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Based on numerically optimized real-device gates and parameters we study the performance of the phase-flip
(repetition) code on a linear array of gallium arsenide (GaAs) quantum dots hosting singlet-triplet qubits. We first
examine the expected performance of the code using simple error models of circuit-level and phenomenological
noise, reporting, for example, a circuit-level depolarizing noise threshold of approximately 3%. We then perform
density-matrix simulations using a maximum-likelihood and minimum-weight matching decoder to study the
effect of real-device dephasing, readout error, and quasistatic as well as fast gate noise. Considering the tradeoff
between qubit readout error and dephasing time (T2) over measurement time, we identify a subthreshold region
for the phase-flip code which lies within experimental reach.
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I. INTRODUCTION

While the theoretical cornerstones of robust quantum com-
puting have been established in the two previous decades
in the form of a theory of quantum error correction (QEC)
and fault tolerance (see, e.g., [1] and references therein),
actual experiments putting this body of research to use are a
matter of active research. Until now, the use of a repetition
code has been demonstrated in various platforms, such as
superconducting qubits [2], and the use of error detection via
the four-qubit code has been demonstrated in trapped-ion [3]
and superconducting qubits [4–6]. At the same time, the use
of bosonic quantum error correction has led to qubits with
enhanced lifetimes [7].

In this paper, we model an experimental setup with the
aim of demonstrating error suppression of Pauli-Z errors in
a spin qubit architecture that holds the prospect of scalability.
As is well known, current state-of-the-art experiments on spin
qubits allow for one-dimensional (1D) connectivity, while
two-dimensional (2D) connectivity and control are more chal-
lenging. Indeed, a big challenge in scaling up spin qubits
is the “fanout” problem: each quantum dot needs several
control lines for defining the dot potential and operating
the qubit. This requirement severely limits the capability of
tightly packing many qubits onto a chip, especially in a

two-dimensional fashion (see, e.g., [8] for discussion). The 2D
connectivity required for the surface code is highly nontriv-
ial [9]: promising realizations of long-range two-qubit gates
by electron shuttling [10,11] or mediated via superconducting
resonators [12] are under active but incomplete development.

Identifying dephasing as the dominant qubit noise process
leads us to suggest a one-dimensional layout on which we can
operate the phase-flip repetition code. In itself this will not
give us a full logical qubit, as it will enhance the X -error rate
of the encoded qubit while lowering the Z-error rate. However,
it would allow a demonstration of decoding as needed for the
surface code. In addition, the tolerable noise threshold error
rate is more relaxed as compared to the surface code [1]. This
milestone—making a 1D array which realizes the repetition
code and demonstrating that the logical error decreases with
increasing code distance—has been reached for supercon-
ducting devices in [2]. While challenging, we will show that
such a device would be currently experimentally feasible for
singlet-triplet qubits, even in GaAs, in terms of fabrication
and operation, assuming the two-qubit device performance
as investigated by [13], without the need for additional
elements. We show this by numerically running decoders
on repeated error-correcting cycles of the phase-flip code,
subject to phenomenological and circuit-level noise, as well
as realistic device-specific noise, which we simulate using
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full-density-matrix simulations. Previously, such density-
matrix simulations and fine-tuned decoders have been very
informative in analyzing the performance of small surface
codes, such as SURFACE-17 [14] in superconducting de-
vices [15]. Even though our paper is focused on GaAs qubits,
a very similar analysis could be done for Si-based qubits:
we review and compare some of the elementary-component
specifications for Si-based qubits in Sec. II F.

We note that previous work exploring the use of a 1D
quantum dot array for making a logical qubit has been done
in [16]. However, in this previous work the focus was partially
on the four-qubit code and its concatenation, which, executed
with purely 1D connectivity, has a depressingly low threshold
(≈10−4). Here instead we focus solely on the repetition code
with natural noise (i.e., no artificially inserted errors) and
examine logical error rates with growing array size.

In Sec. II we review the singlet-triplet qubit in GaAs and
our modeling of relevant hardware components, including the
proposed device in Sec. II E. In Sec. III we review aspects
of the phase-flip code and discuss decoding methods and
results using simple phenomenological and circuit-level error
models. This sets the stage for the study and interpretation
of the effects of real noise modeled using full-density-matrix
simulations in Sec. IV. In Sec. IV we study the tradeoff be-
tween readout error and an effective dephasing error rate, the
effect of enhanced gate noise, and the effect of stochastifying
the noise via the Pauli twirl approximation, and we discuss
leakage and leakage reduction (not included in numerical
simulations). In Sec. IV E we also numerically present and
discuss the enhanced X -error rate. In Sec. V we provide a
qualitative discussion about going beyond the 1D phase-flip
code: a phase-flip repetition code could be the starting point
for a surface code architecture, akin to using the phase-flip
code as the bottom code in [17,18]. We will argue, however,
that the advantage of this approach is not immediate, but
depends on various current unknowns such as the noise bias
and fidelity of long- or short-range two-qubit gates.

II. THE SINGLET-TRIPLET QUBIT IN GALLIUM
ARSENIDE

The idea of using the spin degree of freedom of a single
electron is among the first proposed physical realizations of
a qubit [19]. One suitable environment to store, control, and
read out single electrons with all-electric control is offered by
the platform of gate-defined quantum dots in semiconductor
heterostructures. The heterostructure is built such that a two-
dimensional electron gas emerges, from which we can load
single electrons into quantum dots that are formed by defining
a confining potential through applying voltages across gates.
Two prominent materials are silicon [20] and gallium arsenide
(GaAs). Since device fabrication in GaAs is straightforward
and we have validated noise models at hand, we focus on
that implementation. We comment on the (close) relation
to silicon spin qubits in Sec. II F. We will use the singlet-
triplet qubit encoding, where the qubit states are chosen as
the mz = 0 subspace of two electron spins residing in two
adjacent quantum dots [21]. This has several advantages.
The encoding allows the qubit subspace to be less sensitive
to the nuclear spin background present in the host material

TABLE I. Time duration of gates and measurement on GaAs
singlet-triplet qubits. The last column indicates whether the param-
eter is fixed or varied in the numerical simulation. Note that the
readout time is nominally fixed but the relevant scale is T2/treadout ,
i.e., it is sufficient to vary T2 (see Sec. II D).

Time Values (range) Num. simulation

T1 ≈2 ms [26] Fixed
T ∗

2 100 ns [23] Lower limit on T2

T2 870 μs [27] Varied vs treadout

t1q−gate 20 ns [13] Fixed
t2q−gate 50 ns [13] Fixed
treadout 1 μs [28] Fixed

(which is especially prominent in GaAs; it can be mitigated
in silicon by using purified 28Si). The singlet-triplet encoding
furthermore makes all-electrical qubit control possible by
virtue of the Pauli exclusion principle, which is the workhorse
behind initialization, gate operations via exchange interaction
(provided a finite magnetic-field gradient maintained by other
means, see Sec. II B), and readout via Pauli spin blockade.
Since these operations are also what introduces noise to
the system, we will briefly discuss these operations in this
section. The states |0〉 and |1〉 of this qubit—expressed in
the usual spin-up and -down notation—are the |0〉 ≡ |↑↓〉
and |1〉 ≡ |↓↑〉 states in the mz = 0 subspace of the two-
electron spin-wave function. The two remaining triplet states
(T+ = |↑↑〉 and T− = |↓↓〉) are energetically Zeeman split by
applying a static global magnetic field. They can, to a good
approximation, be neglected [22], but play a role in qubit
leakage (see Sec. IV F). Control over this qubit is established
via the exchange interaction between the two electrons in the
adjacent dots, which stems from a virtual hopping process
between the two dots. This virtual hopping is only allowed for
the singlet due to the Pauli principle, creating a small energy
difference between the two states, which gives an effective
Heisenberg-type interaction. The strength of this interaction
can be varied by shifting the dot potentials (i.e., voltages) with
respect to another (the “detuning”). The exchange coupling
strength of the effective Hamiltonian [see Eq. (1)] can be
changed rapidly on the order of nanoseconds through the use
of arbitrary waveform generators. The second single-qubit
control axis is given by magnetic-field gradients between
neighboring dots. In the case of GaAs, the nuclear background
field can be locally polarized by so-called dynamic nuclear
polarization (DNP) [23], creating the desired gradient field.
Fast control of the exchange interaction allows for gate oper-
ations with fidelities above 99% by numerical optimization
of the pulse sequence [24,25]. We go into more detail on
gate operations in Sec. II B. Qubit relaxation is quite strongly
suppressed as the qubit frequency sits at a relatively low
density of states in the environment, thus leading to a high
T1 time (see Table I). In contrast to this, the bare coherence
T ∗

2 time can be lower than 100 ns, but this can be remedied by
echoing techniques (Hahn echo, Carr-Purcell-Meiboom-Gill),
which lead to effective T2 times on the order of μs with
recent experimental results going as high as 870 μs [27] (see
Table I). The language of coherence and relaxation times is
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TABLE II. Error rates of GaAs singlet-triplet qubits. Here F
is the average gate and readout fidelity, respectively. The single-
qubit gate numbers are based on numerical models and experimental
randomized benchmarking, while the two-qubit gate numbers are
based on numerical models so far. Note that we do not vary the
fidelity itself but the detailed Hamiltonian model underlying the gate
(see Sec. II B).

Component Infid. 1 − F Num. simul.

Single-qubit gate 0.1–5.0 × 10−3 [13,25] Varied
Two-qubit gate 0.1–5.0 × 10−3 [13] Varied
Qubit measurement 5 × 10−3–1 × 10−1 [28,29] Varied
Qubit initialization 3 × 10−2 Varied

common when characterizing qubits experimentally, which is
why we stick to this language. Let us, however, remark that
ultimately the parameters relevant to error correction are the
error rates [cf. Eq. (5) and Table II]. While the two are closely
related, the exact relationship depends on the underlying noise
model. For T1 and T2 this is a Markovian model, which implic-
itly assumes an exponentially decaying state fidelity, thereby
potentially overestimating error rates when non-Markovian
low-frequency noise is present (and not completely filtered out
by the respective echoing technique), such that in some regime
the state fidelity decays slower than exponentially [26]. For a
detailed discussion see, e.g., [30]. In the other extreme, very
high coherence times are limited by the gate noise induced by
the gates that are employed for the echoing pulses themselves.
Two-qubit gates are the focus of the current research effort and
recent results of accurately modeling the two-qubit operation
analogous to the single-qubit case suggest operability at the
same high fidelities as the single-qubit gates [13].

A. Qubit initialization

A natural qubit initialization state is the singlet. Using the
usual charge notation referring to the number of electrons in
the respective dots, we start in a (1,1) charge configuration at
small detuning. The dots are then largely detuned so that an

electron will tunnel from one dot to the other irrespective of
the spin state, yielding a (2,0) charge configuration. Next, the
dot potentials are set to a configuration where a triplet state
would exchange one electron with the reservoir, resulting in
a (1,0) charge state, whereas a singlet state would remain in
(2,0). This in effect makes sure we end up in a singlet (2,0)
state, which can thus be initialized by fast electron exchange
with the lead by waiting in this configuration for a time on the
order of tens of nanoseconds [21,31]. For gate operations, one
typically moves to smaller detuning. The gates done in [13],
which will be explained in the subsequent section, assume an
incoming small detuning baseline at the start of the pulse se-
quence in order to deal with pulse transients caused by the fi-
nite bandwidth of the voltage pulses used for qubit control (for
details see [13]). In order to reach this qubit operation point
after the singlet initialization, one can adiabatically decrease
the detuning, such that the singlet hybridizes with the triplet
state |T0〉 = 1√

2
(|↑↓〉 + |↓↑〉) into the state |↑↓〉 = |0〉 (or,

respectively, |↓↑〉 depending on the direction of the magnetic
field gradient). Adiabatic ramping takes on the order of 200 ns
and the likely error type is accidentally initializing the qubit
state |1〉, which we model as a bit-flip channel with varying
error probability in the few percent range. An alternative way
would be to diabatically move to small detuning, which could
be done in about 1 ns, preserving and thus preparing the
singlet state |S〉 = 1√

2
(|↑↓〉 − |↓↑〉) ≡ 1√

2
(|0〉 − |1〉).

The gate simulations we use in the present paper and their
associated experimental results always employ(ed) adiabatic
ramping (due to the pulse transients as mentioned above). In
contrast to this, diabatic ramping could potentially be more
appealing due to its rapidity, furthermore already preparing
the ancilla in a superposition state needed for the syndrome
extraction we employ for the error-correcting code. Since the
effect of diabatically moving to the qubit operation point lacks
experimental characterization, we cover both methods in our
simulations, as follows.

We fix the initialization time in the circuit model (see
Figs. 2 and 6) to 20 ns; any longer initialization time can
be subsumed under the measurement time, which will be a
variable in the simulation results, thereby leaving the choice

FIG. 1. Top-view layout of a device hosting a phase-flip code in a one-dimensional array of quantum dots. The qubits are in the center
of the device, indicated by alternating red (data qubits) and blue (ancilla qubits) ellipsoids each encompassing two quantum dots, since we
are using singlet-triplet qubits. The gate indicated by the central horizontal green line isolates the quantum dots from the electron reservoirs
situated above. The pitchfork gates can be used to couple each ancilla and qubit to an electron reservoir, which is essential for fast initialization
and readout. For the latter, the single-electron transistors situated between the pitchfork gates can be used to detect the change of electron
number in the dot. The lines from below are the gates used for defining and operating the quantum dots (see [43]). Note that the rightmost
ancilla qubit is not needed for the phase-flip code but useful for leakage reduction (see Sec. IV F.)
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FIG. 2. Circuit diagram for one error-correction cycle of the
distance-3 phase-flip code. The XX-parity checks are implemented
by coupling to ancillas, which are subsequently measured to give the
syndrome information.

of initialization method open to experimental characterization
and preference. Simulationwise, both initialization methods,
adiabatic ramping followed by a RY (π/2)-rotation gate and
directly initializing a singlet, are equivalent; the missing bit
flip for initializing a |+〉 state instead of the resulting singlet
state |−〉 from diabatic ramping can be absorbed into the
interpretation of the ancilla measurement by flipping the mea-
surement bit outcome. Likewise for the varying initialization
time, for the purpose of this paper, the initialization error will
be subsumed under readout error, since for all circuits used
in this paper the (bit-flip) error can be propagated through
the quantum circuit to the measurement location (see Fig. 2).
This can be seen by the fact that the RY (π/2) rotations convert
between X and Z (modulo prefactors), so that a bit-flip error
X converts into a Z error which commutes with the action of
the controlled-NOT (CNOT) gate, and then turns back into a X
error before reaching the measurement location.

FIG. 3. Logical vs physical error rate of the phase-flip code for
circuit-level depolarizing noise, using maximum-likelihood decod-
ing and plotting for increasing code distance d . The threshold is
estimated as pc = 3.3%, below which the logical Z-error rate P
decreases with increasing code distance. For every d , we run d QEC
cycles N times with N = 104.

FIG. 4. Phase diagram of the anisotropic random bond Ising
model according to the Takeda-Nishimori conjecture [53] given by
Eq. (10). The green region marks the ferromagnetic phase, which
corresponds to the correctable region of the phase-flip code for
anisotropic phenomenological noise.

B. Gate operations

Most of the properties of the singlet-triplet qubit that we
consider can be grasped by an effective Hamiltonian that de-
scribes the spin dynamics of two qubits, that is, four dots, each
hosting a single electron with spin vector σ (i), i = 1, . . . , 4,
given by

H (ε, b) = 1

4

3∑
j=1

Jj, j+1(ε j, j+1)σ ( j) · σ ( j+1) + 1

2

4∑
i=1

Bi(b)σ (i)
z .

(1)
Let us explain the terms entering this Hamiltonian. The first
term is the Heisenberg interaction Hamiltonian where εi j =
Vi − Vj denotes the dot detuning between the neighboring dots
i and j. We denote all detunings together as ε = (ε12, ε23, ε34).
As alluded to in Sec. II, this detuning leads to an effective

FIG. 5. Logical vs physical error rate of the phase-flip code
for the circuit-level depolarizing noise channel for increasing code
distance d and minimum-weight decoding. The threshold with this
decoder is slightly below MLD at circa pc = 3%.
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FIG. 6. Circuit diagram for one noisy cycle for the distance-3 phase-flip code. We use red and blue to discriminate between errors happening
during parity check gate executions and errors happening during the measurement of the ancilla qubits. The red boxes N denote the gate noise
channels on the single- and two-qubit gates and the initialization error; blue boxes indicate the noise processes during readout. Time is not to
scale, indicated by dotted qubit wires: the measurement takes much longer than the gate execution; during this whole time dephasing happens
on the data qubits indicated by the blue gate T2. The measurement is faulty, modeled by a bit-flip channel preceding the measurement. Our
simulation contains the effect of T2 over the full time between gate executions of consecutive QEC cycles (readout time + gate times), however
the readout time is dominant, since all data qubits in the bulk otherwise only idle during initialization (20 ns, see Sec. II A) and the Y rotations
of the ancillas (2 × 20 ns). The two boundary qubits idle an additional 50 ns during the CNOT gates. Qubit relaxation is not indicated for
readability since it is negligible but it is included in the simulation.

exchange interaction between neighboring dots (hence the
sum over nearest neighbors), which is described in terms of
the Pauli matrices σ (i) and the interaction strength Ji j . The
second term in the Hamiltonian Eq. (1) is a typical Zeeman
Hamiltonian describing the coupling of the electrons to the
magnetic fields Bi. By writing Bi(b), we allude to the fact that
the relevant variables are the magnetic-field gradients bi j =
Bi − Bj , again using boldface to denote the three gradients
between neighboring dots: b = (b12, b23, b34). The loss of one
variable in moving from site variables (the on-site fields) to
link variables (the gradients between neighbors) can be seen
by noting that the sum of all fields is irrelevant for the qubit
dynamics, since it is a term coupling to

∑
i σ

i
z , which is zero

on any qubit state and thus drops out of the dynamics. We
give the explicit change of basis in Appendix B. The dynamics
of this Hamiltonian allow for universal control, i.e., arbitrary
single- and two-qubit gates, provided that the magnetic field
gradients b are finite. Note that we only describe the dynamics
of the dots involved in the respective quantum gate, which
implicitly assumes negligible cross-talk to other qubits, i.e.,
we can execute gates in parallel on disjoint sets of qubits.
Finding optimal pulse sequences is a challenging optimization
problem; we refer the reader to [13], where the average
gate fidelity was used as the target function of a numerical
optimization routine in order to find good composite pulse
sequences for single- and two-qubit gates. The gate unitary
coming out of such a pulse sequence is given by the time-
evolution operator over a time duration, namely, the gate
execution time tgate, which is divided into N intervals of
length �t . During each individual interval the couplings are
kept approximately constant, such that the total time-evolution
operator is of the form

U =
N∏

m=1

exp[−iH (εm, b)�t]. (2)

As mentioned in Sec. II, the finite magnetic-field gradients
b necessary for universal gates are implemented by DNP of

the background nuclear field (in silicon this is implemented
instead by, e.g., the use of micromagnets due to the absence
of the nuclear field [32]). This poses a potential problem, since
during DNP the dot cannot host a qubit while being used
for polarizing the nuclear field. Reaching sufficient levels of
polarization takes on the order of hundreds of milliseconds.
For the purpose of running the phase-flip code we imagine
first using all dots to perform DNP, then initialize the qubits,
execute the rounds of error correction for the phase-flip code,
and finally measure all the qubits (see, e.g., Fig. 2). For the
small distances of the error-correcting code in question in
the present paper, DNP does not have to be repeated during the
circuit execution, because the runtime is on the order of tens
of microseconds (number of QEC cycles times measurement
integration time, see Table I) and one round of DNP enables
subsequent qubit operations for timescales of at least millisec-
onds (as on these timescales the nuclear field is stable) before
another round of DNP is necessary. The noise characteristics
of these gates are captured by the noise affecting the control
parameters: the dot detuning and the magnetic-field gradient
(“control noise”). We denote the detuning noise by δε(t ) and
the noise on the magnetic-field gradient by δb, changing the
Hamiltonian in Eq. (1) to one which includes the effective
noise processes by changing

Ji j (εi j ) → Ji j (εi j + δεi j ), (3)

bi j → bi j + δbi j . (4)

The detuning noise constitutes variations on the voltages,
which suffer from random telegraph noise, which is explained
by charge traps in the vicinity of the quantum dot, that are
periodically loaded and unloaded, leading to small spikes in
the voltage signal. While still under debate, this model agrees
well with experimental observation and yields 1/ f -type noise
(in reference to the power spectrum) [26]. For this detuning
noise we use a model that encompasses fast and slow compo-
nents compared to the timescale of the execution of a gate. The
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magnetic-field noise δb is dominated by low-frequency noise,
the underlying mechanism being nuclear spin diffusion, which
is well described by slowly varying (quasistatic) noise [23,33].

The effect of control noise on the level of gate execution
is that we are implementing a Hamiltonian the parameters
of which are slightly offset, in turn leading to the actual
unitary gate applied to the qubit being slightly different from
the intended gate. If these control parameters are changing
fast compared to gate operation times, then such noise can
be well described by its quantum channel which is obtained
by averaging over many noise realizations. In contrast to
this, noise parameters which change slowly with respect to
gate operation times lead to the computation being subject
to the same systematic error over its entire time. In terms
of simulating these operations, the fast noise channel can
be simulated once and then acts as the same channel at any
location. To model slow noise, we will instead draw noise
parameters per circuit run instance and only do the averaging
after sampling from this distribution on the level of the entire
circuit simulation. The details of this model are given in
Appendix A. Another error channel besides control noise is
leakage, which we briefly discuss here. When looking at the
joint Hilbert space of two neighboring qubits, we can see that
the mz = 0 subspace is six-dimensional, since it contains the
two additional states |T+T−〉 and |T−T+〉. These can be reached
from a computational two-qubit state by exchanging the spin
between the two dots in the middle (e.g., |↑↓↑↓〉 → |↑↑↓↓〉),
a transition which is not gapped by the global Zeeman field.
However, these transitions can be avoided by making such
a spin flip energetically costly by imposing that at all times
b23 = B3 − B2 
 J23 [see Eq. (1)]. Detailed two-qubit gate
simulations [13] predict very low leakage rates (≈10−4),
which is why we focus on control noise errors in the present
paper, deferring leakage to Sec. IV F, where we explain how
leakage can be incorporated into error correction via leakage
reduction.

C. Readout

A feature of the singlet-triplet qubit is that it grants access
to a high fidelity readout mechanism in the form of spin-
to-charge conversion. Here one exploits the Pauli exclusion
principle, which forbids the two electrons in the triplet state
to be in the same dot. By going to a high detuning, it becomes
energetically favorable for the singlet to have both electrons in
the same dot. This way we can discriminate the qubit states by
measuring the number of electrons in either of the dots, which
can be done using a single-electron transistor (SET). Readout
fidelity is a bottleneck in current spin qubit implementations,
both in terms of the measurement integration time, i.e., the
time one needs to discriminate the signal on the SET, as
well as in terms of the fidelity of this measurement. While
current readout numbers can be as bad as milliseconds and
80% fidelity [34], we will see that even these numbers are not
necessarily fatal for our purposes, since the code at hand can
in principle tolerate a high readout error in a certain parameter
regime. On the other hand, there have been recent proposals
pushing the envelope of spin qubit readout to the 99% fidelity
regime and integration times on the order of microseconds
by using a latched readout [28]. A dispersive qubit readout

TABLE III. Comparative table of average gate fidelities and op-
eration times for silicon qubits found in the literature. Since there are
several qubit types, the type is indicated as LD (Loss–DiVincenzo)
for the bare single-electron spin qubit and as ST0 for the singlet-
triplet qubit. Note that the two-qubit gate infidelity for LD in silicon
is the experimental number so far and can be expected to decrease,
at least on the basis of theoretical models.

Component Values (range) Type

Gate times ≈1 μs [36] LD
2-qu. gate 1 − F (Exp.) 2 × 10−2 [36] LD
2-qu. gate 1 − F (Th.) 1 × 10−4 [13] ST0

T2 1 ms [37] LD
T1 >1 s [38] LD
Measurement time 1–6 μs [35,39] ST0

Meas. error rate 2 × 10−2–3 × 10−3 [35,39] ST0

Meas. error rate 2 × 10−1 [34] LD

using an on-chip resonator, taking 6 μs with fidelity 98%,
has been achieved for Si qubits [35]. In Tables I and II we
summarize some of these numbers for the GaAs singlet-triplet
qubit. In Table III and Sec. II F we discuss similar numbers for
Si qubits.

D. Qubit dephasing and noise tradeoff

So far, we have described gate errors and readout errors.
In a typical quantum error-correction protocol (including the
one employed in this paper) [1], to protect the information
encoded in the data qubits, one extracts error information
by using ancilla qubits, which are subsequently measured.
During the measurement integration time, the data qubits of
the error-correcting code have to wait before we can continue
with the next cycle. As the measurement time is O(100) times
slower than the individual gate times in Table I, dephasing
of the data qubits during measurement by far dominates
dephasing-induced Z or X errors during the rest of the QEC
cycle.

This slow measurement bottleneck can in principle be
circumvented by supplying fresh ancillas for new QEC cy-
cles while the current ancillas are still being measured (see,
e.g., the analysis in [40]), or by avoiding measurement all
together [41]. However, we choose to treat qubits as a scarce
resource, which seems more reasonable in the near term, and
thus reuse the measurement qubits to keep the number of
qubits minimal. As described above, the dominant qubit noise
component is dephasing, which means that during the idling
the data qubits suffer a phase-flip error rate [42]:

pZ = 1 − exp(−treadout/T2)

2
, (5)

where treadout is the readout time and T2 is the dephasing
time which can vary—depending on dynamical decoupling
pulses—from T ∗

2 to the best values reported with dynamical
decoupling during the readout.

All in all, the efficacy of phase-flip error correction will
depend on (1) the intensity of Z errors due to the CNOT gates,
(2) the ancilla qubit measurement error rate, and (3) the ratio
treadout/T2. Naturally, the latter quantity can be experimentally
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reduced by either shortening the readout time or lengthening
the dephasing time by more intensive dynamical decoupling
(although there is a limit on how much dynamical decoupling
can help as the single-qubit gates themselves introduce addi-
tional Z errors). We identify the tradeoff between the readout
quality (2) and qubit dephasing (3) as the main tradeoff of the
proposed experiment.

E. Proposed linear dot array

To operate the phase-flip code, we imagine a one-
dimensional array of alternating data and ancilla qubits, which
we realize by a linear array of quantum dots as shown in
Fig. 1. This layout is modified with respect to previous linear
designs used in several groups [43–45] to allow singlet-triplet
qubit operation with DNP [23].

To this end, our proposal first simplifies the fanout of
the large number of electrostatic surface gates by moving to
the third dimension and stacking three gate layers vertically,
isolated from each other by dielectric layers in between. This
enlarges the space between adjacent gates and thus lowers the
demands on the fabrication process. In Fig. 1, the lowest layer
is indicated in red, the middle layer is in dark gray, and the top
layer is in green.

Similar to previous designs, the dots are defined by a long
horizontal gate (on the topmost layer and thus shown in green)
and so-called barrier and plunger gates coming in from the
bottom (dark gray and red, respectively). The barrier gates
predominantly control the tunnel barriers to adjacent dots,
and to the electron reservoirs for the leftmost and rightmost
dots. The plunger gates mainly control the dot potentials. By
using bias tees, the dc potential of these gates can be set
using stable voltage sources while fast control with roughly
300-MHz bandwidth (for manipulation, initialization and
readout) can be coupled in simultaneously using arbitrary
waveform generators.

In this array, qubits are encoded in two separate but tunnel-
coupled quantum dots (using the singlet-triplet encoding de-
scribed in Sec. II). Experiments [43] have shown that such
an array can reach sufficiently high tunnel couplings [31]
on the order of tens of μeV. In order to sense the charge
state of each dot in the linear chain, sensing dots (SETs)
are defined by gates coming in from the top of the diagram.
Each SET is confined by the green horizontal gate and three
additional gates. The SETs are used for readout of the two
qubits next to them. They are connected to electron reservoirs
via Ohmic contacts (square boxes) which are in turn con-
nected to a ground potential (black crosses) or a rf readout
circuit [46].

In order to allow straightforward singlet-triplet qubit op-
eration, we add the black “pitchfork” gates coming in from
the top. These gates can be used to couple each qubit to an
electron reservoir by metallic screening of the confinement
potential of the green gate. This coupling can be used for
fast initialization in a singlet state, which is essential for
performing DNP. The black pitchfork gates are screened by
lower-lying gates indicated in red so that the electron reservoir
surrounding the SETs is not affected by their presence. This
allows the potential of the pitchfork gates to be changed
without a detrimental effect on the SET potentials.

Direct initialization of each qubit is useful for initializing
a well-defined qubit state, and for performing DNP to control
magnetic-field gradients between adjacent dots (see Sec. II B).
Sufficiently high magnetic-field gradients can suppress leak-
age to noncomputational T− and T+ states during two-qubit
gates (see Sec. II B and [13]).

F. Silicon-based qubits

While we picked gallium arsenide for this particular real-
ization, our results are for the most part also informative for
silicon qubits, with the silicon ST0 qubit being the closest
cousin to our setup. The gate simulations that were done
in [13] also discuss this relationship and conclude that similar
gate fidelities can be expected in silicon. We list some typical
parameters for silicon qubits in Table III for comparison (note
that there are different types of silicon qubits, see references).
It is apparent that the noise bias towards decoherence T2

vs relaxation T1 is equally prominent in silicon. The main
reason for using (purified) silicon is the absence of the nuclear
field, which allows for substantially higher relaxation and
decoherence times. However, this has the drawback of losing
the possibility for dynamic nuclear polarization, which is
typically replaced by mounting micromagnets on the sample,
which still poses questions on scalability. Gate times are
substantially longer, to some extent remedied by advantages
in relaxation and decoherence times. An advantage towards
dealing with leakage is that single-electron spins can be used
as qubits; this has, however, the major drawback that the
readout is not of high fidelity. This suggests that a hybrid
device could be used with ancilla qubits being singlet-triplet
qubits and data qubits embodied by single spins.

III. PHASE-FLIP CODE

The phase-flip code is simply the classical repetition code
with n qubits: instead of correcting bit flips we protect against
phase flips by rotating the stabilizer checks. The phase-flip
code can be viewed as the natural stepping stone or a testbed
for implementing the surface code, as its manner of decoding
is similar (see also Sec. V).

A. Parity checks, logical operators, preparation,
and measurement

The parity checks on n qubits (with n odd) on a line are the
nearest-neighbor checks Si = Xi ⊗ Xi+1 for i = 0, . . . , n −
2. The logical operators are Z = ⊗n−1

i=0 Zi and X = Xi for
any i. These act on the logical qubit states defined as
|0〉 ≡ 1√

2
(|+ + . . . +〉 + |− − . . . −〉), |1〉 ≡ 1√

2
(|+ + . . .〉 −

|− − . . . −〉), and |+〉 = |+ + . . . +〉 and |−〉 = |− − . . . −〉.
The code has distance d = n with respect to Z errors and
distance 1 with respect to X errors. The parity check measure-
ments are implemented by coupling both qubits to an ancilla
through a CNOT gate, which can be done in two time steps,
in parallel on all even and odd qubits. The circuit diagram is
given in Fig. 2. Here, the ancilla preparation and measurement
in the ± basis is realized by using rotations RY (±π/2).

A destructive logical Z measurement for the phase-flip
code corresponds to measuring all qubits in the Z basis and
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taking the product of all individual Zi outcomes. Note that
each individual Zi outcome will be random, but the product
of the expectation value is 1 (−1) when applied to |0〉 (|1〉).
This measurement is very sensitive to measurement error
as its outcome depends on all the individual outcomes. A
destructive logical X measurement is the measurement of all
qubits in the X basis and taking the majority of the answers,
and hence is very robust to error. The preparation of |+〉 (|−〉)
is simple as it is the preparation of each qubit in the |+〉
state (|−〉). The preparation of |0〉 can be done by starting
all qubits in the |00 . . . 0〉 state, (also) an eigenstate of Z , and
measuring the Si checks. These Si checks will have random
outcomes and thus require single-qubit Z corrections (to set
their eigenvalues to +1) which does not affect the eigenvalue
of Z . In our simulations we start the data qubits in the circuit
in Fig. 2 in the state |+ + . . . +〉, and, after repeated rounds of
quantum error-correction cycles, we measure each qubit in the
X basis. The circuit for code size n is an alternating array of
n data qubits with n − 1 ancilla qubits and otherwise identical
QEC cycles as in Fig. 2.

B. Decoding

The decoding problem is an inference problem in which we
use error information, obtained by stabilizer measurements,
to infer whether a logical error has happened on the encoded
qubit. Let us first make a few very general comments on
decoding which apply well beyond the phase-flip code studied
in this paper.

We can describe the decoding problem as a two-player
setup in which one person is the experimenter preparing an
encoded input state, performing the QEC cycles and finally
deciding whether to measure the encoded qubit in the logical
X or Z basis. The other player is “the decoder” who does not
know the input state, nor what final measurement is chosen,
but only gets all parity check measurement data M acquired
during the QEC cycles. The goal of the decoder is to give
the experimenter two bits bz = 0, 1 and bx = 0, 1, based on
knowing M. The experimenter uses these bits as follows. If
she measures Z and bz = 0, she accepts the outcome of Z as
the true outcome; if bz = 1 she flips the outcome. Similarly,
if she does the X measurement, she uses the bit bx to flip
the outcome or not. A slightly more general formulation is
one in which the decoder also gets all the last destructive
measurement data Mfinal, and tells the experimenter how to
read this final logical measurement using Mfinal and the record
M. The reason to think about the decoder and the experi-
menter as different identities is that the decoder should not
be able to enhance her performance by knowing what state
the experimenter started with, or by knowing in advance what
measurement the experimenter will perform. In addition, she
may be asked to perform the computational task of decoding
on-line, meaning that there should be no time delay due to her
computation lagging behind when the experimenter finishes
doing all measurements and wants to know the answer to the
final logical measurement.

The most powerful decoder could simulate the entire noisy
quantum computation using a full-density-matrix simulation
given the best possible noise model. Naturally, this form of
decoding is not scalable and defeats the purpose of quantum

computing. In addition, in the two-player setup, the computa-
tional power of such decoder has to go beyond that of quantum
computing, as she has to postselect her simulation based on
the measurement data that she obtains from the experimenter.
We will refer to this form of decoding as maximum-likelihood
decoding (MLD), as it is the best possible way of decoding.

One can consider the performance of such a maximum-
likelihood decoder for a code family of growing distance
n = d , such as the phase-flip code against Z errors. To com-
pare the decoder’s performance for different d , we let the
experimenter execute d QEC cycles before executing a final
logical measurement [47].

How do we assess the performance of the decoder? Assess-
ing its performance first of all assumes that the noise model
that we employ is an accurate description of the physical
setup, that is, we have a fairly accurate description of the
full-density-matrix evolution, and we can thus compare the
decoder’s decision with the maximum-likelihood decision.

In our case we are first interested in the occurrence of a
logical Z error as the aim of the code is to reduce this, hence
the experimenter will finally measure X , i.e., measure all
qubits in the ± basis. In addition, in assessing the performance
of the decoder, we will imagine the last measurement step of
X by the experimenter to be error free, simply so that it does
not count towards the logical error rate which is a function of
the number of cycles n.

Let us first give the success probability for maximum-
likelihood decoding. In principle, the experimenter starts the
qubits in some arbitrary encoded unknown state σ . After n
rounds of parity check measurements, let the output state of
the data qubits be ρσ

M where M is a multi-index label for the
parity check outcomes, i.e., M has (no. of stabilizers) × (no. of
QEC cycles) entries. Now the simplest maximum-likelihood
decoder assumes that the input is, say, |+〉 (instead of σ )
and runs a density-matrix simulation and outputs “flip,” i.e.,
bx = 1, when in her simulation P (X = −1|M,+) > P (X =
1|M,+). The failure probability, if the state of the experi-
menter was indeed |+〉, is then

PMLD

=
∑

M

P (M) × min(P (X = −1|M,+),P (X = 1|M,+)).

(6)

We will take this probability as a proxy for the MLD logi-
cal failure probability for Z for arbitrary input states σ for
simplicity, as we do not expect that starting with |−〉 would
give the decoder a very different decision, or that arbitrary
inputs will fare very differently. This is exactly correct when
the noise model is that of depolarizing errors which act in
a completely state-independent way, but it is an assumption
when we implement more general noise in Sec. IV. Similarly,
if we would evaluate MLD decoding for a X error, we would
prepare a |0〉 state and the decoder decides bz = 1 when
P (Z = −1|M, 0) > P (Z = 1|M, 0) with corresponding logi-
cal failure probability.

To test maximum-likelihood decoding we apply it to a
standard noise model of circuit-level depolarizing noise. This
model is as follows. For a single qubit, the (symmetric)
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depolarizing channel is the Pauli channel:

E (ρ) = (1 − p)ρ + p

3

∑
i

PiρPi. (7)

Circuit-level noise means that we apply this noise channel
after every single-qubit element (initialization, single-qubit
gate, readout) in the circuits such as Fig. 2. For a two-qubit
gate, we apply the two-qubit version of the symmetric depo-
larizing channel which leaves the state alone with probability
1 − p and applies any one of 15 two-qubit Pauli channels
with probability p/15. We use full-density-matrix simulations
using QUANTUMSIM software available at [48] to simulate the
noisy circuits, although for the noise models in this section
simpler stabilizer simulations are possible. By evaluating
Eq. (6) for different code distances and error probability p,
we find a threshold value of the depolarizing circuit noise
of pc = 0.033 in Fig. 3 using maximum-likelihood decoding.
The threshold here is taken to be the point where the curves for
different d cross, which captures the asymptotic performance
of the code.

To put these results in perspective and discuss the com-
putationally efficient method of minimum-weight matching
decoding, let us take a step back and first consider some
simpler phenomenological noise models. The simplest one is
to assume that all parity check measurements are perfect and
in each QEC round every qubit is hit by a phase-flip error
channel:

E (ρ) = (1 − p)ρ + pZρZ. (8)

After a single QEC round one can mark which stabilizers are
flipped as defects and match these defects to each other or to
the outside boundary, choosing the matching which minimizes
the total distance between the matched defects. The matching
produces a logical error when the number of phase-flip errors
is at least (d + 1)/2 (i.e., the majority is in error and—
unbeknownst to the decoder—choosing the complementary
matching would have been correct). Thus the logical failure
probability is

P =
d∑

k=(d+1)/2

(
d

k

)
pk (1 − p)d−k, (9)

which for d → ∞ tends towards zero for any p < 0.5 giving
the well-known threshold value p = 0.5 for the phase-flip
code with perfect syndrome measurements.

A next model is that of phenomenological noise. In this
noise model, each qubit undergoes a Z flip with error proba-
bility p in each QEC round and each parity check is perfect
except for the outcome of the ancilla measurement being
flipped with probability q. In this noise model we have the
additional effect that defects do not necessarily correspond
to actual data qubit errors anymore but can instead stem
from an inaccurate measurement itself. To handle this, one
needs to process syndrome measurement outcomes from one
round to the next. From the record M the decoder creates a
syndrome defect record by placing a defect between cycle t
and t + 1 when the stabilizer measurement outcome changes
from cycle t to t + 1. A measurement error at cycle t will thus
lead to a pair of defects at time (t − 1, t ) and (t, t + 1) and
pairing these defects in decoding means that we interpret it as

such. An incoming qubit phase-flip error in round t + 1 will
lead to two neighboring defects at time t + 1 in the bulk of
the lattice, which can be matched. On the boundary there is
only one defect (which could be matched to the boundary).
A minimum-weight matching decoder now takes this defect
record and matches all defects with the goal of minimizing the
total distance between the matched defects, where the distance
is taken as a function of the error probability p and q. The
algorithm of minimum-weight perfect matching (MWPM) is
the efficient Edmonds blossom algorithm [49].

If we choose the measurement error rate q equal to the
Z error rate p, then, except for the marginal details on the
boundary, the decoding problem is known to be equivalent
to the decoding problem of the toric code with perfect mea-
surements [50]. The equivalence can be understood by seeing
that the time direction of the repetition code plays the role
of the second spatial direction of the toric code. This toric
code with perfect measurements has the well-known threshold
value of p = 0.11 [51] under maximum-likelihood decoding.
The minimum-weight matching decoder performs close to
optimal with a threshold of p = 0.105 [50,52].

The case p = q and the optimally achievable maximum-
likelihood threshold are relevant in understanding the numer-
ical data for full-density-matrix simulations in Sec. IV as they
effectively feature the same tradeoff between measurement
error (error rate q) vs incoming error (error rate p). Takeda
et al. [53] have conjectured the phase boundary separating
the below-threshold to above-threshold region to lie at the
following line:

H (p) + H (q) = 1, (10)

where H (x) denotes the Shannon entropy H (x) =
−x log2(x) − (1 − x) log2(1 − x); see Fig. 4. When
p = q, the condition H (pc) = 1/2 implies pc ≈ 11%. The
threshold boundary shape in Fig. 4 provides a guidance for
understanding the results in the next section, e.g., Fig. 7. Even
though the noise is more involved as it includes some level
of gate noise, the main features of a tradeoff between readout
error vs phase-flip error are indeed present. In Appendix C
we review the underlying theory behind maximum-likelihood
decoding for the repetition code.

Let us now present our results on applying MWPM on the
circuit-level depolarizing noise model to see the discrepancy
with ML decoding. In order to decide how to best match
up the syndrome defects, we assign equal weight to both
timelike (ancilla) and spacelike (data) errors, i.e., for decoding
we essentially assume a phenomenological noise model with
equal measurement as incoming error rate p = q. We then
perform the matching of a given syndrome graph with the
weights given by this noise model by using a standard imple-
mentation of the blossom algorithm in the PYTHON package
NETWORKX [54]. As shown in Fig. 5, the logical error rates
cross at a value of p = 3%, which shows that MWPM with
a rather simple noise model performs close to optimal for
circuit-level depolarizing noise. This good performance might
be not too surprising given the low (equal to 2) weight parity
checks of the phase-flip code. The inclusion of so-called
vertical hooks [2,50] for the matching algorithm might bring
the MWPM threshold closer to the optimal MLD threshold,
however we chose not to investigate this slight difference
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FIG. 7. Phase diagram of the error enhancement to error sup-
pression transition of the logical Z error of the phase-flip code for
lowering readout error (x axis) and lowering qubit errors (y axis),
using an MWPM decoder. The criterion of error enhancement (black
×, upper region) and error suppression (white +, lower region) is
determined by a full circuit simulation of the real phase-flip code
circuit with noisy components. This strongly indicates the feasibility
of showing error suppression in the spin qubit device depicted in
Fig. 1. The logical error rate is shown as a heat map (corresponding
to the distance-9 code at each parameter tuple).

further. For the surface code, the question of the timing of er-
rors (i.e., at which point in the parity check circuit they occur)
is much more sensitive due to the higher-weight parity checks
and the fact that X and Z checks are acting on the same qubits,
which can lead to problematic error patterns (notably single
ancilla errors spreading to several data qubit errors) [50]. In a
phase-flip code the CNOT gates cannot propagate ancilla errors
to data qubit errors due to the structure of the parity checks.

IV. DEVICE-SPECIFIC FULL-DENSITY-MATRIX
SIMULATIONS

A. Full-density-matrix circuit simulation

Using the QUANTUMSIM framework [48] we build a nu-
merical simulation of the quantum circuit outlined in Fig. 6,
where all the components are faulty, i.e., the gates are given
by realistic noisy channels, the qubits decohere, and the
initialization and measurement can be imperfect, according
to Tables I and II. In particular, the gates are derived from
the qubit Hamiltonian H (ε + δε, b + δb) with the magnetic
field gradients b and the detunings ε between the dots,
Eq. (1), to which both fast and slow noise are added ac-
cording to an accurate noise model (Appendix A). Relaxation
and decoherence times for the qubits are used during mea-
surements and idling steps. Initialization and measurement
errors are modeled by a bit-flip channel preceding the mea-
surements, that is, they are jointly subsumed under readout
error.

B. Dephasing vs readout: Parameter exploration

The goal of our proposal is to run the device in Fig. 1 at
increasing code distances and gather statistics on the logical
error rates in order to test whether current technology is good

TABLE IV. Gate metrics for the gate sequences we use in this
paper. The (in-)fidelities are the entanglement fidelities computed by
the pulse sequence optimization developed in separate work by one
of us (P.C.) (see the related paper [13]). The χ matrix was computed
from these gate sequences as part of the present paper in order to
estimate the error rates of the gates. As a rough estimate we give the
error rate as 1 − χ00.

CNOT RY (π/2)

F 99.74% 99.89%
1 − Fslow 9 × 10−4 1.5 × 10−4

1 − Ffast 1.9 × 10−3 1 × 10−3

p ≈ 1 − χ00 2.8 × 10−3 1.2 × 10−3

enough to achieve error suppression in a spin qubit experi-
ment, i.e., the device can operate below the error-correction
threshold of the code at hand.

Looking at the circuit components, we first estimate the
error rate of the involved single- and two-qubit gates, which
we do by averaging the channel over many (103) quasistatic
noise realizations and then turning this channel into a Pauli
channel by averaging over the Pauli group, which is known
as the Pauli twirling approximation (PTA). For a channel
given by E (ρ) = ∑

m,n χmnPmρPn where Pm are Pauli chan-
nels and P0 = I , the PTA takes the approximation EPTA =∑

m χmmPmρPm with 1 − χ00 the corresponding error rate. The
gate fidelity is experimentally accessible through randomized
benchmarking and is also the metric for which the pulse
sequences are optimized, i.e., we list both 1 − χ00 as well
as the gate (in-)fidelities computed by the pulse sequence
finder designed by one of us (P.C.) in a different related
project [13] in Table IV [55]. We note that these fidelities
and gate error estimates do not enter in our simulations as
we simulate full gate dynamics, but the numbers are meant to
provide guidance of expected performance and check whether
gate noise is biased towards particular Pauli errors. We have
observed that the other entries on the diagonal of the χ

matrix for the gates are not very biased towards a particular
error with entries not varying over more than two orders of
magnitude.

Comparing these numbers to the thresholds we found in
Fig. 3, it is reasonable to believe that gate operations are
below threshold for the phase-flip code. As described above,
one of the bottlenecks at least in current and near term
implementations of spin qubits is their long measurement
times. While waiting for the measurement, the data qubits are
idling, which as a noise process is strongly biased towards
dephasing. Thus T2 and T ∗

2 are relevant figures of merit. We
therefore undertake a numerical parameter study for a range of
realistic estimates for integration time and readout fidelities.
We explore the range between bare T ∗

2 times and the most
optimistic timescales for echoing, by choosing T2/treadout =
{0.1, 1, 10, 100, 1000}, since we deem it reasonable to believe
that the multidot device will be able to operate within this
range (see Sec. II E). The readout time treadout is yet another
parameter which is to be determined, however it is typically
on the order of 1 μs, in which case the y axis of Fig. 7 and
related figures directly correspond to T2 times.
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Since the readout fidelity is still to be characterized to high
accuracy, we let this parameter range over a wide, possibly
pessimistic, spectrum by allowing up to 25% readout error.
For every parameter pair we construct the circuit for sev-
eral code distances d = 3, 5, 7, 9 and take 103–104 samples,
which we decode with both the maximum-likelihood decoder
and a minimum-weight decoder, where we adapt the weights
by choosing a spatial weight ws = − log(p) with the error
rate given by the dephasing time and a temporal weight wt =
− log(q) with the measurement error rate q. For a code of
distance d we execute d QEC cycles as in Sec. III B. We
observe that this MWPM decodes close to optimal (MLD)
for our parameter ranges, but we do not plot the MLD data
here.

For every parameter tuple, we determine whether the log-
ical error rate is monotonically decreasing with increasing
code distance d . If this criterion is fulfilled, we mark the
tuple with a white + symbol; if it is not fulfilled, we mark
it with a black × symbol. Furthermore, to estimate the code
performance we overlay the plot with a heatmap of the log-
ical error rate of the distance-9 code at the corresponding
parameter value. The result is shown in Fig. 7. We observe
that for T2 = 10 μs with a given measurement integration
time of 1 μs the code could tolerate a readout infidelity
of up to 15%. From the next order of magnitude in T2 >

100 μs the study suggests an extremely high tolerance to
readout errors. This can be understood by looking back at
the phenomenological anisotropic noise model (see Fig. 4).
While the noise in our simulation is in principle not that
simple since it occurs at the circuit level and is spatially
and temporally correlated, this suggests that when the gates
have low error rates we can indeed tolerate very high readout
noise.

C. The effect of increasing gate noise

In our gate simulations so far, we took the experimentally
measured values for the width of the distribution of slow b
field σδb and exchange noise σδε (Appendix A). Since this
noise has to this point never been characterized in a device of
more than four dots, extrapolating these values might be too
optimistic. To safeguard against possible increases in the noise
distribution, we studied the effect of a wider distribution by
performing the simulation described in the previous paragraph
(Sec. IV B) with a standard deviation of the noise distribution,
which is twice and four times as large for both the charge
noise as well as the magnetic-field fluctuations. The results
of doubling the noise strength can be seen in Fig. 8: the
region of error suppression stays intact but the logical error
rate increases. In contrast to this, for a fourfold increase of
the noise strength we have observed that the structure of the
parameter region is lost and we do not observe a contingent
region that would indicate error suppression in the studied
parameter range.

D. Coherence of noise and Pauli twirling

The question we want to address in this section is whether
the coherence of the noise and the temporal and spatial
correlations of slow noise are relevant in our numerics. The

FIG. 8. Cf. Fig. 7: Here we doubled the noise distribution width
σ̃δb,δε = 2σδb,δε . The logical error rates increase by one order of
magnitude, but the essential structure is maintained: the phase-flip
code provides error suppression of phase noise for a wide range
of parameters. (Error enhancement and suppression markers are not
shown; they are the same as in Fig. 7.)

impact of applying a Pauli twirl approximation converting a
general noise channel to a depolarizing noise channel and
enabling scalable numerical simulations of Clifford circuits,
instead of full-density-matrix simulations, has already been
studied in the literature (see, e.g., [56]). Results on small codes
suggest that Pauli twirling overestimates the logical error rate,
thus providing to some extent an upper bound on the logical
error rate [57]. It has also been reported that Pauli twirling is
a good approximation for incoherent noise models and worse
for coherent errors [58].

Since we use density-matrix simulations we can compare
full noise simulations with those in which we remove slow
temporal correlations in the noise as well as apply the PTA
approximation for each gate in the circuit. We compare the
full circuit simulation reported above with a simulation where
we replace every noisy gate by its perfect incarnation followed
by an asymmetric depolarizing channel, which is obtained by
twirling the true noisy gate error channel (sampled sufficiently
often so the channel has a convergent representation).

As shown in Figs. 9 and 10, the shape of the phase bound-
ary stays the same and also the logical error rate differs only
slightly. Our numerical results thus suggest that Pauli twirling
does not dramatically alter the predictions of simulating a
small phase-flip code in our regime of parameters. This has
several explanations: probably the dominating noise is not
gate noise, which is quite far below threshold in itself, no
matter which error model is used. Furthermore, it is also
not completely coherent; the contribution from slow noise
is comparable to the contribution from fast noise. Another
contribution, which has also been observed in other studies, is
the projective nature of the ancilla qubit measurement model,
projecting out superpositions of Pauli errors onto specific
Pauli errors on the data qubits.

All in all we conclude that Pauli twirling seems to be
a very acceptable numerical approximation in our regime,
showing that costly full-density-matrix simulations are in fact
not needed to estimate the logical code performance for our
parameter regime.
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FIG. 9. The effect of Pauli twirling: Analogous to Fig. 7, we plot
the phase diagram of the error enhancement to error suppression
transition of the phase-flip code (using MWPM decoding), but here
instead of simulating the full noise dynamics we replace every noise
process by its (slow and fast) noise averaged and then twirled version.
(Error enhancement and suppression markers are not shown; they are
the same as in Fig. 7.)

E. The enhanced logical X -error rate

Of course, dealing with a phase-flip code, we have no log-
ical protection against X errors. While the qubit noise is very
biased towards phase flips, the gates in the parity check circuit
invariably introduce X errors. If we start the QEC cycles in
the state |0〉 and finally destructively measure Z , it gives us an
estimate for the logical X -error rate. We can roughly estimate
this error rate by computing the probability that there are an
odd number of X errors on the final qubits (including errors
in the final measurement) after d QEC cycles. Let peff,x be
the effective X error of a qubit per QEC cycle. This error
rate is induced by the CNOT gate and X errors induced by T1

relaxation during the measurement. Note that bit-flip errors

FIG. 10. The effect of Pauli twirling: Analogous to Fig. 8, we
increase the noise strength of slow noise by a factor of 2 in the
distribution width σ̃δb,δε = 2σδb,δε and plot the phase diagram of the
error enhancement to error suppression transition of the phase-flip
code, but here instead of simulating the full noise dynamics we
replace every noise process by its twirled and noise averaged version.
(Error enhancement and suppression markers are not shown; they are
the same as in Fig. 7.)

FIG. 11. Logical error rate tradeoff of the phase-flip code. Solid
PZ is for readout error 5% and dashed is for 15%. The rising
line is the X-error rate; the constant and falling lines are Z-error
rates (ordering analogous to the legend.) For sufficiently long T2

times (with treadout = 1 μs), by encoding in the phase-flip code, the
logical Z-error rate is exponentially suppressed. In contrast to this,
the logical X -error rate increases with larger encoding circuit. The
distance-3 code has a logical X -error rate at the value of the surface
code threshold, which upon noise optimization could allow for a
subthreshold error rate for a code concatenation.

coming out of a RY (±π/2) gate do not enter the X -error rate,
since they propagate to an even number of data qubits. In total,
the logical qubit suffers an X error if there are an odd number
of X errors in a space-time volume of size d2 (composed of d
QEC cycles on d qubits), i.e.,

PX (peff,x ) =
∑

k odd

(
d2

k

)
pk

eff,x(1 − peff,x )d2−k

= 1

2
[1 − (1 − 2peff,x )d2

]. (11)

Neglecting the effect of T1 errors, we estimate that the CNOT

introduces an X error on the data qubit with error rate
peff,x ≈ 0.0013. For comparison, we compute the logical X -
error rate in the circuit simulation by sending the state |0〉 =

1√
2
(|+ + . . . +〉 + |− − . . . −〉) through the circuit. The rela-

tive sign of this state is flipped by X errors and thus we can de-
termine the logical X -error rate by determining the probability
that the final state has negative relative sign. The values of this
are in good agreement with the phenomenological formula in
Eq. (11) at peff,x ≈ 0.0013.

We show the behavior of the logical X -error rate in Eq. (11)
for increasing code distance compared to the logical Z-error
rate for the same distance, which we plot for two settings
of readout error (5 and 15%) in Fig. 11. As expected, the
logical X error is growing for large distances, however the
distance-3 code is not hopeless. It sits close to the surface
code threshold at 1% [51]. Note that the logical X error is
extremely sensitive to the X -error rate of the CNOT gate. The
gate sequences could be tailored to specifically avoid these
types of errors by adapting the target function of the pulse
sequence optimization routine, thereby potentially pushing
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the logical X -error rate below surface code threshold (see also
Sec. V).

F. Leakage and leakage reduction

The qubits employed in the envisioned architecture are
encoded in the {|S〉, |T0〉} subspace of two electrons in a
double dot. The remaining triplet states {|T+〉, |T−〉} comprise
noncomputational leakage states and the most relevant pro-
cess for leakage in our setup is faulty gate operation [24].
Continued leakage accumulation poses a threat to error cor-
rection [59–61], but the problem can be addressed using
so-called leakage reduction units (LRUs). These units return
leaked qubits to the computational subspace, potentially in-
troducing qubit errors, which can be handled by the error-
correcting code [62]. For singlet-triplet qubits, such a LRU
can be implemented by a swap if leaked (SIL) procedure [62],
swapping the concerned (data) qubit with a fresh ancilla qubit
only in case the data qubit is in a leakage state. A compact way
of representing the desired operation (see Sec. II for qubit and
leakage states) is a truth table specifying the required mapping
for such a SIL procedure [62]:∣∣SD	A

0

〉 → ∣∣SD	A
1

〉
,

∣∣T D
0 	A

0

〉 → ∣∣T D
0 	A

1

〉
,∣∣T D

− 	A
0

〉 → ∣∣	D
r,−T A

−
〉
,

∣∣T D
+ 	A

0

〉 → ∣∣	D
r,+T A

+
〉
,

where |	A
0 〉 and |	A

1 〉 are initialization and output states in
the computational ancilla subspace {|SA〉, |T A

0 〉} and |	D
r,−〉

and |	D
r,+〉 are reset states in the {|SD〉, |T D

0 〉} subspace, all
of which may be chosen arbitrarily. We have used D for
data qubit and A for ancilla qubit, i.e., we are swapping
leakage from data to ancilla qubit. This gadget is a two-qubit
interaction, which can be implemented analogously to the
two-qubit gates we employ elsewhere in this paper, so that it
is reasonable to assume that the SIL sequence can be similar
in both duration (50 ns, see Table I) as well as fidelity. A neat
feature of the proposed chip design (Fig. 1) is that it allows for
fast energy selective reset into a singlet state via coupling to
a nearby electron reservoir, such that it is possible to execute
the leakage reduction sequence including ancilla reset on a
timescale of tens to hundreds of nanoseconds depending on
the initialization method of |	A

0 〉 (see Sec. II A).
For the chosen qubit type, material system, and architec-

ture, leakage induction will be dominantly due to execution of
gates (with, e.g., the single-qubit gate leakage rate measured
to be 0.13% [25]). Therefore, most of the leakage will be
accumulated during the echoing sequence executed on the
data qubits while the ancilla qubits are being measured. These
echoing techniques are necessary to generate the high effec-
tive T2 used throughout the paper, but need of the order of
ten single-qubit gates to reach T2 times that ensure sufficient
qubit coherence after the measurement time has passed (e.g.,
in [63] 16 gates were needed to reach 200 μs). We therefore
place the leakage reduction block directly before the stabilizer
gates (two-qubit interactions) between data and ancilla qubits
(see Fig. 13), allowing us to remove leakage acquired during
the echoing sequence from the data qubits before reaching
the stabilizer block. Conversion of leakage to errors in the
computational subspace allows for the error-correcting circuit
to detect and correct them. This is essential, since having

FIG. 12. The error channel of a data qubit undergoing a leakage
process is converted into an effective qubit channel by using an
ancilla that is swapped in by the LRU gate in case of leakage. The
ancilla qubit is afterwards discarded (or reset and used as an ancilla
qubit for QEC), which we represent by the symbol.

leaked states as input to the two-qubit gates of the parity
checks can cause checks to flip or spread errors (depending
on experimentally and theoretically unexplored details). Per-
forming an LRU operation has the effect that a leaked data
qubit state is reinitialized in the computational qubit subspace,
which from a quantum information perspective means that
we can effectively ignore the ancilla (tracing it out) and can
describe the effective single-qubit channel (emphasis on qubit,
i.e., not leakage), as shown in Fig. 12.

Let us describe the leakage process by some incoming
leakage error rate pleak with a corresponding channel:

Eleak (ρ) = (1 − pleak )ρ + pleak
, (12)

where ρ is some qubit state, but importantly 
 is some state
in the leakage space, i.e., some mixture of |T+〉 and |T−〉. The
effect of the LRU is to transform 
 into a reset state inside the
computational subspace. This means that the leakage channel

FIG. 13. Circuit arrangement of the operation blocks to sustain
the logical qubit including leakage reduction. During the measure-
ment and echo (ME) block (of duration >1 μs) syndromes are
collected from the ancillas, while the data qubits are subject to echo
sequences, which are assumed to be the main culprit for inducing
leakage (see text). The subsequent leakage reduction (LR) converts
the leakage into qubit errors in the computational subspace, which
are passed to the following stabilizer gate (SG) block where the
two-qubit interactions take place. As each data qubit has to be paired
up with an ancilla partner during the LR block, one extra ancilla qubit
is added to the array.
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is transformed into the effective channel

Eeff (ρ) = ELRU[Eleak (ρ)] = (1 − pleak )ρ + pleakρreset, (13)

where ρreset is some state supported in the space spanned by
|T0〉 and |S〉. Here we are ignoring higher-order contributions,
such as the LRU itself being a noisy process. If this error
channel produces Z errors, they can be detected by subsequent
QEC cycles of the phase-flip code. We therefore propose to
perform a leakage reduction procedure directly before the
error-correction unit, as shown in Fig. 13. It should be noted
that both the effective coherence time T2 during the echo
sequence as well as the accumulated leakage in the data qubits
increase with the number of gates (π pulses) executed during
the echo sequence, as described in the previous paragraph.
This implies that it might be a bit naive to strive for T2

times as large as possible, since this comes with the cost of
increased gate-induced error rates. The larger the number of
gates in the echo sequence, the more errors of the Pauli-X
type accumulate (see Sec. IV E), which are not detectable
by the QEC code at hand. This again implies a tradeoff that
probably makes very high T2 times less desirable than they
might seem at first glance. Let pgate,x denote the X -error rate
on a data qubit induced by a decoupling sequence. Then by
using n gates the induced X error per data qubit scales as
peff,x = npgate,x + O(p3

gate,x ). It is striking that [27] uses up
to on the order of hundreds of Pauli-X gates (π pulses) to
reach 0.87-ms T2 time, while [63] only needed 16 X gates
to demonstrate T2 around 200 μs, which indicates that the
scaling of the number of pulses with achieved T2 times is
superlinear (this approximate argument should be taken with
care, e.g., the mentioned numbers are experimental results and
were reached with π pulses that are themselves imperfect). As
we have elaborated in the main part of this paper, when as-
suming readout times on the order of microseconds, hundreds
of microseconds of T2 would comfortably put us in a regime
of Z-error suppression (Fig. 7). For a rough estimate, our
study of induced X errors in Sec. IV E shows that an effective
induced X error of 10−3 would be borderline tolerable, when
trying to stay below the surface code threshold under code
concatenation. This implies that even the moderate number
of tens of π pulses needed in the decoupling of [63] would
already elevate the X -error rate to a level on the order of
the surface code threshold of 10−2, when assuming pgate,x ≈
10−4–10−3 (Sec. IV B). We therefore note that while our paper
focuses on the effective Z errors induced by the natural noise
bias of spin qubits towards dephasing as opposed to relaxation
one should not neglect X errors when looking beyond this.
We imagine that this problem can be solved by making do
with moderate numbers of π pulses (on the order of tens of
pulses) and combining this with an idea of improving the gates
that are used in the decoupling sequences. Given that in the
scenario described here errors induced by the π pulses are
much more harmful when of the X -error type than when of
the Z-error type, one could change the cost function in the
gate optimization routines (see details of the gate noise model
in Appendix A) to optimize not for overall gate infidelity but
specifically for minimal X -error rate, which could potentially
push the induced error rates below the surface code threshold.

V. DISCUSSION AND OUTLOOK: TOWARDS THE
SURFACE CODE?

Here we discuss several open questions relating to the
feasibility of moving beyond a small phase-flip code.

A layout based on a linear chain of quantum dots is
mostly likely not easily scalable to the large number of qubits
required for building a practically useful quantum computer.
While we mitigated the fanout problem by introducing extra
gate layers, this issue will reappear as more qubits are added.
In addition, connecting a large number of gates to off-the-shelf
room-temperature electronics via dedicated wires is also a
serious obstacle for scaling to large numbers of qubits. In
the near future, both of these problems could be solved by
integrated control electronics which can be connected to the
qubit chip via flip-chip bonding, thus reducing the fanout and
the need for wires [64].

In addition to issues with wiring and fanout, control cross-
talk will complicate the operation of closely packed qubits.
Since true two-qubit cross-talk caused by unwanted two-qubit
interactions is likely not an issue for singlet-triplet qubits [13],
compensating linear control cross-talk between adjacent con-
trol lines and qubits does not present a fundamental obsta-
cle. However, calibrating cross-talk in large arrays of tightly
packed qubits could still prove difficult if the cross-talk does
not fall off quickly enough with the distance between qubits.

In addition, it could be necessary to consider the effects
of second-order tunneling or mediated exchange [65,66] if
the exchange interaction between several dots is turned on
simultaneously. Furthermore, DNP [23] has not been realized
in large quantum dot arrays so far, but should also not pose a
fundamental obstacle. However, coherence times are unlikely
to be longer than demonstrated for isolated qubits as addi-
tional error mechanisms and decay channels are added.

If a 2D device architecture were available, one may ask
whether the use of the phase-flip code would still be of inter-
est. For example, one could directly use the surface code with
limited “cross-bar” control as envisioned in [9] or consider
faster, measurement-free, use of small surface codes [41]. One
could imagine using a clustered 2D layout with each cluster
representing a logical qubit encoded by the phase-flip code
connected by long-range CNOT gates with other clusters or
ancilla qubits, while short-range CNOT gates are used inside
the cluster.

The answer to this “best architecture” question cannot fully
be given at this stage and depends on various considerations,
for example, to what extent the noise is biased towards Z
errors. Let us give some considerations.

For GaAs singlet-triplet qubits, even when performing
dynamical decoupling, a factor of 10 between the X -error
rate and Z-error rate may be expected. Similarly, idling
Si-based qubits have a strong noise bias towards T2 (see
Table III). If two-qubit gates are of very high fidelity (with
negligible error) and noise is dominated by phase-flip er-
rors during slow, noisy measurements, then, instead of us-
ing the phase-flip code as bottom code, one might be able
to directly benefit from using a modified surface code in
which one measures X and Y checks, considered in [67].
With an (incoming) phenomenological Z-error rate pZ ≈ p
and X - and Y -error rate equal to pX = pY ≈ p/200 (noise
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bias η = 100) and a measurement error rate equal to p, the
reported threshold in [67] is pc = 5%. For the GaAs num-
bers in Tables I and II, pZ ≈ treadout/T2 = 1.25 × 10−3 and
pX ≈ treadout/T1 = 5 × 10−4, putting one safely below this 5%
threshold.

However, this picture is not realistic since the two-qubit
gate error rates are in fact not negligible and biased-noise
or bias-preserving gates have not been the focus of previous
research. For example, doing four CNOT gates in a surface
code QEC cycle, each CNOT gate would have to have X -error
rate at least below 5%

800 = 0.625 × 10−4 in order to get below
this 5% threshold of [67]. It might be interesting to develop
such noise-bias preserving CNOT with dominant Z noise as has
been done for superconducting devices in [68].

Given that the noise bias is unlikely to be a direct advantage
in surface code decoding a la [67], we can further consider
using the phase-flip code as the bottom code to equalize the
X - and Z-error rates as we have numerically explored in
Sec. IV E. Thus the phase-flip repetition code could then be
concatenated, in principle, with the surface code.

If a strongly biased-noise CZ gate (with dominant Z errors)
was available for spin qubits, one could imagine following
an approach advocated in [17] with the phase-flip code as
bottom code. Note, however, that the logical CNOT gadget
for the phase-flip code from [18] which aims to preserve
this noise bias is nonideal as it heavily uses slow qubit
measurements and additional qubit overhead. So we will not
focus on obtaining a CNOT in this way. Let us now discuss
the possible drawbacks and variations of this concatenation
scheme.

First, let us imagine encoding each qubit of the surface
code in the phase-flip code, including surface code ancilla
qubits. One then imagines alternating three or more cycles
of phase-flip error correction with applying logical gates,
e.g., the CNOT gates to implement the parity check circuits
of the surface code as in Figs. 14 and 15. As the phase-flip
repetition code is a Calderbank-Shor-Steane code, the logical
CNOT gate is a transversal gate, meaning that it can be realized
by applying copies of the basic CNOT gate between two code
blocks [69].

Now consider the logical error rate induced by such
transversal CNOT gate if we use the distance-3 phase-flip code.
Since the phase-flip code has no correction against X errors,
we have a logical failure on one of the encoded qubits when
any one of the three CNOT gates produces an outgoing X error.
Said differently, the use of the three-qubit phase-flip code
would make us suffer from a CNOT-induced error rate which
is three times higher than if we were to use no phase-flip
encoding but use the surface code “straight-up.” Given that
the surface code cannot tolerate an error rate of more than
1% of circuit-level depolarizing noise [70], such form of
concatenation puts some very strong demands on the CNOT

X -error rate.
One simplification of this scheme is to use bare ancilla

qubits to measure the toric code checks instead of phase-flip
encoded ancilla qubits (see the circuits in Figs. 14 and 15).
This is advantageous since these ancilla qubits are only short
lived so preparation and measurement errors are dominant
sources of errors. In particular, the logical preparation of |0〉
and logical measurement Z are cumbersome in the phase-flip

FIG. 14. Surface code X -parity check circuit, using data qubits
each encoded with the three-bit phase-flip code suggested by the
number 3 on the lines. Each QEC unit denotes three or more cycles of
phase-flip error correction and is repeated continuously, interspersed
by CNOT gates. The surface code ancilla could be chosen to be
encoded, so that |+〉 denotes a logical |+〉 and X denotes the logical
X measurement for this ancilla. The preparation of |+〉 = |+ + +〉
is simple and the logical X measurement is robust by majority-
vote taking. However, since the circuit is short in duration, using a
single qubit prepared in |+〉 as ancilla will most likely have better
performance. Note that each CNOT in the circuit has to be done
transversally, between triples of qubits when the ancilla is encoded,
or between a triple and a single ancilla qubit when the ancilla qubit
is unencoded.

code. If we consider Fig. 15, a transversal CNOT gate between
encoded data qubit and encoded ancilla then gets replaced
by three CNOT gates between encoded data qubits and the
single-qubit ancilla. These three CNOT gates propagate any
X error on the data qubits (a logical X for the phase-flip
code) to the ancilla and make it flip and thus detectable. If
two out of the three qubits have an X error, it is equivalent
to a stabilizer and the ancilla will not flip. For the X -parity
circuit, even though one could use an encoded ancilla, as
the preparation of |+〉 = |+ + +〉 is straightforward and its
measurement robust, its performance will be no better than
using a simple |+〉 and measuring in the X basis. So again, we
apply three CNOT gates between an encoded data qubit and the

FIG. 15. Surface code Z-parity check circuit on phase-flip en-
coded triples of qubits. The ancilla could be replaced by its phase-
flip encoded version, but the logical Z measurement is sensitive to
measurement errors and the state |0〉 is not simple to prepare. It is
thus certainly better to use a single ancilla qubit started in |0〉 and a
direct Z measurement.
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|+〉 ancilla. For any odd number of Z errors on a data qubit,
either the logical Z = Z1Z2Z3 or Zi will thus make the ancilla
flip from |+〉 to |−〉. This has to be taken into account in the
decoding of the toric code, i.e., information about dephasing
errors on the phase-flip code has to be combined with toric
code information.

However, now that we consider using single uncorrected
ancillas, one can also see the whole scheme as one big code.
This code has local adjacent XX checks on the clusters (due to
the phase-flip code) which are measured continuously in the
EC units in Figs. 14 and 15. In addition, the code has (high)
weight-12 Z checks for surface code X -error correction as
well as the usual weight-4 X checks (or alternatively, weight
12 as well) for Z-error correction. It then seems that this
scheme can only be of interest when short-range and long-
range CNOT have extremely low error rates so that the gains of
the phase-flip code are not undone by the losses involved in
having to do many CNOT gates.

All in all, we see that the achievable quality and bias of the
two-qubit gate is crucial in setting the optimal use of quantum
error correction beyond the scheme presented in this paper.
Theoretical explorations of noise-bias preserving gates and
their use will be worthwhile.
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APPENDIX A: DETAILS OF THE NOISE MODEL USED
IN NUMERICAL SIMULATION

Noisy gates can be modeled by perfect gates instanta-
neously followed by a noise channel describing the deviation
of the actual noisy gate from the perfect (targeted) gate.
We model the single- and two-qubit gate similarly to how
it was done in [13], decomposing the noise into slow and
fast components, where in our simulations we additionally
account for the fact that we do not only care about a single gate
but about the performance of many QEC cycles. As described
in Sec. II B, the dominant noise processes can be understood
as variations to the control signals that comprise the execution
of the desired gate. To remind the reader, these are the dot
detunings ε and the magnetic-field gradients b, such that
the relevant noise parameters are random fluctuations around
these values, which we denote by δε and δb. In case of a
two-qubit gate these are thus three variables each, for all
the exchange couplings and gradients between neighboring
dots. The pulse sequence takes the time tgate, during which
we modulate the detuning quickly. Let us now write this time
dependence explicitly as ε(t ). This is in principle a continuous
analog signal, however to very good approximation described
by a discretization into time steps, i.e., a discrete time series

of detunings. Adding noise to this signal amounts to adding
another time series on top of the intended one for each indi-
vidual εi j and bi j (the intended one comes out of a numerical
optimization as also stated in Sec. II B). The noise signal is
therefore a time series which can be described by the methods
of time-series analysis typically done in terms of the so-called
power spectrum of the autocorrelation function of the signal
(see, e.g., [71]). This analysis describes the noise signal in
the frequency domain, which lets us decompose the noise into
fast and slow components with respect to the gate execution
time. The slow parts are variations to the signal that do not
change over the duration of the gate; we thus model them
as a random value set once and kept over the gate execution
time. These random variables can be efficiently obtained by
drawing from a normal distribution with a standard deviation
that comes out of experimental observations (in our case
σδε = 8 μV [26] and σδb = 0.3 mT [72]). That is, we draw
as many uncorrelated random variables as there are detunings
in the setup. This constitutes a noise instance of slow noise,
which we can add to the detuning time sequence. The same
analysis holds for the magnetic-field gradients in complete
analogy; moreover for magnetic-field noise it turns out that
the noise is dominated by slow components [33], such that the
above method is exhaustive. For charge noise on the detuning,
we have to go further. Modeling the fast noise component
is slightly more involved, since here we have to take the
variations during the gate sequence duration into account.
We generate noise instances of fast noise by imitating the
power spectrum that has been characterized experimentally
for our system (GaAs): the high-frequency spectrum follows
Sε,α ( f ) ∝ S0/ f α with α = 0.7 [26]. Since this spectrum has
not been measured above a few MHz, which are still relevant
frequencies for our gates, we extrapolate with α = 0.7 such
that S0 = 4 × 10−20V2/Hz at 1 MHz [26]. With the ability to
generate fast and slow noise instances, we now turn to how we
obtain the effective noise channels that enter our simulations
as described in Fig. 6. On the level of an individual noise in-
stance, a noise signal just has to be added to the intended pulse
sequence and magnetic-field gradients before integrating the
Schrödinger equation [Eq. (2)], which gives an instance of a
unitary

Ũ =
N∏

m=1

exp[−iH (εm + δε, b + δb)�t] (A1)

that is the noisy version of a perfect unitary U . In order to
capture the noisy part of this gate, we undo the ideal part and
give the noisy unitary part the name E :

E = U †Ũ . (A2)

Whether E describes slow or fast noise only alters what we
put into δε and δb. For slow noise, we draw these parameters
δεslow and δbslow once per realization of the whole QEC circuit,
such that all gates during the circuit execution experience the
same instance of slow noise (the same offset of the detuning
and the magnetic-field gradients). The averaging over slow
noise is then performed by averaging over many instances of
noisy circuit realizations.
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Since we work with a full-density-matrix simulation, we
express this as a unitary quantum channel:

Nslow(ρ) = EslowρE†
slow. (A3)

In contrast to this, when we want to describe fast noise
processes, we generate many ( = 104) realizations of the
random signal δεfast, each time integrating the Schrödinger
equation to obtain a unitary instance Ek of Eq. (A2), where the
index runs over the number of realizations. We then describe
the fast noise process as the average quantum channel by
averaging over these instances, i.e.,

Nfast (ρ) = 1



∑
k=1

EkρE†
k . (A4)

The combined noise process N is then described by concate-
nating slow and fast noise:

N = Nfast ◦ Nslow. (A5)

We implemented these channels for the gates needed for the
phase-flip code (Fig. 6) in QUANTUMSIM. Amplitude damping
and phase damping are described in the Kraus representation
E (ρ) = ∑

i AiρA†
i by the following Kraus channels:

AAD
0 =

(
1 0
0

√
1 − γ

)
, AAD

1 =
(

0
√

γ

0 0

)
, (A6)

APD
0 =

(
1 0
0

√
1 − η

)
, APD

1 =
(

0 0
0

√
η

)
, (A7)

where γ and η are the amplitude and phase damping rates.
These rates are typically expressed as times T1 (relax-
ation or amplitude damping time), Tϕ (pure dephasing time,
phase damping), and T2 (decoherence time), for which it
holds that e−t/T1 = 1 − γ , e−t/Tϕ = √

(1 − η), and e−t/T2 =√
(1 − γ )(1 − η). Since in our setup, T1 
 T2, decoherence

acts like pure dephasing noise T2 ≈ Tϕ , which as a noise
channel can be also written (as seen, e.g., by exploiting the
unitary freedom in the Kraus representation) as a phase-flip
channel S (ρ) = (1 − pZ )ρ + pZ ZρZ with error rate

pZ = 1 − e−t/Tϕ

2
≈ 1 − e−t/T2

2
. (A8)

APPENDIX B: ZEEMAN HAMILTONIAN WITH
MAGNETIC-FIELD GRADIENTS

For completeness we here show the Hamiltonian in Eq. (1)
expressed in terms of the magnetic-field gradients. The Zee-
man Hamiltonian is simply HZeeman = 1

2

∑
i Biσ

i
z . The aim is

a change of variables B → (BG, b) with bi j = Bj − Bi and
BG = 1

4

∑
i Bi. This implies a change-of-basis matrix:

R =

⎛
⎜⎜⎝

1
4

1
4

1
4

1
4

−1 1 0 0
0 −1 1 0
0 0 −1 1

⎞
⎟⎟⎠. (B1)

Evidently the Pauli-Z matrices have to be transformed with
(R−1)T, such that the total Hamiltonian in Eq. (1) is expressed
as

H (ε, b) = 1

2
BG

4∑
i=1

σz
(i)+ b12

8

[− 3σz
(1)+ σz

(2)+ σz
(3)+ σz

(4)
]

+ b23

4

[ − σz
(1) − σz

(2) + σz
(3) + σz

(4)
]

+ b34

8

[ − σz
(1) − σz

(2) − σz
(3) + 3σz

(4)
]

+ 1

4

∑
〈i j〉

Ji j (ε)σ (i) · σ ( j), (B2)

where the term involving BG can be ignored for the qubit
dynamics (since

∑4
i=1 σz

(i) is zero on the qubit subspace).

APPENDIX C: DATA VS READOUT NOISE: ANISOTROPIC
RANDOM BOND ISING MODEL

As established in [50,51], the maximum-likelihood decod-
ing problem for the toric code subjected to phenomenological
noise can be mapped onto the evaluation of the partition
function of a classical spin model. The spin model is disor-
dered, depending on quenched randomness which is due to the
random outcomes of syndrome measurements. As mentioned
in the main text, the decoding of the repetition code with
noisy parity checks with phenomenological error rate q = p
is isomorphic to the surface code with data qubit error rate p
and perfect readout. Both models map onto the 2D random
bond Ising model (RBIM), which has the Hamiltonian

H = −
∑
〈i j〉

Ji jSiS j (C1)

with classical spin variables Si = ±1 on a square 2D lattice.
The sign of the coupling is drawn from a bimodal probability
distribution:

Ji j = +J with 1 − p, Ji j = −J with p. (C2)

This entails antiferromagnetic bond defects with probability
p (p is usually called the bond concentration). Antiferromag-
netic bonds form strings, the end points of which are called
Ising vortices. These end points correspond to the syndrome
defects as defined earlier and antiferromagnetic (AFM) bond
strings correspond to possible error strings.

The decoding problem can then be phrased as finding
recovery strings with the same end points as the error string
and asking whether they fall in the same homology class or
not. Let us imagine some error string the qubits have suffered.
This string is in actuality hidden from us; the syndrome only
reveals the end points of strings. We (the decoder) construct
“candidate” recovery strings to explain the syndrome that is
seen and recover from the error the qubits have suffered. The
combination of error string plus recovery string necessarily
forms a loop; the question of logical correctness is whether
and with what likelihood this loop is homologically nontrivial.

This argument is then turned around; namely, if the prob-
ability of being in the same homology class goes to unity in
the thermodynamic limit, the likelihood of making a logical
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error goes to zero. To make the connection to the classical spin
model, the recovery strings can be viewed as being created
by thermal excitations. As long as error string plus recovery
string form a loop with trivial homology, they are the bound-
ary of a region, which is a domain wall. The phase diagram
of the spin model has two axes, the bond concentration p
and the temperature T = 1

β
. Since the error string (setting the

bond defects) and the recovery string are actually drawn from
the same distribution, the Boltzmann weight and the bond
concentration have to be identified as

e2βJ = p

1 − p
, (C3)

which is called the Nishimori line in the two-dimensional β-p
plane. The correctability condition is thus—in the statistical
mechanics picture—translated into the condition that domain
walls remain localized, which is the case in the ferromagnetic
phase of the random bond Ising model. The threshold of
the code is given by the point where the phase boundary
of the ferromagnetic to paramagnetic transition crosses the
Nishimori line (at pc ≈ 0.11 [51]).

Anisotropic RBIM: Takeda-Nishimori conjecture

We review the lesser known case p = q, corresponding to
the fact that timelike AFM bonds are created with a different

probability than spacelike bonds. This maximum-likelihood
decoding problem can then be mapped to the evaluation of the
partition function of an anisotropic random bond Ising model:

H = −
∑

〈i j〉∈vertical

Jv
i jSiS j −

∑
〈i j〉∈horizontal

Jh
i jSiS j (C4)

with

Jv
i j = Jv with 1 − p, Jh

i j = Jh with 1 − q, (C5)

Jv
i j = −Jv with p, Jh

i j = −Jh with q (C6)

and the Nishimori conditions

e2βJh = p

1 − p
, e2βJv = q

1 − q
. (C7)

This model has been analyzed by Takeda et al. [53]. The spin
model has four free parameters, the two bond concentrations
p and q and the two coupling strengths (Jh and Jv). Enforcing
the two Nishimori conditions projects the four-dimensional
configuration space down onto a two-dimensional plane with
the bond concentrations p and q as free parameters. This plane
is called the Nishimori sheet (analogous to the well-known
Nishimori line), on which the criticality condition, being a
relation between p and q, corresponds to a line, the critical
line marking the phase boundary between error suppressing
(ferromagnetic) and error enhancing (paramagnetic) bond
concentrations (see Fig. 4 in the main text).
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