using each random
number.

(4) Operate PPRN to the register RPRN; then the PRN se-
quence progresses by one step.

(5) Perform a calculation step of the integral referring to
RPRN and reflect the result into a register Rint.

(6) Iterate (4) and (5) until the calculation of the integrand
ends. This corresponds to sequential generation of PRN and
calculation using it. Finally, we obtain an equiprobable su-
perposition of states, in each of which Rint holds a sampled
integrand value.

(7) Prepare an ancilla qubit, which we call Rph, and encode
the integrand value into the amplitude of |1〉 in Rph using
controlled rotations.

(8) Estimate the amplitude of the state where Rph is |1〉 by
the amplitude estimation methods like [7,8]. This is an esti-
mate for the arithmetic average of sampled integrand values,
that is, Esamp.

The flow of state transformation on Rsamp, RPRN, Rint, and
Rph is as follows:

|0〉nsamp
|0〉nPRN

|0〉nint
|0〉

1−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp
|0〉nPRN

|0〉nint
|0〉

2−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
1

〉
nPRN

|0〉nint
|0〉

3−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
1

〉
nPRN

∣∣ f (i)
1

〉
nint

|0〉

3Here and hereafter, a subscript of a ket basically denotes the qubit
number of the register.

4−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
2

〉
nPRN

∣∣ f (i)
1

〉
nint

|0〉

5−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
2

〉
nPRN

∣∣ f (i)
2

〉
nint

|0〉

6−→ . . .

6−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
Nran

〉
nPRN

∣∣ f (i)
Nran

〉
nint

|0〉

7−→ 1√
Nsamp

Nsamp−1∑
i=0

|i〉nsamp

∣∣x(i)
Nran

〉
nPRN

∣∣ f (i)
Nran

〉
nint

× (√
1 − f (i)

Nran
|0〉 +

√
f (i)
Nran

|1〉)
. (4)

Here, x(i)
n = xiNran+n and this is the nth element of the ith

subsequence. nint is the qubit number of Rint. f (i)
1 , . . . , f (i)

Nran

are the values of f1, . . . , fNran for x(i)
1 , . . . , x(i)

Nran
.

We present an outline of the quantum circuit for the above
method in Fig. 1. We also present that for the method in the
previous papers for comparison. In our method, as shown in
Fig. 1(a), after the operation which creates a superposition of
|x(0)

1 〉 , |x(1)
1 〉 , . . . , |x(Nsamp−1)

1 〉 on RPRN and the gate f1, the first
step of calculation of the integrand, we sequentially operate
PPRN and fn, the nth calculation step. The register which
represents (pseudo)random numbers is only RPRN and PRNs
x(i)

n are sequentially generated on it. The intermediate value
of the integrand f (i)

n is calculated into Rint using x(i)
n and f (i)

n−1

as inputs and finally f (i)
Nran

is reached. On the other hand, in
the method in previous works, as shown in Fig. 1(b), quantum
registers RRN,1, . . . , RRN,Nran are prepared to represent all ran-
dom numbers simultaneously and a superposition of numbers
following the desired probability distribution (for example,
normal) is generated on each register by the gate “dist” in
Fig. 1(b). Then, the integrand value is calculated using all of
RRN,1, . . . , RRN,Nran at the same time.

Here we make some comments. The first one is about the
probability distribution of random numbers. In the previous
method, a random number under the desired distribution is
generated on a register using the gate “dist.” On the other
hand, in the method of this paper, sequentially generated
PRNs basically obey uniform distribution, since most PRNGs
are for that distribution. Therefore, we have to convert uniform
random numbers to random numbers obeying a desired distri-
bution. Such a conversion is actually a common step in the
classical Monte Carlo and there are many well-known meth-
ods, for example, the Box-Muller method for standard normal
distribution. We assume such a conversion is implementable
as a quantum gate and contained in fn. Actually, implemen-
tation of trigonometric functions and logarithm, which are
necessary to the Box-Muller method, has been investigated
in previous papers [13–15].

The second comment is about how the distribution of the
integrand value is taken into account in the method of this
paper. In the previous method, the desired distribution of the
integrand value is realized through the distribution of random

022424-3

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 1. Circuits for the quantum algorithm for Monte Carlo. Figures (a) and (b) correspond to the method we propose and that in previous
papers, respectively. These are overviews and ancillas are not shown. Actually, the circuit for amplitude estimation follows the above circuits,
but we omit it. See [7,8] for the detail.

numbers on registers. On the other hand, the distribution of the
integrand value is generated through the PRNG in the method
of this paper. Although the final state is a superposition of
various integrand values with equal probability, the appear-
ance pattern of the value reflects the distribution. For example,
if the integrand value obeys distribution with a peak at some
value F , the integrand values close to F frequently appear on
Rint in the set of states that compose the final superposition.

Finally, we comment on the integrand form such that it
can be computed sequentially. As mentioned above, it is
just an assumption, that is, not all functions can be writ-
ten like this. However, in many cases, the integrand takes
this form; for examples of use cases of Monte Carlo, see
textbooks such as [12]. We here give two frequent cases
which satisfy (1) and include some important problems.
First, the integrand takes the form of (1) if, after fixing
some random numbers, we can write contributions from
remaining random numbers in a separable sum or prod-
uct, that is, fNran (x1, . . . , xNran) = ∑Nran

j=d+1 g j (x j ; x1, . . . , xd) or

fNran (x1, . . . , xNran) = ∏Nran
j=d+1 g j (x j ; x1, . . . , xd), where d is a

small natural number compared with Nran and g j, j = d +
1, . . . , Nran are some functions. The credit portfolio risk mea-
surement, which we will consider later, corresponds to this
case. Second, when we simulate Markov processes, they can
be calculated in the sequential way like above. Pricing of
financial derivative, where the underlying assets are Markov
in many cases, is a typical example of this. Thinking of these
examples, we are well motivated to consider the case where
(1) is satisfied.

B. Relationship between computational load and error

Now, we roughly estimate the relationship between com-
putational load and additive error in three methods: the quan-
tum method we propose, the quantum method proposed in
previous papers, and the classical method. In this paper, we
measure computational load by Norac, the number of times that
we call the oracle in each method. Here, the oracle means
the procedure to calculate the integrand. More concretely, it
is the circuit (that in Fig. 1, in the current case) and the
subroutine to calculate the integrand for the quantum and
classical method, respectively. In fact, in quantum methods,
we have to repeatedly call the oracle circuit for amplitude
estimation with the desired error level and this occupies the
dominant part of the computation. On the other hand, the
classical method requires the sufficient number of sampling
to reduce the error and the computational time is almost
proportional to the sample number.

First, let us consider our method. There are two sources of
error. One is the difference between Esamp and Etrue, which
we write as �TrSm. The other is the estimation error of
Esamp, that is, the error of amplitude estimation, which we
write as �Est. �TrSm is equal to the statistical error in the
classical Monte Carlo. For some fixed confidence level, it
is at most cσ fNran

N−1/2
samp = cσ fNran

2−nsamp/2, where σ fNran
is the

standard deviation of fNran and c is a constant set according
to the confidence level. Note that it depends on not Norac

but nsamp. On the other hand, �Est is estimated as follows.
The quantum algorithm in [7] with Norac oracle calls gives
estimation for the amplitude (that is, Esamp) which differs from

022424-4

REDUCTION OF QUBITS IN A QUANTUM ALGORITHM … PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 2. Errors in various methods for Monte Carlo. The blue solid, dashed, and dotted lines are �our in (5), the errors in the quantum
method which we propose in this paper for various values of nsamp. The solid, dashed, and dotted lines correspond to nsamp = 10, 20, and 30,
respectively. The green chain line is �prev in (11), the error in the quantum methods in the previous papers. The red two-dot chain line is �class

in (9), the error in the classical method. The horizontal axis is the oracle call number Norac. We here set cσ fNran
= 1, 2πd

√
Esamp(1 − Esamp) =

1, 2πd
√

Etrue(1 − Etrue) = 1.

the true value by at most 2πd
√

Esamp(1 − Esamp)N−1
orac with

probability at least 1 − δ. Here, we take only the leading term
with respect to N−1

orac and d is some O(1) constant depending
only on log δ. In total, the error in our method is at most

�our ∼ �TrSm + �Est

� cσ fNran
2−nsamp/2 + 2πd

√
Esamp(1 − Esamp)N−1

orac. (5)

If we desire the error level ε, the following setting is sufficient.
First, we set

Nsamp ∼
(cσ fNran

ε

)2
, (6)

or, equivalently,

nsamp ∼ �2 log2 (cσ fNran
/ε)�, (7)

so that �TrSm ∼ ε. Then, we set

Norac ∼ 2πd
√

Esamp(1 − Esamp)

ε
, (8)

which leads to �Est ∼ ε. Note that Norac does not depend on
Nsamp.

This is actually quadratic speed up compared with the
classical Monte Carlo. In the classical method, the error is

�class ∼ cσ fNran
N−1/2

orac , (9)

as �TrSm in (5). Note that Norac = Nsamp for the classical
method. Then, the required Norac in the method is

Norac ∼
(cσ fNran

ε

)2
(10)

for the desired error ε.
We also mention the error in the previous method of the

quantum-based Monte Carlo. This method estimates Etrue

itself and the error is at most

�prev ∼ 2πd
√

Etrue(1 − Etrue)N−1
orac (11)

for the oracle call number Norac. Note that this estimated error
is nearly equal to �Est in (5). This is because the error of
amplitude estimation is determined by the amplitude itself
and Norac only [7] and the estimated amplitude is almost equal
in both of the previous and our methods as long as �TrSm is
small.

Figure 2 represents the relationship among these
errors in some specific case. We plot �our, �prev,
and �class versus Norac. We here set the prefactors
cσ fNran

, 2πd
√

Esamp(1 − Esamp), 2πd
√

Etrue(1 − Etrue) to
1. Besides, we set nsamp = 10, 20, 30, which correspond
to Nsamp = 210(≈103), 220(≈106), 230(≈109), respectively.
Nsamp = 106 is a typical value in the case of the credit risk
measurement. When �TrSm
 �Est, �our decreases faster
than �class and similar to �prev as Norac increases. After �Est

becomes smaller than �TrSm, �our asymptotically converges
to �TrSm. However, for sufficiently large nsamp, �our reaches
the same order of magnitude as �class for smaller Norac. For

022424-5

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 3. Quantum gates for PCG. Figures (a) and (b) correspond to PPRN and JPRN, respectively.

example, when nsamp � 20, �our reaches the same order of
magnitude as �class for Norac = 106 only for Norac = 103,
smaller by three orders of magnitude. In such a region, our
method has an advantage compared to the classical way.

We also note that increasing nsamp by a few leads to increase
of Nsamp and decrease of �TrSm by orders of magnitude.
NranNsamp cannot exceed P, the period of PRN, but we expect
that it is unnecessary to concern such a upper bound, as long
as we use a widely used PRNG, which has a period, say 264.
At least in the case of the credit risk measurement, this is much
longer than NranNsamp in practice, since each of these is at most
106 and the product is at most 1012 ∼ 240.

III. IMPLEMENTATION OF PSEUDO-RANDOM-NUMBER
GENERATOR ON QUANTUM CIRCUIT

A. PCG

We next consider how to implement a PRNG on a quantum
circuit, that is, the gates PPRN and JPRN. Remembering the
motivation of this work, reduction of qubits, PRNGs which
require small working space are desirable. Besides, in order to
decrease circuit depth as much as possible, we desire a simpler
and shorter calculation step to progress PRN sequence. Of
course, the longer period and better statistical property is
preferred. We propose PCG [9] as a PRNG which satisfies
these properties.

PCG is combination of linear congruential generator
(LCG), a popular and elementary PRNG, and permutation of
bit string. The nth element of a PCG sequence xn is recursively
defined as follows:{

x̃n+1 = f prog
a,c,m(x̃n) := (ax̃n + c) mod m,

xn = g(x̃n),
(12)

where a, c, and m are integer parameters satisfying a >

0, c � 0, m > 0 and the seed x̃0 is also given as an integer
satisfying 0 � x̃0 < m. x̃n is the background sequence and
defined by the LCG recurrence formula as above. g is the
permutation of a bit string, which is explained in detail later.
Therefore, the calculation steps to progress a PCG sequence
is the sequence of modular multiplication, modular addition,
and permutation. Besides, for LCG we can easily jump ahead
by k steps using the following formula:

x̃n+k =
(

akx̃n + c(ak − 1)

a − 1

)
mod m. (13)

Especially, we can obtain x̃iNran+1 from a seed x0 as

x̃iNran+1 = f jump
a,c,m,x̃0,Nran

(i)

: =
(

aiNran+1x̃0 + c(aiNran+1 − 1)

a − 1

)
mod m. (14)

Given the above formulas, we can construct quantum gates
PPRN and JPRN for PCG. The rough images of the circuit
diagrams are shown in Fig. 3. To construct PPRN, we first
get back PCG to LCG with the inverse of g, then progress
LCG with the f prog

a,c,m gate and finally perform the permutation
g. The f prog

a,c,m gate maps |x〉 to | f prog
a,c,m(x)〉 and is constructed

as modular multiplication |x〉 → |ax mod m〉 followed by
modular addition |x〉 → |(x + c) mod m〉. To construct JPRN,
we first operate the f jump

a,c,m,x̃0,Nran
gate, which refers to the first

register as an input and transforms the second register from
|0〉 to |x̃iNran+1〉 if the first register is |i〉, then g to the second
register. The f jump

a,c,m,x̃0,Nran
gate is constructed as a combination

of modular addition, subtraction, multiplication, division, and
exponentiation |k〉 |x〉 → |k〉 |akx mod m〉. Implementation
of (modular) adder, multiplier, and exponentiator has been
investigated in many papers, for example, Refs. [16–27].
Modular subtraction is the inverse of addition. Division by
a − 1 modulo m is implemented as multiplication by an
integer b such that (a − 1)b ≡ 1 mod m, which can be found
by the extended Euclidean algorithm4 [28].

There is a comment on implementation of f prog
a,c,m. It should

be implemented not in the form that it output the result in
the register other than the input register, that is, |x〉 |0〉 →
|x〉 | f prog

a,c,m(x)〉, but in the form that it updates the input reg-
ister itself into the resulting state, that is, |x〉 → | f prog

a,c,m(x)〉.
This is because this gate is repeatedly used in the method
of this paper, so the qubit number required for the entire
calculation explodes if it is necessary to add a register in
each calculation step. Most of the previous implementation
of modular addition are the self-updating type, and so can
be used with no change. On the other hand, some imple-
mentation of modular multiplication output the result into
ancilla, |x〉 |0〉 → |x〉 |ax mod m〉, but the trick described in
[29] solves the problem as follows. First, using an integer
a′ such that aa′ ≡ 1 mod m, we construct a gate which
performs |x〉 |0〉 → |x〉 |a′x mod m〉 and its inverse. Then, we
can implement the following sequence:

|x〉 |0〉 → |x〉 |ax mod m〉
→ |ax mod m〉 |x〉
→ |ax mod m〉 |0〉. (15)

Here, the first, second, and third steps are modular multiplica-
tion by a, swap, and the inverse of modular multiplication by
a′, respectively.

4Such b can be found if and only if a − 1 and m are coprime.
This condition is satisfied for many of widely used combinations of
a and m.

022424-6

REDUCTION OF QUBITS IN A QUANTUM ALGORITHM … PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 4. Quantum gate which performs random rotation. Figure (a) is the overview and (b) is the detail of RotJ , J = 2 j .

B. Permutation

It is well known that LCG suffers from some statistical
flaws. Reference [9] points out that performing permutation
on LCG enhances its statistical properties. Here, permutation
is transformation of binary representation of a PRN to another
bit string. We here take some of the permutations described
in [9] as examples and show how to implement them in a
quantum circuit.

The first one is random rotation. We first divide a n-bit
binary x ∈ Z2n into three parts: the top t bits xh

t , the middle
r bits xm

r , and the bottom n − t − r bits xb
n−t−r , where r is

a power of 2 and t = log2 r. Then random rotation is a map
from Z2n to Z2r , defined as

x �→ σrot
(
xh

t , xm
r

)
. (16)

Here,

σrot (k, y) :=
{

y, k = 0,

yr−k+1 . . . yry1 . . . yr−k, 1 � k � r − 1,

(17)

for an integer k satisfying 0 � k � r − 1, y = y1y2 . . . yr ∈
Z2r and ab . . . represents a bit string whose first digit is a ∈
{0, 1}, second digit is b ∈ {0, 1}, and so on. In short, random
rotation is clockwise rotation of middle digits of a binary
where the rotation width is determined by the value of top
digits. Only the middle digits xm

r are used to calculate the
integrand as a r bit random number. Especially, the bottom
digits xb

n−t−r are discarded since their statistical properties are
not good.

Random rotation is easily implemented in a quantum cir-
cuit using controlled swap gate (Fredkin gate). The circuit
diagram is shown in Fig. 4. The middle bits |xm

r 〉r is rotated by
2t−i bits by Rot2t−i under the control of the top ith bit, for 1 �
i � t . This leads to xh

t -bit rotation of xm
r . We can construct the

gate Rot2 j , j = 0, 1, . . . , t − 1 connecting qubits with swap
gates (actually Fredkin gates since these gates are controlled)
as follows, setting J = 2 j .

(i) Connect |xt+(r/J−2)·J+1〉 and |xt+(r/J−1)·J+1〉,
|xt+(r/J−3)·J+1〉 and |xt+(r/J−2)·J+1〉,...,|xt+1〉, and |xt+J+1〉.

(ii) Connect |xt+(r/J−2)·J+2〉 and |xt+(r/J−1)·J+2〉,
|xt+(r/J−3)·J+2〉 and |xt+(r/J−2)·J+2〉,...,|xt+2〉, and |xt+J+2〉.

(iii) ...
(iv) Connect |xt+(r/J−2)·J+J〉 and |xt+(r/J−1)·J+J〉,

|xt+(r/J−3)·J+J〉 and |xt+(r/J−2)·J+J〉,...,|xt+J〉, and |xt+J+J〉.
That is, there are J groups containing n/J qubits connected

by n/J − 1 swap gates. Note that r/J is an integer.
The second type of permutation is xorshift. This is a map

from Z2n to Z2n defined as follows:

x = x1 . . . xn → x1 . . . xn−sy1 . . . ys,

yi : = xi ⊕ xn−s+i, i = 1, . . . , s. (18)

Here, s is an integer satisfying 1 � s � n − 1 and typically
comparable with n, for example, n/2 as proposed in [9]. Note
that we do not need to take xorshift over the whole qubits
in the PRN register. That is, we can take XOR between top
qubits and middle qubits and discard bottom ones, as random
rotation.

We can construct a gate which performs this permuta-
tion using controlled-NOT (CNOT) gates. That is, put NOT on
|xn−s+i〉 under control by |xi〉, for i = 1, . . . , s, as shown in
Fig. 5. Note the order to set CNOT gates, that is, from bottom to
top. This is necessary in the case where s > n/2 so that some
middle qubits are used as both a target and a control. Such a
qubit must work as a control before it becomes a target.

C. Qubit number and circuit depth

Here, we roughly estimate qubit number and depth of
PCG circuits. We focus on PPRN, which is repeatedly used
to progress PRN sequences. We consider PCG with r-bit
output and n-bit background LCG. n should be so large that
the period, 2n at most, is long enough and r is typically
comparable with n. For example, in many of the settings
considered in [9], n = 64 and r = 32.

The LCG part consists of modular addition and multipli-
cation and dominant contribution comes from the latter. For
n-bit operands, many of the proposed modular adder require
O(n) qubits including ancilla and O(n) depth. On the other

022424-7

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 5. Quantum gate which performs xorshift.

hand, modular multipliers basically require O(n) qubits and
O(n2) depth, so this is dominant in the LCG part.5

The permutation part does not require any ancillas; at least
two examples are mentioned above. Circuit depth is found as
follows. For random rotation on r bits with t = log2 r control
bits, which we considered above, we first note that depth of
swap gates in Rot2 j is r/2 j − 1, since Rot2 j consists of 2 j

groups of r/2 j qubits and r/2 j − 1 swap gates, as explained
above. Summing this up for j = 0, 1, . . . , t − 1, it is found
that the depth of Fredkin gates in the random rotation is 2r −
log2 r − 2, that is, O(r). For xorshift with shift width s, it is
obvious that the depth of CNOT gates is s and if s is comparable
with r, say s = r/2 as considered in [9], so is the depth.

In summary, in terms of both ancilla qubit number and
circuit depth, dominant contribution comes from a multi-
plication and is O(n) and O(n2), respectively. Therefore, if
each calculation step for integrand fi contains computations
heavier than several multiplications, PRN generation makes
subdominant contributions to qubit number and circuit depth.

IV. APPLICATION TO CREDIT RISK MEASUREMENT

A. Merton model

Now, let us consider the application of the aforementioned
method to the actual problem in finance. We take credit risk
measurement, which is mentioned in the Introduction, as an
example. First, we briefly explain the Merton model [6],
which is widely used in practice in many banks.

In this model, the stochastic loss amount L in a credit
portfolio consisting of Nobl obligors is given as follows:

L =
Nobl∑

i

Ei1Zi<zi ,

Zi = αiεcom +
√

1 − α2
i εi. (19)

5There are implementations which have depth proportional to
smaller powers of n than 2 but require ancilla proportional to larger
powers of n than 1 [24].

The meaning of each symbol is as follows. Ei is the exposure
of the ith obligor, that is, the loss arising if he defaults.61C is
the indicator function, which is 1 if the condition C is satisfied
and 0 otherwise. The stochastic variable Zi is interpreted
as “the value of the firm” for the ith obligor. We consider
that he defaults if Zi becomes smaller than a threshold zi.
Usually, given a probability of default pi exogenously, zi is
set as zi = �−1

SN(pi), where �SN is the distribution function for
standard normal distribution and �−1

SN is its inverse. Zi is given
as a linear combination of two independent standard normal
random variables εcom and εi. εcom is common for all obligors
and called a systematic risk factor, which is interpreted as
a factor reflecting the situation of macro economy.7 εi is
called an idiosyncratic risk factor and represents the effect of
the matters unique to the ith obligor on his credit. We take
the coefficient αi such that 0 < αi < 1; therefore, Zi is also
standard normal. αi determines the correlation between Zi for
different obligors: the larger αi means stronger correlation and
a larger probability of simultaneous defaults of many obligors.

B. Calculation of loss using PRNG on a quantum circuit

Then, we describe how to calculate credit risk measures
using a PRNG on a quantum circuit. What we have to develop
is the circuit which calculates stochastic loss amount L. Once
we develop the circuit which creates a superposition of states
in which the value of the loss is encoded in some register,
we can estimate VaR and CVaR as explained in [3]. The
difference between the way in this paper and those in previous
works is how to create such a superposition.

Seeing (19), we notice that the loss L can be written as a
sum of contributions from each obligor and takes the form of
(1) as mentioned above. More concretely, precomputing εcom

and defining

f1(x) = E11x<Y1(εcom),

fi(y, x) = y + Ei1x<Yi (εcom), i = 2, . . . , Nobl, (20)

we can calculate L as

y1 = f1(x1),

y2 = f2(y1, x2),

...

yNobl−1 = fNobl−1(yNobl−2, xNobl−1),

L = fNobl (yNobl−1, xNobl), (21)

using PRNs x1, . . . , xNobl as ε1, . . . , εNobl . Here, Yi(εcom) =
MPRNPi(εcom), where

Pi(εcom) = �SN

⎛
⎝ zi − αiεcom√

1 − α2
i

⎞
⎠ (22)

is the conditional probability that the ith obligor defaults given
εcom and MPRN is the maximum number that the PRN can take.

6Here, we assume that loss given default is 1.
7Although we consider the case there is a single systematic risk

factor, we can extend the model with multiple ones.

022424-8

REDUCTION OF QUBITS IN A QUANTUM ALGORITHM … PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 6. Quantum circuit to calculate the loss amount in the Merton model. Figure (a) is the overview. Figure (b) is the detail of fi. The first,
second, and fourth registers are RPRN, Rcom, and RL , respectively. The third register, to which the result of comparison is output, is omitted
in (a).

The concrete calculation flow to obtain one sample value
of L is as follows.

(1) Generate a standard normal random variable and let it
be εcom.

(2) Set i = 1 and L = 0.
(3) Set the first elements of the PRN sequence x1.
(4) Calculate Yi(εcom).
(5) Compare xi with Yi(εcom). If the former is smaller than

the latter, update L ← L + Ei.
(6) If i = Nobl, finish. Otherwise, progress the PRN se-

quence to get xi+1, update i ← i + 1, and go to (4).
The above flow is performed by the circuit in Fig. 6.

As explained in Sec. II, we first create a superposition of
|x(1)

1 〉nPRN
, . . . , |x(Nsamp−1)

1 〉nPRN
on RPRN using H⊗nsamp and JPRN.

These are starting elements of PRN sequences. Besides, we
create a superposition of x, that is, numbers which obey the
standard normal distribution in the register Rx. This is done
by the method described in [11] and depicted as the gate “SN”
in Fig. 6. Then, progressing the PRN sequence by PPRN, L is
sequentially calculated by f1, . . . , fNobl .

In fi, at first, x is converted to Yi(x) by the gate Yi.8 We
here simply assume that such a gate exists. In [2,3], several
ways to calculate such a function on a quantum computer
are proposed, for example, linear approximation or piecewise
polynomial approximation [13]. Then xi is compared with
Yi(x) and an ancillary qubit is set to 1 if xi > Yi(x). Such a
comparator has been presented in [30]. With the control by

8In practice, parameters such as pi and αi are not set for each
obligor individually. Instead, obligors are grouped in terms of in-
dustry sector or rating and the same parameter values are given in
obligors in each group. In such a case, it is not necessary to operate
Yi for each i, but sufficient to operate once per group.

the ancilla, Ei is added to the loss register RL. The controlled
adder is also presented in previous papers, such as [16].
Finally, the inverses of Yi and comparison are performed to
uncompute Rx and the ancilla.

V. DEMONSTRATION: APPLICATION TO INTEGRATION
OF SIMPLE MULTIVARIABLE FUNCTION

Although the method proposed in this paper reduces re-
quired qubits, the circuit presented in the last section is still
too large to perform in simulators or machines which can be
publicly used today. We therefore consider a more small-scale
problem performable in a simulator. It is an integral of a
trigonometric function

I = 1

θNvar

∫ θ

0
dx1 · · ·

∫ θ

0
dxNvar sin2

(
Nvar∑
i=1

xi

)
, (23)

which is the multivariable version of the problem considered
in [8]. Note that the phase in the sin function depends on
Nvar variables. A naive way to calculate such a multivariable
integration numerically is discretization, that is, taking the
sum of the integrand values on grid points set with equal
interval in each axis,

I � 1

NNvar

N−1∑
i1=0

· · ·
N−1∑

iNvar =0

sin2

⎛
⎝ Nvar∑

j=1

i j + 1/2

N
θ

⎞
⎠, (24)

where N is the number of intervals in each axis.
However, in a brute force summation like this, the com-

putational load increases exponentially with the number of
variables since the number of grid points is NNvar . So the
alternative way is Monte Carlo integration, that is, taking
the average of the integrand values on grid points which are
randomly sampled using PRNG. More specifically, taking an
r-bit PRN sequence {xi}i=1,2,..., where xi ∈ {0, 1, . . . , 2r − 1},

022424-9

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

FIG. 7. Quantum circuit for the integration (25). Figure (a) is the overview. Figure (b) is the detail of f . Here, |x1〉 , . . . , |xr〉 are qubits in
RPRN used as a r bit random number. |x1〉 is the most significant digit and |xr〉 is the least one.

we make the approximation as

I � 1

Nsamp

Nsamp−1∑
i=0

sin2

⎛
⎝ Nvar∑

j=1

x(i)
j + 1/2

2r
θ

⎞
⎠, (25)

where x(i)
j = xiNvar+ j . Note that (x(i)

j + 1/2)/2r is the pseudo-
random number which takes one of 2r grid points in an axis,
1/2r+1, (1 + 1/2)/2r, . . . , (2r − 1 + 1/2)/2r .

Note that we can use the method we proposed to calculate
(25), since (25) is in the form of (1). Defining

f1(x) = x + 1/2

2r
θ,

f2(y, x) = y + x + 1/2

2r
θ,

...

fNvar−1(y, x) = y + x + 1/2

2r
θ,

fNvar (y, x) = sin2

(
y + x + 1/2

2r
θ

)
, (26)

we can calculate a sample value of the integrand f (i) =
sin2 (

∑Nvar
j=1

x(i)
j +1/2

2r θ) as

y(i)
1 = f1

(
x(i)

1

)
,

y(i)
2 = f2

(
y(i)

1 , x(i)
2

)
,

...

y(i)
Nvar−1 = fNvar−1

(
y(i)

Nvar−2, x(i)
Nvar−1

)
,

f (i) = fNvar

(
y(i)

Nvar−1, x(i)
Nvar

)
. (27)

In fact, we perform the calculation in a slightly different
way from (27), since there is a more efficient way in this case.
The quantum circuit for the calculation is shown in Fig. 7. In
the circuit, we do not compute the integrand value on a register
then rotate the phase of an ancilla with control of the register

as (4), but sequentially rotate the ancilla’s phase according
to the PRN value. More concretely, the implementation is
as follows. In addition to Rsamp and RPRN, the circuit has an
ancilla, which we hereafter write as Rrot. The value of the
integration (25) is encoded into its phase by the gate f in
Fig. 7. This gate is a sequence of rotations around y-axis Ry

controlled by output qubits in RPRN.9 That is, if Rrot is in the
state cos α |0〉 + sin α |1〉 for some real number α and RPRN

is in the state corresponding to a random number x before f ,
going through it transforms the state as follows:

cos α |0〉 + sin α |1〉 → cos

(
α + x + 1/2

2r
θ

)
|0〉

+ sin

(
α + x + 1/2

2r
θ

)
|1〉, (28)

that is, rotation by the angle x+1/2
2r θ . Therefore, starting from

the state in which all registers are 0, the entire circuit trans-
forms the state as follows:

|0〉all : = |0〉nsamp
|0〉nPRN

|0〉

→ 1√
Nsamp

Nsamp∑
i=1

|i〉nsamp

∣∣x(i)
Nvar

〉
nPRN

⊗

⎡
⎢⎣ cos

⎛
⎝ Nvar∑

j=1

x(i)
j + 1/2

2r
θ

⎞
⎠ |0〉

+ sin

⎛
⎝ Nvar∑

j=1

x(i)
j + 1/2

2r
θ

⎞
⎠ |1〉

⎤
⎥⎦. (29)

So the probability to observe |1〉 is equal to (25).

9Note that not all qubits in RPRN represent output random numbers.
For example, bottom bits in PCG are not used due to poor statistical
property.

022424-10

REDUCTION OF QUBITS IN A QUANTUM ALGORITHM … PHYSICAL REVIEW A 102, 022424 (2020)

TABLE I. Values of the integral obtained in various ways.

(i) Exact value of the original integral 0.074578
(ii) Exact average of integrand values on sample points 0.078394
(iii) Estimate by the method in Sec. V 0.078391

The probability to observe |1〉 can be estimated, for exam-
ple, in the way proposed in [8], which we here explain briefly.
First we construct the operation

Q = −AS0A−1Sχ , (30)

where A corresponds to the entire circuit in Fig. 7, S0 mul-
tiplies −1 to the state if all qubits are 0 or does nothing
otherwise, and Sχ multiplies −1 to the state if Rrot is 1
or does nothing otherwise. If we write the probability to
observe |1〉 in Rrot in A |0〉all as sin2 θa, where θa ∈ [0, π/2],
that in |�m〉 := QmA |0〉all is sin2[(2m + 1)θa]. So, choosing a
set of non-negative integers m0, m1, . . . , mM and making Nk

observations of Rrot in |�mk 〉 for each mk , we can estimate θa

as the maximum point of the following likelihood function:

Llik (θa) : =
M∏

k=0

{sin2[(2mk + 1)θa]}hk

× {cos2[(2mk + 1)θa]}Nk−hk , (31)

where hk is the number of observations where Rrot is |1〉 in
|�mk 〉.

We have performed the actual calculation based on the
above method using the quantum circuit simulator Qiskit of
IBM [31]. The detailed setting is as follows. We estimate the
integral (23) for θ = π/6 and Nvar = 2. Although such a two-
dimensional integral can be done analytically, the problem
must be small scale enough to be performed in the simulator
and we consider it to be sufficient for a proof of concept. For
PRNG, we use LCG with parameters a = 11, c = 0, m = 31
and the seed 1. Then the PRN is 5-bit and the period is 30.
We take Nsamp = 8 sample points, so using 16 elements in the
PRN sequence. Of course there are statistical concerns on the
estimate based on such a small number of samples generated
by such a small-scale PRNG, but it is inevitable in calculation
on a simulator and sufficient for the current proof-of-concept
purpose. If we can use a real quantum computer with sufficient
qubits, say 100, we should use PCG under an appropriate
setting: with sufficiently many qubits (say, 32-bit output and
64-bit background LCG), widely used LCG parameters, and
permutation recommended in [9]. For the implementation
of LCG, we use the adder presented in [27] and construct
modular adder, multiplier, and exponentiator based on the
adder following the way in [16]. For θa estimation, we take
M = 8, Nk = 100, and mk = 2k , as in [8].

We show the result in Table I. At the time when the integral
(23) is approximated as (25), some error arises. This is the
difference between (i) and (ii) in Table I, which will become
smaller if we can take more sample points generated by a
larger-scale PRNG. Estimation by quantum computer should
converge to (ii), and the estimation obtained actually (iii) is
close to (ii) as expected.

VI. CONCLUSION AND DISCUSSION

In this paper, we considered reduction of a qubit number
in the quantum algorithm for Monte Carlo. Although its
applications to problems in finance are proposed in previous
works, high dimensionality of some of such problems requires
many qubits if a quantum register is prepared for each of
the random numbers required to calculate one sample value
of the integrand. Especially, for credit risk measurement,
the required qubit number is proportional to the number of
obligors, which can be O(106). Then we proposed a way to
reduce the qubit number. Considering the difference between
what we calculate in the previous way of quantum-based
Monte Carlo and that in classical Monte Carlo, we pointed
out that estimating the average of sampled integrand values,
which is calculated in classical Monte Carlo, by the quantum
algorithm provides us with both quantum speed-up and qubit
reduction. We saw that such a way is realized by the PRNG
on quantum computer and presented a candidate for a PRNG
implementable on a quantum computer, PCG, with concrete
circuit diagrams. We also described how to implement credit
risk measurement using PRNG on a quantum computer and
demonstrated a simple integral on a quantum circuit simulator
as a proof of concept.

As a final note, let us consider the trade-off between
qubit number and circuit depth. It is clear that qubit number
reduction proposed in this paper increases circuit depth. It
is change of the design of the circuit, from that parallelly
generate random numbers in different registers to that sequen-
tially generate them in a register.10 Therefore, circuit depth is
now proportional to the number of random numbers Nran.11

This might make full reduction of qubit number by this way
impractical. Without quantum error correction [32–34], which
is expected not to be realized in near-term quantum computer,
such a deep circuit will not be performable. Even if a machine
with error correction is developed, deep circuits might suffer
from long runtime of fault-tolerant gates [3,35] and quantum
computation with small computational load might not neces-
sarily lead to short computational time.

However, we consider the above trade-off itself meaning-
ful. Even if a quantum computer with large qubit number
becomes in operation in the future, management of memory
(that is, qubit) will be an important issue when it is applied
to large-scale problems such as credit risk measurement.
That is, when fully parallel computation is impossible due
to shortage of memory, we have to perform some procedures
in sequence. This is an issue which frequently arises also in
today’s classical computation.

10Here, “parallel” means not parallel computation in quantum
superposition but that in separate memories, which is possible also
in classical computers.

11Note that, depending on problems, circuit depth can be propor-
tional to Nran even if random numbers are generated on different
registers. That is, if there is no other way than calculating the inte-
grand using random numbers in sequence, circuit depth is inevitably
O(Nran), whether we generate random numbers sequentially or par-
allelly. Calculation of loss in a credit portfolio can be parallelized, as
explained in [3].

022424-11

KOICHI MIYAMOTO AND KENJI SHIOHARA PHYSICAL REVIEW A 102, 022424 (2020)

The method proposed in this paper provides a way to solve
such a problem in large-scale Monte Carlo simulation by
quantum computer. Consider the situation where Nran random
numbers are required to calculate the integrand but the avail-
able machine has so small a number of qubits that only Nran/n
random numbers can be generated at the same time, where n
is an integer satisfying n � 2. In such a case, we can parallelly
generate Nran/n PRN sequences with n elements, calculate a
part of the integrand using the elements in each sequence one
by one, and finally merge partial results to obtain the entire
integrand value.12 This leads to the circuit depth proportional
to n. This is partial but maximum parallelism which can be

done in the machine, although the depth is n times larger than
the full parallelism.

ACKNOWLEDGMENTS

The authors thank S. Uno of Mizuho Information & Re-
search Institute and K. Yoshino, N. Takeda, and K. Kaneko of
Mizuho-DL Financial Technology for helpful comments.

12Again, this is possible only if the integrand allows such calcula-
tion.

[1] A. Montanaro, Quantum speedup of Monte Carlo methods,
Proc. R. Soc., Ser. A 471, 2181 (2015).

[2] S. Woerner et al., Quantum risk analysis, npj Quantum Inf. 5,
15 (2019).

[3] D. J. Egger et al., Credit risk analysis using quantum computers,
arXiv:1907.03044.

[4] P. Rebentrost, B. Gupt, and T. R. Bromley, Quantum compu-
tational finance: Monte Carlo pricing of financial derivatives,
Phys. Rev. A 98, 022321 (2018).

[5] N. Stamatopoulos et al., Quantum 4, 291 (2020).
[6] R. C. Merton, On the pricing of corporate debt: The risk

structure of interest rates, J. Finance 29, 449 (1974).
[7] G. Bassard et al., Quantum amplitude amplification and estima-

tion, Contemp. Math. 305, 53 (2002).
[8] Y. Suzuki et al., Quantum Inf. Process. 19, 75 (2020).
[9] M. E. O’Neill, PCG: A family of simple fast space-efficient

statistically good algorithms for random number generation,
Harvey Mudd College Computer Science Department Technical
Report, 2014; http://www.pcg-random.org/

[10] M. Matsumoto et al., Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,
ACM Trans. Model. Comput. Simul. (TOMACS) 8, 3 (1998).

[11] L. Grover et al., Creating superpositions that correspond
to efficiently integrable probability distributions, arXiv:quant-
ph/0208112.

[12] P. Glasserman, Monte Carlo Methods in Financial Engineering
(Springer, New York, 2003).

[13] T. Häner, M. Roetteler, and K. M. Svore, Optimizing quantum
circuits for arithmetic, arXiv:1805.12445.

[14] Y. Cao et al., Quantum algorithm and circuit design solving the
Poisson equation, New J. Phys. 15, 013021 (2013).

[15] M. K. Bhaskar et al., Quantum algorithms and circuits for
scientific computing, Quantum Inf. Comput. 16, 0197 (2016).

[16] V. Vedral, A. Barenco, and A. Ekert, Quantum networks for
elementary arithmetic operations, Phys. Rev. A 54, 147 (1996).

[17] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill,
Efficient networks for quantum factoring, Phys. Rev. A 54, 1034
(1996).

[18] T. G. Draper, Addition on a quantum computer, arXiv:quant-
ph/0008033.

[19] S. A. Cuccaro et al., A new quantum ripple-carry addition
circuit, arXiv:quant-ph/0410184.

[20] Y. Takahashi et al., A linear-size quantum circuit for addition
with no ancillary qubits, Quantum Inf. Comput. 5, 440 (2005).

[21] R. Van Meter and K. M. Itoh, Fast quantum modular exponen-
tiation, Phys. Rev. A 71, 052320 (2005).

[22] T. G. Draper et al., A logarithmic-depth quantum carry-
lookahead adder, Quantum Inf. Comput. 6, 351 (2006).

[23] Y. Takahashi et al., Quantum addition circuits and
unbounded fan-out, Quantum Inf. Comput. 10, 0872
(2010).

[24] L. A. B. Kowada, R. Portugal, and C. M. H. Figueiredo,
Reversible Karatsubas algorithm, J. Univ. Comput. Sci. 12, 499
(2006).

[25] J. J. Alvarez-Sanchez et al., A quantum architecture for mul-
tiplying signed integers, J. Phys.: Conf. Ser. 128, 012013
(2008).

[26] Y. Takahashi et al., A fast quantum circuit for addition with few
qubits, Quantum Inf. Comput. 8, 636 (2008).

[27] H. Thapliyal et al., Design of efficient reversible logic based
binary and BCD adder circuits, J. Emerg. Technol. Comput.
Syst. 9, 1 (2013).

[28] D. E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (Addison-Wesley, Redwood City,
CA, 1981).

[29] I. L. Markov et al., Constant-optimized quantum circuits
for modular multiplication and exponentiation, Quantum Inf.
Comput. 12, 0361 (2012).

[30] D. S. Oliveira and R. Ramos, Quantum bit string comparator:
Circuits and applications, Quantum Computers and Computing
7, 17 (2007).

[31] G. Aleksandrowicz et al., Qiskit: An open-source framework
for quantum computing, 2019; https://qiskit.org/

[32] P. W. Shor, Fault-tolerant quantum computation, in Proceedings
of the 37th Annual Symposium on Foundations of Computer
Science, FOCS ’96 (IEEE Computer Society, Washington, DC,
1996), pp. 56.

[33] A. Y. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[34] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[35] A. G. Fowler et al., Low overhead quantum computation using
lattice surgery, arXiv:1808.06709.

022424-12

https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1038/s41534-019-0130-6
http://arxiv.org/abs/arXiv:1907.03044
https://doi.org/10.1103/PhysRevA.98.022321
https://doi.org/10.22331/q-2020-07-06-291
https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1007/s11128-019-2565-2
http://www.pcg-random.org/
https://doi.org/10.1145/272991.272995
http://arxiv.org/abs/arXiv:quant-ph/0208112
http://arxiv.org/abs/arXiv:1805.12445
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.1034
http://arxiv.org/abs/arXiv:quant-ph/0008033
http://arxiv.org/abs/arXiv:quant-ph/0410184
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1088/1742-6596/128/1/012013
https://doi.org/10.1145/2491682
https://qiskit.org/
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/arXiv:1808.06709

