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We consider the problem of demonstrating non-Bell-local correlations by performing local measurements
in randomly chosen triads, i.e., three mutually unbiased bases, on a multipartite Greenberger-Horne-Zeilinger
state. Our main interest lies in investigating the feasibility of using these correlations to certify multipartite
entanglement in a device-independent setting. In contrast with previous works, our numerical results up to the
eight-partite scenario suggest that if each triad is randomly but uniformly chosen according to the Haar measure,
one always (except possibly for a set of measure zero) finds Bell-inequality-violating correlations. In fact, a
substantial fraction of these is even sufficient to reveal, in a device-independent manner, various higher-order
entanglement. In particular, for the specific cases of three parties and four parties, our results—obtained from
semidefinite programming—suggest that these randomly generated correlations always reveal, even in the
presence of a non-negligible amount of white noise, the genuine multipartite entanglement possessed by these
states. In other words, provided local calibration can be carried out to good precision, a device-independent
certification of the genuine multipartite entanglement contained in these states can, in principle, also be carried
out in an experimental situation without sharing a global reference frame.
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I. INTRODUCTION

An intriguing feature of quantum theory is that, even
after being separated far apart, it is still possible for dis-
tant parties sharing an appropriate entangled state to pro-
duce strongly correlated measurement outcomes [1]. Even
more astonishingly, Bell showed that such synchronized be-
havior between spatially separated subsystems cannot ad-
mit a local-hidden-variable [2], or, more generally, a locally
causal [3] description—a fact that is often referred to as
(quantum) nonlocality. Importantly, such a phenomenon has
now been demonstrated in a couple of so-called loophole-
free Bell experiments [4–7], under strict locality condi-
tion in a tripartite scenario [8], as well as over a great
distance [9].

Following the advent of quantum information science,
Bell-nonlocal [10] (hereafter abbreviated as nonlocal) cor-
relations have assumed a fundamentally different role. For
example, their presence signifies the security [11] of certain
quantum key distribution (QKD) protocols, even when one
only makes minimal assumptions [12]. Similarly, Mayers and
Yao [13,14] found that certain extremal nonlocal correlation
can be used to self-test quantum apparatus, i.e., to certify
that the underlying state and the measurements employed
are—modulo irrelevant degrees of freedom—essentially as
expected. These findings laid the foundations of the thriv-
ing field of device-independent (DI) quantum information

*ycliang@mail.ncku.edu.tw

[10,15], where nontrivial conclusions can be drawn directly
from the observed data.

It is worth noting that, although no assumption about the
internal workings is needed in making a DI statement, the
implementation of any protocol that relies on Bell-nonlocality
still requires the spatially separated parties to perform some
well-chosen local measurements. Often, this is achieved by
getting the distant parties to share a reference frame—a task
that is not necessarily trivial, especially if one is moving
rapidly with respect to the other, as in the case of a Bell
test performed between a satellite-based experimenter and a
ground-based experimenter [9].

For the task of QKD, Laing et al. [16] have proposed a
reference-frame-free protocol to circumvent the problem. In
the context of demonstrating a Bell violation, a first proposal
was given in Ref. [17] to bypass this technical requirement
by performing measurements in two randomly, but uniformly
chosen bases. In particular, it was found that if the n parties
share a Greenberger-Horne-Zeilinger (GHZ) state and each
chooses their two measurement bases randomly, then the
chance that they would succeed in demonstrating a Bell-
inequality violation increases rapidly with n. Moreover, this
chance improves significantly [17] if the two local measure-
ments are further restricted to be mutually unbiased [18,19].

A couple of further investigations have since been con-
sidered. First, it was shown in Ref. [20] that—for n up to
six—the findings of Ref. [17] are robust against some local
noise models. Furthermore, if the distant parties could share
a direction (instead of a full reference frame) and perform
their two mutually unbiased measurements on the same two-
dimensional plane, then the chance of violation is provably
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unity. Subsequently, it was independently shown in Refs. [21]
and [22] that, even if no common direction is shared, for
n = 2, the chance of violation remains as unity if each party
is allowed to perform, instead, local measurements in a triad,
i.e., three mutually unbiased bases. This observation, in par-
ticular, has led to the different kind of reference-frame-free
(DI) QKD protocol considered in Ref. [23].

Besides, it was also found in Ref. [21] that even without
requiring the local measurements to be mutually unbiased, the
probability of violation can also be boosted to (near) unity
by making the number of measurement bases sufficiently
large. On the other hand, Ref. [22] also considered the same
problem for n up to six and showed numerically that not only
is the probability of violation (except for the case of n = 3)
always equals unity, but the corresponding Mermin-Ardehali-
Belinskii-Klyshko (MABK) [24–27] Bell-inequality violation
is also robust against white noise. More recently, Senel et al.
[28] revisited this problem for n = 3, 4, 5 and investigated
(using MABK and a few other Bell-type inequalities) the
probability that such randomly generated correlations would
reveal either genuine n-partite entanglement or so-called gen-
uine multipartite nonlocality [29]. Finally, it is worth noting
that when the measurements are not restricted to be triads,
some other exhaustive investigations have been carried out in
the multiqubit scenario [30,31], in the two-qudit scenario [32]
(see also Ref. [33] for an experimental demonstration in the
tripartite scenario).

Although the analysis of Ref. [28] is interesting, it is
somewhat too restrictive because the family of MABK Bell
inequalities is not the only (facet) Bell inequality defined for
these Bell scenarios. In fact, even for the purpose of revealing
so-called genuine n-partite entanglement, there is no reason to
consider only facet Bell inequalities. In addition, in the event
that one fails to reveal n-partite entanglement, it may still be
possible to certify that the correlation must have originated
from a quantum state with more than two-party entanglement,
i.e., having an entanglement depth [34] >2. In this regard, we
revisit the problem and extend the analysis of Refs. [22,28]
to (1) include the case of n = 7, 8, (2) consider the complete
set of facet Bell inequalities (explicitly for the three-partite
scenario, and implicitly for n > 3), and (3) consider a general
device-independent witness that is not necessarily due to a
facet Bell inequality.

In particular, we begin by explaining the concepts and the
tools that we employ in Sec. II. Then, our results concerning
the certification of entanglement depth using specific Bell-like
inequalities are presented in Sec. III. Analogous results ob-
tained without resorting to particular Bell inequalities together
with their white-noise robustness are summarized in Sec. IV.
We conclude with a discussion and possible future directions
in Sec. V.

II. PRELIMINARIES

A. Various sets of correlations and their membership test

We now introduce concepts that are relevant to the
current investigation. Consider an n-partite Bell experi-
ment where each party has a choice over m measure-
ment settings and where each measurement results in one

of k possible outcomes. We denote the correlation, i.e.,
the conditional probability distributions of observing out-
comes �an := (a1, a2, . . . , ai, . . . , an) given settings �xn :=
(x1, x2, . . . , xi, . . . , xn) by �P := {P(�an|�xn)}�an,�xn ; here xi and ai

are, respectively, the label of the measurement setting chosen
and the measurement outcome observed by the ith party.
Throughout, we use the notation (n, m, k) to refer to the Bell
scenario being considered. For instance, (3,3,2) refers to a
Bell scenario involving three parties, and with each of them
performing three dichotomic measurements. In this work, we
shall only focus on Bell scenarios (n, 2, 2) and (n, 3, 2), where
n = 3, 4, . . . , 8. For concreteness, the labels are then assumed
to take the values of ai ∈ {0, 1}, i ∈ {1, 2, . . . , n}, xi ∈ {0, 1},
and xi ∈ {0, 1, 2}, respectively for m = 2 and m = 3.

Depending on the resource shared by the parties, the set
of correlations �P that they can generate would have to satisfy
different mathematical constraints. For example, if the parties
only have access to shared randomness, then �P satisfies

P(�an|�xn) =
∑

λ

P(λ)
n∏

i=1

δai, fi (xi,λ), (1)

for some choice of local response functions fi(xi, λ) and
some weight P(λ) � 0 such that

∑
λ P(λ) = 1. Correlations

satisfying Eq. (1) are said to be Bell-local [10] (hereafter
abbreviated as local) and we denote the set of all these �P
as L (or L(n,m,k) if we want to be precise about the exact
symmetric Bell scenario involved). It is worth noting that, for
finite n, m, k, there are only a finite number of deterministic
strategies fi(xi, λ)—L is thus a (convex) polytope [10].

On the other hand, if a quantum state ρ is shared by the
participants and the correlation is generated by them perform-
ing a local measurement on their respective subsystem, then
according to Born’s rule, �P takes the form of

P(�an|�xn) = tr

(
ρ

n⊗
i=1

Mai|xi

)
, (2)

where {Mai|xi}ai,xi is the positive-operator-valued-measure rep-
resenting the xi-measurement of the ith party. We denote the
set of such conditional quantum distributions by Q (or by
Q(n,m,k) if we want to be precise about the Bell scenario
involved). It is well known that L ⊂ Q and as was first shown
by Bell [2], the inclusion is strict.

To make it evident that a given �P �∈ L, one can employ
a witness, called a Bell inequality [2], which can be written
without loss of generality as

I ( �P) :=
∑
�a,�x

β �x
�aP(�a|�x)

L
� IL

Q
� IQ. (3)

This means that for all �P ∈ L, the value of the linear combina-
tion of P(�an|�xn) specified by β �x

�a is upper bounded by IL. As a
result, if one observes a value of I ( �P) greater than IL, it must
be that �P �∈ L, and this conclusion follows regardless of how
�P is generated from the underlying state and measurements.
This independence from the internal workings of the device
is the basis of so-called device-independent (DI) quantum
information [15], where one draws nontrivial conclusions
about the nature of the employed devices directly from the
observed data.
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In a similar manner, one can also consider more refined
separations arising from the differences in the many-body
entanglement possessed by the shared quantum resource [35].
For instance, one may require that the shared state ρ is k pro-
ducible [36], i.e., ρ can be written as a convex combinations
of k-producible pure states:

|ψ〉 = |φ(1)〉 ⊗ |φ(2)〉 ⊗ · · · ⊗ |φ(m)〉, (4)

where each tensor factor |φ(i)〉 involves at most k parties. From
this definition, it follows that a k′-producible state is also k
producible for all k � k′. Hence if we denote by Qn,k the set
of correlations obtainable via Eq. (2) when ρ is n-partite but
k producible (1 � k � n),1 then L = Qn,1 ⊆ Qn,2 ⊆ · · · ⊆
Qn,n−1 ⊆ Q. Here, the first equality follows from the fact that
a one-producible state is fully separable and such states cannot
[37] violate any Bell inequality. On the other hand, the last
inclusion follows from the fact that, in an n-partite scenario,
the set of n-producible quantum states is simply the set of all
n-partite quantum states.

As a result, if we denote by Ik-prod. the maximal value of
I ( �P) [cf. Eq. (3)], attainable by �P ∈ Qn,k , then

I ( �P)
L
� I1-prod.

Qn,2

� I2-prod. � · · ·
Qn,n−1

� I(n-1)-prod.

Q
� IQ. (5)

Thus, in analogy to the idea of witnessing a nonlocal correla-
tion �P using a Bell inequality, if a value greater than I(k-1)-prod.

is observed, the underlying quantum state ρ cannot be (k − 1)
producible. In particular, a quantum state that is k producible
but not (k − 1) producible is said to have an entanglement
depth of k [34]. Consequently, an inequality like

I ( �P)
Qn,k

� Ik-prod. (6)

is said to be a device-independent witness for entanglement
depth (DIWED) [38] because it allows one to certify that the
shared state must have an entanglement depth (ED) of k + 1
or more (see, e.g., Refs. [38–44] for some explicit examples).

Crucially, since the labels of the measurement settings
xi, the measurement outcomes ai, and even the party i
are arbitrary, one can start from any given DIWED [cf.
Eq. (6)], and generate a different, but equivalent DIWED
via relabeling. For example, one may apply to β �x

�a the per-
mutation of label i = 1 ↔ i = n, as well as ai = 0 ↔ ai = 1
to some (or all) of the measurement outcomes. With some
thought, it should be clear that the resulting inequality is still
a valid DIWED for all �P ∈ Qn,k . As such, one may start from
Eq. (6) and generate an entire family of other equivalent

DIWEDs I j ( �P) = ∑
�a,�x � j (β �x

�a )P(�a|�x)
Qn,k

� Ik-prod. by simply
applying a permutation � j on these labels attached to β �x

�a .
Since each of these DIWEDs is satisfied by all �P ∈ Qn,k , the
set of �P satisfying such a family of DIWEDs would form a
polytopic superset of Qn,k .

1The notation for a quantum k-producible set, which contains only
two subscripts and without any brackets, is not to be confused with
that for the full quantum set Q(n,m,k) defined for the specific Bell
scenario (n, m, k).

Indeed, for any given quantum correlation �P, the violation
of a given DIWED (or any equivalent DIWED obtained
from relabeling) is not the only means to lower-bound the
underlying entanglement depth. In particular, as explained
in Appendix G of Ref. [38], deciding if a given �P lies in
Qn,k can be achieved by solving a hierarchy of semidefinite
programs (SDPs), each giving a tighter outer approximation
of Qn,k . Let us denote the 	th level outer approximation of
Qn,k (see Refs. [38,45]) by S (	)

n,k , i.e., Qn,k ⊆ S (∞)
n,k ⊆ · · · ⊆

S (	)
n,k ⊆ · · · ⊆ S (2)

n,k ⊆ S (1)
n,k , then it is worth noting that each S (	)

n,k

is convex but generally not polytopic. For any given �P, its
membership with respect to S (	)

n,k (and hence to Qn,k) can be
decided by solving the following SDP:

sup v

s.t. �P(v) := v �P + (1 − v) �Pw ∈ S (	)
n,k ;

v � 0,

(7)

where �Pw is the white noise, i.e., the uniform probability distri-
bution, and the membership test with respect to S (	)

n,k requires
only the implementation of matrix positivity constraints.

Note that v = 0 is always a feasible solution to the SDP
since �Pw ∈ L = Qn,1 ⊆ S (	)

n,k for all 	 and all k � 1. From the

convexity of S (	)
n,k , it follows that, if �P ∈ S (	)

n,k , the optimum
value to the problem, denoted by v∗, satisfies v∗ � 1. On the
other hand, the convexity of S (	)

n,k also implies that v∗ must

be strictly less than one whenever �P �∈ S (	)
n,k . In other words,

if v∗ (often referred to as the white-noise visibility, or simply
visibility) is less than one for any 	, then �P �∈ S (	)

n,k ⊃ Qn,k , and

thus the quantum state giving rise to �P must have an ED of
k + 1 or higher. This is the tool that allows us to go beyond the
investigation of Refs. [22,28], which considers only specific
Bell inequalities or DIWEDs.

For comparison, let us also note that, whenever a DIWED
such as Eq. (6) is violated by some �P′, a corresponding white-
noise visibility with respect to this witness can be computed
[cf. Eq. (7)] as

v = I ( �Pw ) − Ik-prod.

I ( �Pw ) − I ( �P′)
. (8)

If the local measurements leading to this violation gives,
instead, �Pw when acting on the maximally mixed state 1

2n , this
visibility can also be understood [46] as the infimum of the v

needed for the state

ρ(v) = v|GHZn〉〈GHZn| + (1 − v)
1

2n
(9)

to violate the given witness for the very same local measure-
ments. Evidently, the visibility v obtained from Eq. (8) is al-
ways larger than or equal to the visibility obtained by solving
Eq. (7) because the latter involves an implicit optimization
over all possible witnesses. These concepts are illustrated
schematically in Fig. 1. Before concluding this section, let us
also recall that, for relatively simple Bell scenarios, the mem-
bership test of L = Qn,1 can be carried out exactly (rather than
relying on a membership test of outer approximations) as the
problem reduces to a linear program over a convex polytope.
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QS( )
n,k

Qn,k

L = Qn,1

PwPw

PP

FIG. 1. Schematic illustration of a k-producibility test achieved
via the correlation �P obtained in a Bell test. The test relies on
the observation that if �P �∈ S (	)

n,k ⊇ Qn,k , then the locally measured
quantum state ρ is not k producible. The figure represents a two-
dimensional projection of the space of all possible �P. Membership
of �P with respect to the local set L = Qn,1 (orange polygon) can
be decided by either solving a linear program or when �P is found
to violate a (facet) Bell-inequality (orange edge). Analogously, �P is
known to lie outside Qn,k (violet oval) for k > 1 if it is found to
violate a DIWED Qn,k or if the optimum value v∗ obtained by solving
Eq. (7) with respect to some relaxation S (	)

n,k (green oval) of Qn,k is
found to be less than one.

B. Probability of certifying entanglement depth � k

To investigate the feasibility of certifying entanglement
and, more generally, the correct entanglement depth by per-
forming measurements in randomly chosen triads, we need
to investigate if the resulting correlations are always outside
the relevant k-producible sets. To this end, we follow the
procedure of Ref. [21] but consider its extension to more than
two parties. Suppose we have n parties that share a GHZ
state |GHZn〉 = 1√

2
(|0〉⊗n + |1〉⊗n). Each party can perform a

set of three mutually unbiased qubit measurements. Because
such a set corresponds to three orthogonal directions on the
Bloch sphere, we call it a triad. Here we focus on correla-
tions obtained from triads that are chosen independently and
uniformly at random.

Since every mutually unbiased observable associated with
a triad can be obtained by performing a unitary transformation
on the Pauli observables σx, σy, and σz, we may without loss of
generality sample a qubit unitary instead of directly sampling
a triad on the Bloch sphere. Hence, to sample a triad uniformly
at random, each party picks a Haar-random unitary matrix
and applies it to measurements of the three Pauli observables.
A Haar-random unitary is generated by sampling a matrix
from the complex Ginibre ensemble [47], performing a QR
decomposition on that matrix, and multiplying each column
of Q by the sign of the corresponding diagonal entry of R [48].
In this case, every choice of n independent random unitaries
produces a single correlation �P ∈ Q(n,3,2).

Let an n-triad set be a set of n triads associated with a
quantum correlation �P. From �P, we want to determine whether
�P could have arisen from an underlying quantum state that is k
producible. Roughly, if we define a uniform distribution over
all possible n-triad sets, or equivalently all possible choices of
n independently sampled qubit unitaries, then the probability
p(n,k) of certifying ED � k would be given by the fraction of

n-triad sets whose corresponding �P are certified to be outside
Qn,k−1. It should be pointed out that p(n,k) is only a lower
bound on the probability of finding a randomly sampled �P
that lies outside Qn,k−1. This is because our certification, as
explained in Sec. II A, makes use of outer approximations
of Qn,k−1, either via S (	)

n,k−1 or via the polytopic superset of
Qn,k−1 obtained from specific DIWEDs (more on this below).
Formally,

p(n,k) =
∫

f (�)d�, (10)

where d� represents the Haar measure over n independently
chosen qubit unitaries and f (�) is an indicator function
that returns one if the unitaries corresponding to � yields a
correlation �P that is certified to lie outside Qn,k−1 but vanishes
otherwise.

As explained in Sec. II A (see, e.g., Fig. 1), there are two
different ways to certify that a given �P lies outside Qn,k−1:
either by solving Eq. (7) and finding v∗ < 1, or evaluating
a DIWED I ( �P) [cf. Eq. (6)] and finding that it is violated.
Obviously, when the latter approach is invoked, it can only
help to consider not just a single DIWED, but also all of
its equivalent forms obtained from an arbitrary relabeling.
Therefore, whenever we invoke a specific DIWED, i.e., a
Bell-like inequality (equipped with the relevant k-producible
bound Ik-prod.) to perform such a certification (as in Sec. III),
it goes without saying that all its equivalent forms obtained
from relabeling are also considered at the same time. In other
words, we do not test any individual DIWED, but rather the
polytopic superset of Qn,k−1 that results from the DIWED of
interest.

To obtain an estimate of p(n,k), we therefore perform re-
peated trials for Ntr times and compute the relative frequency
of trials whereby the corresponding �P is certified to be outside
Qn,k−1. Additionally, we can approximate the probability
density function by plotting a histogram of the corresponding
visibilities, using appropriately chosen bin widths.

C. Three paths for certifying the (non) k producibility of �P

As mentioned above, since we consider local measure-
ments on a triad, our sampled correlation �P is defined for the
Bell scenario (n, 3, 2). It is thus most natural to perform the
relevant membership test in this Bell scenario. However, since
very little is known in relation to Bell inequalities (let alone
DIWEDs) with three measurement settings [49–51], when
we perform a membership test by considering specific Bell
inequalities or DIWEDs, we shall consider exclusively only
Bell inequalities that are naturally defined for the (n, 2, 2)
scenario. Clearly, we can still test our sampled correlation �P
against all these inequalities defined for a Bell scenario with
one less measurement setting: by disregarding all entries of �P
pertaining to one of the measurement settings of each party,
one obtains �Psub ∈ Qn,2,2.

For completeness, we should nonetheless consider all
[(3

2)]n = 3n ways of selecting two measurements from each
triad and determine the combination that gives the largest
Bell value, and hence the optimal visibility, i.e., the smallest
value of v according to Eq. (8). In doing so, we effectively
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P

visibility
Eq. (7)

Psub

visibility
Eq. (7)

Bell value
All equ

ivalent

DIWED
s

All com
binatio

ns of

(3 choo
ses 2)

n

Eq. (8)

FIG. 2. Flowchart summarizing the three different approaches
employed in this work for certifying the (non) k producibility of a
sampled �P ∈ Qn,3,2. In the uppermost branch, we first obtain �Psub ∈
Qn,2,2 by keeping only the relevant entries of �P. All 3n such �Psub

obtained from a single �P are then tested against a DIWED and all
its equivalent forms to determine the largest Bell value, and hence
the optimal visibility via Eq. (8). Effectively, this uppermost branch
tests �P against all input liftings of DIWEDs originally defined for
the (n, 2, 2) scenario. Second, for each �Psub, we solve Eq. (7) to
determine the corresponding optimal visibility v∗; the smallest of
all these 3n visibilities then gives the visibility of �P with respect
to the lifting of S (	)

n,k in the (n, 2, 2) scenario to the (n, 3, 2) Bell
scenario. This is graphically represented as a sub-branch of the upper
branch. Finally, in the bottom branch, we solve Eq. (7) directly for
the optimal visibility v∗ with respect to S (	)

n,k defined for the (n, 3, 2)
Bell scenario.

consider all possible input-liftings [52] of a Bell inequality or
a DIWED—initially defined for the (n, 2, 2) Bell scenario—to
the (n, 3, 2) Bell scenario. Again, we emphasize that, when
lifting a Bell inequality or DIWED, we implicitly take into
account all its equivalent forms obtained from relabeling.

In a similar manner, each of these different �Psub may be
subjected to a membership test in the (n, 2, 2) Bell scenario by
using Eq. (7). Exploiting the terminology of lifting introduced
for Bell inequalities, we shall refer to the best visibility
obtained in this manner as the visibility with respect to the
lifting of S (	)

n,k to the (n, 3, 2) Bell scenario (see also Ref. [53]).
Importantly, liftings generally give rise to only a subset of
all legitimate Bell inequalities (or DIWEDs) defined for the
(n, 3, 2) Bell scenario. The optimum visibility obtained in this
manner is therefore generally suboptimal compared with that
determined directly by solving Eq. (7) with �P ∈ Qn,3,2.

These three paths for determining the k producibility of �P
are summarized in Fig. 2.

III. DEVICE-INDEPENDENT CERTIFICATION USING
SPECIFIC BELL INEQUALITIES

We now assess the behavior of our randomly sampled
correlations by evaluating particular Bell inequalities. In this
section, we focus on the lifting of S (	)

n,k in the (n, 2, 2) scenario
to the (n, 3, 2) scenario, i.e., picking two measurements from
each randomly chosen triad and keeping the combination of
n pairs that yields the largest Bell value among a family of
equivalent DIWEDs.

A. The Mermin-Ardehali-Belinskii-Klyshko Bell Inequality

First we consider the n-partite MABK inequality IMn

[24–27], where |GHZn〉 is known to exhibit a maximal Bell

TABLE I. Summary of the probability of violating the k-
producible bounds (and hence witnessing an ED of at least k + 1)
using IMn for n = 3, 4, . . . , 8. The first row describes the number of
random correlations sampled for each scenario, Ntr. Note that entries
marked as ∗100 are those where some instances of no violation
have been found but they represent less than 0.01% of the total
samples. Entries marked with “NA” are cases where the k- and
(k + 1)-producible bounds overlap (see Table II).

Ntr (106) 4 4 2 0.467 0.276 0.125

�����k
n

3 4 5 6 7 8

1 ∗100 100 100 100 100 100
2 45.89 99.10 100 100 100 100
3 22.54 89.84 NA 99.28 99.99
4 8.83 70.98 NA NA
5 2.86 47.84 NA
6 0.82 27.45
7 0.20

violation that is exponential in n.2 Here we wish to highlight
our results for the cases n = 7, 8, which expands upon the
analysis of previous works [22,28]. The MABK Bell inequal-
ity can be written in the compact form [20]

IMn ( �P) =
∑

�x∈{0,1}n

β(�xn)E (�xn)
L
� 1, (11)

where E (�xn) = ∑
�an∈{0,1}n

∏n
i=1(−1)ai P(�an|�xn), and the coef-

ficients β(�xn) are given by

β(�xn) = 2
1−n

2 cos
[π

4
(1 + n − 2x)

]
, (12)

where x = ∑n
i=1 xi.

Numerically, we find that the probability of witnessing
nonlocal correlations by using the family of n-partite MABK
inequalities is unity in all cases except the tripartite case.
This is consistent with the observation made in Ref. [22]
(but not with Ref. [28] for the n = 4 case) and extends it
to the scenarios with n = 7, 8. In addition, we note that the
probability of violating the two-producible bound of IMn is
also unity for n > 4.

However, in contrast with the claim in Ref. [28], we ob-
serve that the chance of witnessing the GME nature of |GHZn〉
decays rapidly with the number of parties n.3 In a similar
fashion, the chance of certifying an ED � n − 1 is also seen to
decrease exponentially with increasing n. This suggests that,
while IMn is useful in detecting the entanglement of |GHZn〉,
it is rather ineffective in revealing the exact entanglement
depth of these states in the present context. We summarize our
results for the probability of violating k-producible bounds of

2Note that a strengthened version of the MABK inequality that
achieves also an exponential violation can be found in Ref. [54].

3In particular, for n = 5, we observe a 8.83% probability of violat-
ing the corresponding DIWED whereas Ref. [28] reported 19% for
the corresponding probability.
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FIG. 3. Semilog plot (base 10) of the probability of certifying ED
n (blue) and n − 1 (red) as a function of the number of parties n. The
curves are our best (quadratic) fit of the numerical data. Explicitly,
the red curve admits the expression log10 p(n,n−1) = −0.0368n2 −
0.0695n + 2.2089 whereas that of the blue curve is log10 p(n,n) =
−0.0304n2 + 0.2240n + 1.5955.

IMn in Table I and provide the fitting function of certifying ED
to be (n − 1) and n, respectively, in Fig. 3.

B. Other facet Bell inequalities in (3,2,2)

Given that the MABK Bell inequality alone is insufficient
to always reveal the entanglement (depth) of |GHZ3〉 in the
current setting, it is natural to ask if there exist other tripartite
Bell inequalities that are more suited for this task. To this end,
it is worth noting that, in the (3,2,2) Bell scenario, the com-
plete set of facet Bell inequalities characterizing the local set
L(3,2,2) has been determined by Sliwa in Refs. [55,56]. After
taking into account the freedom in relabeling, these facet in-
equalities can be classified into 46 inequivalent families (with
IS2 being equivalent to the three-partite MABK inequality
IM3 ), but only 44 of these can be violated in quantum theory.
From the results of Ref. [57], it follows that only 25 families
of inequalities display a gap of more than 10−5 between their
maximal quantum violation and their two-producible bounds.

By testing our Ntr = 106 randomly sampled correlations
against the 44 potentially useful Bell inequalities, we identify
11 for which the local bound is apparently always violated.
These are IS4, IS5, IS6, IS8, IS16, IS22, IS24, IS28, IS33, IS39,
and IS42. On the other hand, aside from the positivity facet IS1

and the guess-your-neighbor-input (GYNI) inequality IS10

[58], we find three other facet Bell inequalities (namely, IS3,
IS11, and IS23) that never seem to be violated. Among those
41 inequalities that can be used to reveal the entanglement of
the |GHZ3〉, 11 of them can even be used—in a probabilistic
manner—to reveal its tripartite entanglement by performing
local measurements on these randomly chosen triads. In par-
ticular, the 33rd inequality in the list of Sliwa exhibits a
significant advantage over the MABK inequality in terms of
certifying the correct entanglement depth of |GHZ3〉 from
these correlations (see Table III). Even then, none of the
DIWEDs arising from these Bell facets is, by itself, always
sufficient to certify the GME nature from these randomly
sampled correlations. In fact, even if we take the intersection
defined by all of them—which forms again a polytopic relax-
ation of S3,2—the probability of success in this task can only

TABLE II. Summary of the quantum k-producible bounds (for
2 < k � n) of the MABK Bell expression of Eq. (11) for n =
3, 4, . . . , 8. In all these cases, the omitted local bound is always 1
whereas the 2-producible bound is always

√
2.

�����k
n

3 4 5 6 7 8

3 2 2 2 2
√

2 2
√

2 2
√

2
4 2

√
2 2

√
2 2

√
2 4 4

√
2

5 4 4 4 4
√

2
6 4

√
2 4

√
2 4

√
2

7 8 8
8 8

√
2

be boosted to approximately 68.97%, which is about 7% better
than considering IS33 alone.

C. Some other Bell inequalities in (n, 2, 2)

For n > 3 parties, little is known in terms of the com-
plete set of facets. However, since our goal is to investigate
the effectiveness of using nonlocal correlations to reveal the

TABLE III. Summary of the probability of violating the k-
producible bounds (k = 1, 2) of all 46 facet Bell inequalities in the
(3,2,2) Bell scenario [55,56]. Explicit value of these bounds can
be found in Table IV. The ith inequality in this list is denoted by
ISi. In particular, IS1 and IS10 represent, respectively, the positivity
facet and the GYNI inequality [58], both of which are known to
be satisfied by quantum theory. These probabilities are expressed in
percent and were estimated by using a total of Ntr = 106 samples,
except for IS2, which was estimated by using Ntr = 4 × 106 samples.
The first column gives the value of k while the entries for each
inequality are summarized in a single column, spanning across two
rows for the two different values of k. Entries marked as ∗100 are
those where some instances of no violation have been found but they
represent less than 0.01% of the total samples.

k IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10

1 0 ∗100 0 100 100 100 99.85 100 ∗100 0
2 0 45.89 0 0 0 0 6.82 4.97 0 0

k IS11 IS12 IS13 IS14 IS15 IS16 IS17 IS18 IS19 IS20

1 0 22.75 99.98 97.06 98.33 100 99.97 40.91 99.92 96.62
2 0 0 0 0 0 0 0 0 0 0

k IS21 IS22 IS23 IS24 IS25 IS26 IS27 IS28 IS29 IS30

1 ∗100 100 0 100 99.39 96.36 ∗100 100 99.96 ∗100
2 0 0.18 0 16.63 0 3.98 0.67 0 0 0

k IS31 IS32 IS33 IS34 IS35 IS36 IS37 IS38 IS39 IS40

1 66.06 99.89 100 99.32 86.02 99.96 99.91 98.36 100 99.76
2 0 0 61.92 0 0 0 0 0 39.20 2.31

k IS41 IS42 IS43 IS44 IS45 IS46

1 ∗100 100 99.58 99.83 99.95 91.15
2 0 3.08 0 0 0 0
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TABLE IV. Summary of the quantum k-producible bounds of
the various Bell expressions due to Śliwa [55,56]. Note that IS7 =
4IS3 , whereas IS2 = 2IM3 upon relabeling the measurement settings.
These bounds are applicable to the negative of the expression given
in the right-hand side of the Table 1 in [56] and ignoring the
constant term. The 1-producible bound, i.e., the local bound, is the
constant term in Table 1 of [56]. The corresponding 2-producible
bound (which coincides with the biseparable bound in the tripartite
case) is extracted from the largest entry among the second-last to
the fourth-last column of Table 1 of [57]. All analytic expressions
presented are approximations of the numerical bounds given in Table
1 of Ref. [57], with an accuracy that is at least 10−6. Note that the
maximal quantum violation of IS4 given in Table 1 of Ref. [57] is off
by a factor of two, i.e., it should correspond to the two-producible
bound of 4

√
2 − 2 that we list here.

k IS1 IS2 IS3 IS4 IS5 IS6

1 1 2 2 2 3 3
2 1 2

√
2 2

√
2 4

√
2 − 2 4

√
2 − 1 4

√
2 − 1

k IS7 IS8 IS9 IS10 IS11 IS12

1 4 4 4 4 4 4
2 4

√
2 4

√
2 4

√
2 4 4

√
2 4

√
2

k IS13 IS14 IS15 IS16 IS17 IS18

1 4 4 4 4 4 4
2 4

√
2 4

√
2 4

√
2 4

√
2 4

√
2 4

√
2

k IS19 IS20 IS21 IS22 IS23 IS24

1 4 4 4 4 4 5
2 4

√
2 6

√
2 − 2 4

√
2 4

√
2 3

2 (
√

17 − 1) 4
√

2 + 1

k IS25 IS26 IS27 IS28 IS29 IS30

1 5 5 5 6 6 6
2 4

√
2 + 1 29+√

832
9 4

√
2 + 1 8

√
2 − 2 8

√
2 − 2 8

√
2 − 2

k IS31 IS32 IS33 IS34 IS35 IS36

1 6 6 6 6 6 6
2 4

√
2 + 2 4

√
2 + 2 4

√
2 + 2 4

√
2 + 2 38+√

832
9 8

√
2 − 2

k IS37 IS38 IS39 IS40 IS41 IS42

1 6 6 6 6 7 8
2 8

√
2 − 2 8

√
2 − 2 4

√
2 + 2 4

√
2 + 2 8

√
2 − 1 8

√
2

k IS43 IS44 IS45 IS46

1 8 8 8 10
2 8

√
2 12

√
2 − 4 12

√
2 − 4 12.9852

entanglement depth of n, it would make sense to investigate
how some other Bell inequalities—known to be violated by
|GHZn〉—fare in the current task.

The first candidate in our list is a natural generalization of
Sliwa’s seventh inequality IS7, first introduced in Ref. [38] for
an arbitrary number of parties:

ISn ( �P) = 21−n

⎛
⎝ ∑

�x∈{0,1}n

En(�xn)

⎞
⎠ − En(�1n)

L
� 1. (13)

For n � 8, this has been established to be a facet inequality of
the local set L(n,2,2) [38]. Additionally, it was shown therein
that the k-producible bounds of ISn coincide with the maximal
quantum violation of ISk , as long as k � n. The numerical

TABLE V. Summary of the quantum k-producible bounds of ISn

and IFGn , n = 4, . . . , 6. In contrast with Ref. [42], the local bounds
of IFGn are normalized to be one here.

�����k
I

ISn IFG4 IFG5 IFG6

2
√

2 1.2247 1.1547 1.1180
3 5

3 1.4679 1.2291 1.2195
4 1.8428 5

3 1.3509 1.2392
5 1.9746 1.5 1.2807
6 2.0777 1.4

values of these k-producible bounds for k � 8 are known [38]
and are partially reproduced in Table V for ease of reference.
Notice that there is a nontrivial gap between the (k − 1)- and
k-producible bounds of ISn for any k � 8 (we only reproduce
the bounds for k � 6 in the table).

Our second candidate is again a family of Bell inequalities
that are known to be maximally violated by |GHZn〉, or equiv-
alently [59] (under the freedom of local unitaries) the fully
connected graph states. Explicitly, these inequalities proposed
in Ref. [42] read as

IFGn ( �P) = 1

n − 1
[En(0, 1, 1, . . . , 1)+ �′ −En(�03, �1n−3)]

L
� 1. (14)

The first term indicates that all parties, except the first one,
perform the zeroth measurement. The symbol �′ stands for
the additional n − 1 terms that have to be included so that the
first n terms becomes invariant under a cyclic permutation of
parties. Note that IFG3 is equivalent to IM3 .

The probability of correctly certifying the ED of |GHZn〉
using the aforementioned Bell inequalities is summarized in
Table VI. For fixed n, we find that the chance of detecting
the nonlocality with randomly generated correlations is higher
when using ISn . The fact that ISn is a facet of L(n,2,2) while
IFGn is not could have played a role in this difference. How-
ever, the numerical results also indicate that, for certifying
ED of k > 2, IFGn is clearly preferable to ISn . For instance,
when n = 5, the probability of witnessing ED k � 3 vanishes
for IS5 , but for IFG5 it is low but nonetheless nonzero. In any

TABLE VI. Summary of the probability of violating the k-
producible bounds (1 � k � n − 1) of inequality ISn , Eq. (13) for
n = 4, 5, 6 and the inequality IFGn tailored for the fully connected
graph state, Eq. (14) for n = 4, 5. These probabilities are expressed
in percent and the number of sampled correlations, Ntr, are listed in
the first row.

Ntr (106) 1 0.28 0.01 1 0.029

�����k
I

IS4 IS5 IS6 IFG4 IFG5

1 99.08 75.50 26.24 91.13 54.01
2 0.39 0 0 32.48 12.57
3 0 0 0 1.3 0.82
4 0 0 0.17
5 0
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case, we see that, when it comes to certifying the correct ED
of |GHZn〉 (for n � 4), both these families of inequalities are
far inferior when compared with DIWEDs arising from IMn

(see Tables I and IV for details).

IV. DEVICE-INDEPENDENT CERTIFICATION USING
MEMBERSHIP TESTS AND WHITE-NOISE ROBUSTNESS

In the previous section, we discuss the behavior of our
randomly sampled correlations in terms of a few specific
families of Bell inequalities. Here we give the corresponding
probabilities obtained by performing membership tests on the
sampled n-partite correlations with respect to the local set L
and the (n − 1)-producible set Qn,n−1. As explained in Sec. II,
this is achieved by solving Eq. (7) by using the sampled �P. In
particular, for the membership test with respect to L, Eq. (7)
reduces to a linear program whereas for the membership test
with respect to Qn,n−1, we make use the first-level outer
approximation S (1)

n,n−1 of Qn,n−1 in our computation. Apart
from being able to check against all Bell inequalities (in the
k = 1 case) and all DIWEDs (in the k = n − 1 case) at the
same time for the appropriate Bell scenario, such membership
tests also immediately give the white-noise robustness of these
correlations. Our results for these membership tests for the
n = 3 case with k = 1 and k = 2 are illustrated, respectively,
in Figs. 4 and 5. For comparison, the visibility distributions
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FIG. 4. Visibility distribution of the randomly sampled correla-
tion �P to the local polytopes in the n = 3 case. Included here are
the visibility distributions obtained from the Bell value optimized
over all input liftings of IM3 (or equivalently, IS2, dashed blue line),
all input liftings of IS33 (dashed red line), that obtained by solving
Eq. (7) with k = 1 when we only consider the best combination of
two out of the three measurement settings (i.e., the input-lifting of
L(3,2,2), dashed-dotted magenta line), and when we consider all the
three measurement settings together (L(3,3,2), solid black line). We
have Ntr = 106 for these histograms, except the data for IM3 , in which
we have Ntr = 4 × 106. All histograms are plotted with a bin width
of 2.5 × 10−3.
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FIG. 5. Visibility distribution of the randomly sampled correla-
tion �P to the two-producible set Q3,2 via four different approxima-
tions in the n = 3 case. Included here are the visibility distributions
obtained from the Bell value optimized over all input liftings of
IM3 (or equivalently, IS2, dashed blue line), all input liftings of
IS33 (dashed red line), that obtained by solving Eq. (7) with k = 2
when we only consider the best combination of two out of the three
measurement settings (lifting of S (1)

3,2, dashed-dotted magenta line),
and when we consider all the three measurement settings together
(S (1)

3,2, solid black line). Ntr = 2.5 × 105 for the lifting of S (1)
3,2, Ntr =

106 for S (1)
3,2 and the liftings of IS33, whereas Ntr = 4 × 106 for the

liftings of IM3 . All histograms are plotted with a bin width of 0.001.

obtained by evaluating the Bell value of some specific Bell
inequalities discussed in Sec. III, in accordance to Eq. (8), are
also displayed in these figures.

Interestingly, even though some of the Bell facets of
L(3,2,2), such as IS33, fare better in terms of the probability
of Bell violation, they are not generally better than IM3 in
terms of white-noise robustness. Indeed, it is clear from Fig. 4
that if we admix |GHZ3〉 with a sufficiently larger amount
of white noise (e.g., if v � 0.62), then IS33 can no longer
be violated but IM3 can still be violated with some nonzero
probability. The overlapping curves might even suggest that,
when testing the randomly sampled correlations against all
lifted Bell facets of L(3,2,2) together, all those contributing to
smaller visibilities, say, with v < 0.71, are due entirely to a
violation of IM3 . Moreover, this general feature still holds
(albeit with a smaller critical visibility of v ≈ 0.58) even if we
consider all Bell facets of L(3,3,2) together. From Table VII we
see that these results are also fairly robust against depolarizing
noise: if we consider only the Bell facets lifted from L(3,2,2),
the probability of a Bell violation would stay as unity even if
up to 18% of white noise is present; if we consider, instead,
all (including those nonlifted) Bell facets of L(3,3,2), then this
white noise tolerance can be improved to about 22%.

What about the certification of the GME nature of |GHZ3〉
using these randomly sampled correlations? We mentioned
in the last section that even by considering all the DIWEDs
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TABLE VII. Summary of the visibility distributions to the vari-
ous sets of L(n,3,2) or their approximations. To determine the mode of
a distribution, we round every visibility value to its second decimal
place. Those listed to the right of a “Lift (n, 2, 2)” Bell scenario
correspond to the case where we consider an approximation to L(n,3,2)

by considering only all input liftings of Bell facets originally defined
for L(n,2,2). See Secs. II B and II C for details.

Bell scenario Ntr(103) Max Min Mean Mode σ Within 1 σ

Lift (3,2,2) 100 0.823 0.507 0.696 0.73 0.055 68.6%
(3,3,2) 4000 0.774 0.503 0.646 0.65 0.03 72.6%
Lift (4,2,2) 100 0.679 0.367 0.541 0.58 0.051 65.3%
(4,3,2) 600 0.620 0.358 0.512 0.53 0.032 71.4%
(5,3,2) 4.4 0.510 0.269 0.406 0.43 0.041 65.7%

derived from the Bell facets of L(3,2,2) and lifting them to
the (3,3,2) Bell scenario, the probability of witnessing an
entanglement depth of three is still far from unity. However,
via the membership test of Eq. (7), we see from Fig. 5 that
it is apparently always possible to certify the GME nature of
|GHZ3〉 by using these randomly sampled correlations. In fact,
as can be seen from Table VIII, such a certification is robust,
as the probability of success remains unity even if we allow
the presence of about 3.1% of white noise and inspect only
two out of the three local measurement settings at one time.
If all three measurement settings are considered together, then
this white-noise tolerance can be boosted to about 10.7% (see
Table VIII).

Continuing to the n = 4 case, we see from Fig. 6 that,
even if we restrict ourselves to considering only IM4 , our
ability to certify the nonlocality of |GHZ4〉 is already fairly
robust against depolarizing noise—the probability of violation
remains unity even if we admix |GHZ4〉 with about 12%
of white noise (see Table IX). Not surprisingly, this noise-
resistance can be boosted considerably, leading to approxi-
mately 32% and 38.0% if we consider, respectively, all Bell
facets of L(4,2,2) lifted to the Bell scenario of (4,3,2) and the
consideration of all Bell facets of L(4,3,2) (see Table VII for a
summary of these visibility distributions).

On the other hand, results from the last section (see, e.g.,
Fig. 3 and Table VI) may suggest that it is unlikely to perform
a DI certification of the correct ED of |GHZ4〉 by using corre-
lations obtained by measuring |GHZ4〉 in randomly sampled
triads. However, if we base our certification on solving Eq. (7),
it is clear from the visibility distributions shown in Fig. 7
that not only can we certify the correct ED of |GHZ4〉 with
certainty, the same can also be said with the mixed state of
Eq. (9) with at least 11% of white noise. In fact, if we

TABLE VIII. Summary of the visibility distributions to several
approximations of the (n − 1)-producible set for n = 3 and 4.

Ntr(103) Max Min Mean Mode σ Within 1 σ

Lifting S (1)
3,2 250 0.969 0.711 0.839 0.849 0.031 71.2%

S (1)
3,2 1000 0.893 0.704 0.740 0.725 0.018 73.2%

Lifting S (1)
4,3 16 0.890 0.733 0.8365 0.838 0.022 68.9%

S (1)
4,3 10 0.781 0.690 0.718 0.701 0.013 63%

FIG. 6. Visibility distribution of the randomly sampled correla-
tion �P to the local polytopes in the n = 4 case. Included here are
the visibility distribution obtained from the Bell value optimized
over all input liftings of IM4 (dashed blue line) and that obtained
by solving Eq. (7) with k = 1 when we only consider the best
combination of two out of the three measurement settings (i.e., the
input-lifting of L(4,2,2), dashed-dotted magenta line), and when we
consider all three measurement settings together (L(4,3,2), solid black
line). Ntr = 4 × 106 for the liftings of IM4 , Ntr = 105 for the lifting
of L(4,2,2), and Ntr = 8 × 105 for L(4,3,2). All histograms are plotted
with a bin width of 0.01.

make use of the correlations for all the measurement settings
together, then this white-noise robustness can even reach 21%.
Details in relation to these levels of white-noise tolerance can
be found in Table VIII.

For n � 5 parties, it is clear from Table IX that, for the
demonstration of nonlocality, or equivalently, for the DI cer-
tification of entanglement of |GHZn〉, the protocol becomes
increasingly robust, at least, for n up to 8. On the other hand,
for the DI certification of the GME nature of |GHZn〉, as
mentioned above, a consideration based only on specific Bell
inequalities is inconclusive. Unfortunately, an investigation of
Eq. (7) for a statistically significant number of samples is
computationally too expensive to be carried out.

TABLE IX. Summary of the visibility distributions to L(n,3,2)

obtained by considering the Bell value of all input-lifting of IMn to
the (n, 3, 2) Bell scenario and evaluated according to Eq. (8).

n Ntr(103) Max Min Mean Mode σ Within 1 σ

3 4000 1.060 0.503 0.720 0.70 0.083 65.69%
4 4000 0.880 0.359 0.553 0.55 0.066 66.10%
5 2000 0.678 0.257 0.427 0.42 0.055 66.94%
6 467 0.558 0.190 0.330 0.33 0.045 67.48%
7 450 0.445 0.136 0.254 0.25 0.037 67.94%
8 125 0.359 0.103 0.196 0.19 0.030 68.254%
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FIG. 7. Visibility distribution of the randomly sampled correla-
tion �P to the three-producible set Q4,3 via three different approxima-
tions in the n = 4 case. Included here are the visibility distribution
obtained from the Bell value optimized over all input liftings of
IM4 (dashed blue line), that obtained by solving Eq. (7) with k = 3
when we only consider the best combination of two out of the three
measurement settings (lifting of S (1)

4,3, dashed-dotted magenta line),
and when we consider all the three measurement settings together
(S (1)

4,3, black solid line). Ntr = 1.66 × 104 for the input-lifting of
S (1)

4,3, Ntr = 104 for S (1)
4,3, and Ntr = 104 for the liftings of IM4 . All

histograms are plotted with a bin width of 0.005.

V. CONCLUSION

In this work, we have—building upon the analysis of
Refs. [21,22,28]—investigated the feasibility of demonstrat-
ing Bell-nonlocal correlations by having n parties performing
their measurements in a randomly chosen triad (i.e., three
mutually unbiased bases) on a shared |GHZn〉. Our results for
the n = 7, 8 scenarios are consistent with the trend already
observed in Ref. [22] for n = 2, . . . , 6. Namely, not only that
such a device-independent entanglement certification proto-
col is (in principle) feasible, but is even strongly robust to
the presence of white noise. Furthermore, when appropriate
Bell inequalities are considered, we could also get around
the insufficiency of the MABK Bell inequality discovered
in Refs. [22,28] for the n = 3 case. In fact, even for 107

randomly chosen sets of triads, we have always found the
resulting correlations to violate 11 of the facet Bell inequal-
ities defined in this tripartite, two-setting, two-outcome Bell
scenario.

Given these encouraging observations, a natural question
that arises is whether these randomly generated nonlocal cor-
relations would be strong enough to also reveal the (genuine)
multipartite entanglement contained in |GHZn〉. To this end,
we have not only repeated the analysis of Ref. [28] for the
cases of n = 3, 4, and 5 but have also analyzed the cases
for n = 6, 7, and 8 based on device-independent witnesses
for entanglement depth (DIWED) obtained from the MABK
Bell inequalities. In this regard, we remark that, although our

results for the n = 3 case appear to agree, the findings of
Ref. [28] do not seem to be consistent with ours nor that of
Ref. [22] for the n = 4 case (in terms of the probability of
certifying the nonlocality of |GHZ4〉), neither do the results
of Ref. [28] agree with ours in terms of the probability
of correctly certifying the entanglement depth of |GHZ5〉.
Unfortunately, since the raw data of Ref. [28] is no longer
available [60], we are not able to precisely pinpoint the source
of this discrepancy.

In any case, for the DI certification of entanglement depth,
our results show that, if we are to consider only DIWEDs that
are based on MABK Bell inequalities, then the probability
of correctly certifying the entanglement depth of |GHZn〉
appears to decrease exponentially with n. In fact, the same
conclusion holds even if we only wish to certify that its
entanglement depth is larger than or equal to n − 1. Also,
for the n = 3 case, even if we are to consider all DIWEDs
constructed from the Bell facets defined for the (3,2,2) Bell
scenario (see Refs. [56,57]), the probability of correctly cer-
tifying the entanglement depth of |GHZ3〉 is still less than
70%. However, if we are willing to consider also all possible
DIWEDs (including those that stem from non-facet-defining
Bell inequalities)—something that we achieved by solving ap-
propriate semidefinite programs first discussed in Ref. [38]—
then not only can we certify the correct entanglement depth
with certainty, but such a certification is even robust to the
presence of white noise. To our astonishment, this robustness
even increases when the number of parties is increased from
n = 3 to n = 4. As such, we conjecture that for an arbitrary
number of parties, the entanglement depth of |GHZn〉 can
always be certified in a DI manner using the protocol that we
have discussed here.

A few other remarks are now in order. First, we men-
tioned in Sec. III that, somewhat surprisingly, among all the
randomly generated correlations, none of them have violated
the 3rd, 11th, and 23rd inequality presented by Sliwa [56].
However, it is important to note that this observation is more
a feature of the nature of the measurements chosen rather
than that of the state itself. In fact, if we do not impose the
measurements to be mutually unbiased, one can easily find a
quantum violation of all these Bell inequalities by |GHZ3〉.

Second, in the work of Tóth et al. [61], it was pointed
out that, if the two local measurements involved are assumed
to be orthogonal (on the Bloch sphere), then a violation of
the IM3 Bell inequality itself is already sufficient to certify
genuine three-qubit entanglement. Let us, nonetheless, remark
that, in our analysis, although we make use of mutually
unbiased measurements to generate random correlations for
our analysis in deciding whether a certification of the correct
entanglement depth is successful, we have never relied on this
assumption regarding the nature of the measurements, as that
would render the conclusion device-dependent, rather than
being device-independent.

Let us now comment on some possibilities for future re-
search. First, the current analysis, as with many other closely
related work (see, e.g., Refs. [17,20,28,30–32]), suffer from
the drawback that the results presented are mostly numerical.
Consequently, our observations are only known to be applica-
ble to relatively simple Bell scenarios. To this end, it would be
desirable to obtain analytic results that could, e.g., reveal the
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asymptotic behavior involving a large number of subsystems,
etc. Also, while our semidefinite programming approach has
enabled us to correctly certify the entanglement depth of
|GHZ3〉 and |GHZ4〉, it requires full knowledge of the gen-
erated correlation �P, rather than only its values with respect
to certain DIWEDs. In a real experimental setting, even if we
disregard various imperfections, due to statistical fluctuations,
the observation of a �P ∈ Q is in practice never available (see
Ref. [62] for a discussion). For a realistic feasibility analysis
of this device-independent certification protocol, statistical
fluctuations must thus be taken into account, e.g., by the
tools discussed in Ref. [63]. This is, however, clearly outside

the scope of the present work and will be left to future
research.
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