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Weak coin flipping is among the fundamental cryptographic primitives which ensure the security of modern
communication networks. It allows two mistrustful parties to remotely agree on a random bit when they
favor opposite outcomes. Unlike other two-party computations, one can achieve information-theoretic security
using quantum mechanics only: both parties are prevented from biasing the flip with probability higher than
1/2 + ε, where ε is arbitrarily low. Classically, the dishonest party can always cheat with probability 1 unless
computational assumptions are used. Despite its importance, no physical implementation has been proposed for
quantum weak coin flipping. Here, we present a practical protocol that requires a single photon and linear optics
only. We show that it is fair and balanced even when threshold single-photon detectors are used, and reaches a
bias as low as ε = 1/

√
2 − 1/2 ≈ 0.207. We further show that the protocol may display a quantum advantage

over a few-hundred meters with state-of-the-art technology.
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I. INTRODUCTION

Modern communication networks are continuously ex-
panding, as the number of users and available online resources
increases. On a daily basis, users must inevitably trust local
network nodes and transmission channels in order to per-
form sensitive tasks such as private data transmission, online
banking, electronic voting, delegated computing, and many
more. A complex network can be secured by relying on a
collection of simpler cryptographic primitives, or building
blocks, which are combined to guarantee overall security.
Strong coin flipping (SCF) is one of such primitives, in which
two parties remotely agree on a random bit such that none of
the parties can bias the outcome with probability higher than
1/2 + ε, where ε is the protocol bias. SCF is fundamental in
multiparty computation [1], online gaming, and more general
randomized consensus protocols involving leader election
[2].

Weak coin flipping (WCF) is a version of coin flipping
in which both parties have a preferred, opposite outcome:
it effectively designates a winner and a loser. In the clas-
sical world, information-theoretically secure SCF and WCF
are impossible: they require computational assumptions or
trusting a third party [3–6]. Using quantum properties, on
the other hand, enables information-theoretically secure SCF
and WCF: the lowest possible bias for quantum SCF is ε =
1/

√
2 − 1/2 [7], while quantum WCF may achieve a bias

arbitrarily close to zero [8,9]. Remarkably, quantum WCF is
also involved in the construction of optimal quantum SCF
and quantum bit commitment schemes [10,11]. Although the
works from [8,9] proved the existence of quantum WCF
protocols achieving arbitrarily low biases, no explicit protocol
was provided. In 2002, two explicit protocols with small

biases were proposed: the work from [12] achieved ε ≈
0.239, while [13] achieved ε = 1/

√
2 − 1/2 ≈ 0.207, which

is, incidentally, the SCF lower bound. Later, it was shown that
the scheme from [13], in fact, belonged to a larger family of
WCF protocols with ε = 1/6 ≈ 0.167 [14,15]. Very recently,
a new explicit family of protocols achieved ε ≈ 1/10 [16],
followed by arbitrarily low biases [17].

While quantum SCF protocols have been experimentally
demonstrated [18–20], no implementation has been proposed
for quantum WCF. This may be explained by two reasons.
First, it is difficult to find an encoding and implementation
which is robust to losses: a dishonest party may always declare
an abort when they are not satisfied with the flip’s outcome.
Second, none of the previously mentioned protocols translate
trivially into a simple experiment: they involve perform-
ing single-shot generalized measurements [13] or generating
beyond-qubit states [12].

In this work, we introduce a family of quantum WCF
protocols, inspired by [13], which achieve biases as low
as ε = 1/

√
2 − 1/2 ≈ 0.207. These protocols involve simple

projective measurements instead of generalized ones, require
a single photon and linear optics only, and need, at most, three
rounds of communication between the parties. The informa-
tion is encoded by mixing the single photon with vacuum
on an unbalanced beam splitter, which generates entangle-
ment between the photon number modes [21]: both parties
may then agree on a random bit, while the entanglement is
simultaneously verified. We also use a version of our schemes
to construct a quantum SCF protocol with bias ≈ 0.31. We
further derive a practical security proof for both number-
resolving and threshold single-photon detectors, considering
the extension to infinite Hilbert spaces. Since the presence of
losses may enable classical protocols to reach lower cheating
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FIG. 1. Representation of the honest protocol. The dashed boxes
indicate Alice and Bob’s laboratories, respectively. The beam-splitter
reflectivities are indicated in red brackets. |0〉 and |1〉 are the vacuum
and single-photon Fock states, respectively. Curly lines represent the
fiber used for quantum communication from Alice to Bob, or delay
lines within Alice’s or Bob’s laboratory, when waiting for the other
party’s communication. Bob broadcasts the classical outcome c,
which controls an optical switch on Alice’s side. The protocol when
Bob declares c = 0/1 is represented in orange or green. The final
outcomes (a, b1, b0 ) = (0, 1, 0) are the expected outcomes when
both parties are honest.

probabilities than quantum protocols, we finally show that
our fair and balanced quantum protocol bears no classical
equivalent over a few-hundred meters of lossy optical fiber
and nonunit detection efficiency.

II. PROTOCOL AND CORRECTNESS

In the honest protocol, Alice and Bob wish to toss a fair
coin, with a priori knowledge that they each favor opposite
outcomes. Figure 1 represents the implementation of the
honest protocol, which follows five distinct steps. Defining
x ∈ [0, 1

2 ] as a free protocol parameter, these read as follows:
(i) Alice mixes a single photon with the vacuum on a beam

splitter of reflectivity x.
(ii) Alice keeps the first spatial mode and directs the second

spatial mode to Bob.
(iii) Bob mixes the state he receives with the vacuum on a

beam splitter of reflectivity y = 1 − 1
2(1−x) .

(iv) Bob measures the second register of his state with a
single-photon detector and broadcasts the outcome c ∈ {0, 1}.

(v) The last step is a verification step, which splits into two
cases. If c = 0, Alice sends her state to Bob, who mixes it
with his state on a beam splitter of reflectivity z = 2x. He then
measures the two output modes with single-photon detectors.
He declares Alice the winner if the outcome (b1, b0) = (1, 0)
is obtained. If c = 1: Bob discards his state, and Alice mea-
sures her state with a single-photon detector. She declares Bob
the winner if the outcome is a = 0.

We show that the protocol is fair, i.e., that the probability
of winning for each party is 1

2 when they are both honest.
Single photons are quantized excitations of the electromag-

netic field, which are described by the action of the creation
operator onto the vacuum. Beam splitters act linearly on
creation operators and leave the vacuum invariant. Hence, the
evolution of the quantum state over the three modes up to

Bob’s measurement reads

|100〉 →
(x),12

√
x |100〉 + √

1 − x |010〉

→
(y),23

√
x |100〉 +

√
(1 − x)y |010〉

+
√

(1 − x)(1 − y) |001〉 , (1)

where the notation (t ), kl indicates the reflectivity of the beam
splitter and the corresponding spatial modes. Hence, the prob-
ability that Bob obtains outcome c = 1 when measuring the
third register is P(1) = (1 − x)(1 − y), while the probability
of outcome c = 0 is P(0) = 1 − P(1). Having set y = 1 −

1
2(1−x) ensures P(0) = P(1) = 1

2 . When c = 1, the state on
modes 1 and 2 is projected onto |00〉, while c = 0 projects the
state onto

√
2x |10〉 + √

1 − 2x |01〉. In the first case, the mea-
surement performed by Alice outputs a = 0 with probability
1. In the second case, the measurement performed by Bob
after the beam splitter with reflectivity z outputs (b1, b0) =
(1, 0) with probability 1. Hence, the probability that Alice
[Bob] wins is directly given by P(A)

h = P(0) [P(B)
h = P(1)].

This shows that the protocol is fair since P(0) = P(1) = 1
2 .

III. SECURITY

We now derive the security of the protocol. Namely, we
obtain the probabilities of winning when Bob is dishonest and
Alice is honest, and vice versa.

A. Dishonest Bob, Honest Alice

Dishonest Bob should always declare the outcome c = 1
in order to maximize his winning probability. The outcome of
the coin flip is then confirmed if Alice obtains the outcome
a = 0 upon verification. Bob thus needs to maximize the
probability of the outcome a = 0, applying a general quantum
operation to his half of the state. However, the probability
that the detector clicks is independent of Bob’s action. It is
given by x, so that Bob’s winning probability is upper bounded
by (1 − x). This upper bound is reached if Bob discards his
half of the state and broadcasts c = 1. Then, Bob’s optimal
cheating probability is P(B)

d = 1 − x.

B. Dishonest Alice, Honest Bob

Alice wins when Bob declares c = 0 and the outcome
of his quantum measurement is (b1, b0) = (1, 0). The most
general strategy of Dishonest Alice is to send a (mixed) state
σ , while Bob performs the rest of the protocol honestly. We
find that the security is easily derived if Bob is allowed photon
number-resolving detectors (see Appendix B for details of
all the proofs). Remarkably, the protocol is still secure even
when Bob only uses threshold detectors, which is essential
to the practicality of the protocol. Moreover, Alice’s optimal
cheating probability remains the same in both cases: P(A)

d =
1 − (1 − y)(1 − z), which equals 1

2(1−x) for y = 1 − 1
2(1−x)

and z = 2x. In particular, for all values of x, we retrieve
the property shared by the protocols of [13]: P(A)

d P(B)
d = 1

2 .
The underlying idea in the security analysis for threshold
and number-resolving detectors is that Alice must generate
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the state which maximizes the overlap with Bob’s projectors
|100〉 〈100| and

∑∞
n=1 |n00〉 〈n00|, respectively.

Setting x = 1 − 1/
√

2, we obtain a version of the protocol
which is balanced, i.e., both players have the same cheating
probability 1/

√
2. The protocol bias is then ε = 1/

√
2 −

1/2 ≈ 0.207.
Moreover, following [10], we show in Appendix C that a

suitable choice of parameters x, y, z yielding an unbalanced
quantum WCF protocol allows one to construct a quantum
SCF protocol with bias ≈0.31.

IV. FAULT TOLERANCE

A. Noise

We now investigate how imperfect state generation, non-
ideal beam splitters, and single-photon detector dark counts
affect the correctness and security of the protocol. While we
fixed the parameter values to y = 1 − 1

2(1−x) and z = 2x in the
ideal setting, we now allow the three parameters x, y, z to vary
freely.

The vacuum and single-photon encoding is very robust to
noise, in comparison to polarization or phase encoding for
instance: the only property that must be preserved through
propagation is the photon number. Alice may simply produce
a heralded single photon via spontaneous parametric down-
conversion (SPDC) [22], which generates a photon pair: one
may be used for the flip, while the other may herald the
presence of the first one. Given the photon-pair emission
probability p, accidentally emitting two pairs at the same time
using SPDC occurs with probability p2. Since p may be arbi-
trarily tuned by changing the pump power, p2—and therefore
the probability of two photons being accidentally generated by
Alice at once—may then be decreased to negligible values.

Note that in the case where Alice’s single-photon source
is probabilistic but heralded (as in SPDC), she may always
inform Bob of a successful state generation prior to his
announcement of c without compromising security. In what
follows, we may therefore assume that both parties have
agreed on the presence of an initial state, and hence know
when the protocol occurs.

Noise will therefore stem from the nonideal reflectivities
of the beam splitters, and the nonzero detector dark-count
probability pdc. For each party, these may affect the protocol
correctness in two ways: an undesired bias of the flip and an
added abort probability during the verification process.

Deviations on the beam-splitter reflectivities x, y, and z will
first change the honest winning probabilities: these may be
recalculated by replacing the ideal reflectivity r ∈ {x, y} with
an imperfect r′. Regarding honest aborts, a beam splitter with
reflectivity z′ instead of z may be applied on the resulting state
when c = 0. Noisy detectors may cause an unwanted abort
corresponding to a click because of dark counts. However,
with superconducting nanowire single-photon detectors, this
probability is typically very low, of the order of pdc < 10−8

[23].
We can therefore conclude that any source of noise may be

incorporated in the security analysis by simply replacing pa-
rameters x, y, and z with x′, y′, and z′. Furthermore, this source
of error will most likely be negligible with current technology.

We therefore solely focus on the more consequential effects of
losses.

B. Losses

Losses can be due to nonunit channel and delay line trans-
missions, as well as nonunit detection efficiency. We label ηt

the transmission efficiency of the quantum channel from Alice
to Bob. We also define as η

(i)
f the transmission of party i’s fiber

delay, while η
(i)
d denotes the detection efficiency of party i’s

single-photon detectors. Here, we assume the efficiencies of
Bob’s detectors to be the same, and that each party introduces
a fiber delay whenever they are waiting for the other party’s
communication. The delay time, therefore, depends on the
distance between the two parties.

In the presence of losses, the protocol may also abort when
both parties are honest, when the photon is lost. We derive,
in Appendix D, the expressions for the two honest winning
probabilities P(A)

h and P(B)
h , and hence the probability Pab of

abort, in the presence of losses:

P(A)
h = ηtη

(B)
d

(√
xzη(A)

f +
√

(1 − x)y(1 − z)η(B)
f

)2
,

P(B)
h = ηtη

(B)
d (1 − x)(1 − y),

Pab = 1 − P(A)
h − P(B)

h .

(2)

Note that the overall correctness does not depend on Alice’s
detection efficiency η

(A)
d since the declaration of outcome c

depends solely on Bob’s detector, and the verification step on
Alice’s side involves detecting the vacuum.

V. SECURITY IN THE PRESENCE OF LOSSES

Dishonest Bob’s best strategy is to perform the same
attack as in the lossless case because he has no control over
Alice’s half of the subsystem. His winning probability is
then P(B)

d = 1 − xη(A)
f η

(A)
d . However, in a more general game-

theoretic scenario, Bob’s best strategy will, in fact, depend
on the rewards and sanctions associated with honest aborts
and “getting caught cheating” aborts. In other words, Bob has
to minimize his risk-to-reward ratio. Maximizing his winning
probability makes him run the risk of getting caught cheating
with probability xη(A)

f η
(A)
d .

Dishonest Alice must still generate the state which maxi-
mizes the (b1, b0, c) = (1, 0, 0) outcome on Bob’s detectors
after his honest transformations have been applied. How-
ever, the expression for Bob’s corresponding projector now
changes, as there is a finite probability (1 − η

(B)
d )n that the

n-photon component is projected onto the vacuum. The 0
outcome on one spatial mode is therefore triggered by the
projection �0 = ∑∞

n=0(1 − η
(B)
d )n |n〉 〈n|. The total projector

responsible for the (b1, b0, c) = (1, 0, 0) outcome then reads
�100 = (1 − �0) ⊗ �0 ⊗ �0. We show in Appendix E that
Dishonest Alice’s maximum winning probability P(A)

d satisfies

max
l>0

{[
1 − (

1 − yη(B)
f

)
(1 − z)η(B)

d

]l − (
1 − η

(B)
d

)l}
� 1 − (1 − y)(1 − z). (3)

The value of the upper bound on the right-hand side is
Alice’s cheating probability in the lossless case. This shows
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that Alice cannot take advantage of Bob’s imperfect detectors
or his lossy delay line in order to increase her cheating prob-
ability. We now provide a sketch of the proof: since passive
linear optical elements act linearly on creation operators,
equal losses on different modes may be commuted through
the interferometer of the protocol. This allows one to upper
bound Alice’s maximum winning probability by her winning
probability in an equivalent picture in which the losses happen
just after her state preparation, then followed by a lossless
protocol. In that case, it is as if Dishonest Alice was trying to
cheat in the lossless protocol, while being restricted to lossy
state preparation instead of ideal state preparation.

VI. PRACTICAL PROTOCOL PERFORMANCE

We now analyze the performance of our protocol in a
practical setting, by enforcing three conditions on the free
parameters: the protocol must be fair, balanced, and perform
strictly better than any classical protocol. The latter condition
is not required in an ideal implementation since quantum
WCF always provides a security advantage over classical
WCF. Allowing for abort cases, however, may enable some
classical protocols to perform better than quantum ones.
This is because increasing the abort probability effectively
decreases Alice and Bob’s cheating probabilities. We say that
the protocol allows for quantum advantage when it provides a
strictly lower cheating probability than any classical protocol
with the same abort probability. This is obtained using the
bounds from [24], which yield the best classical cheating
probability PC

d = 1 − √
Pab for our protocol (see Appendix F).

The three conditions may then be translated into the following
system of equations, where we define PQ

d = P(A)
d = P(B)

d :

(i) P(A)
h = P(B)

h fairness

(ii) P(A)
d = P(B)

d balance

(iii) PQ
d < PC

d quantum advantage.

(4)

Figure 2 shows a choice of parameters for which system (4) is
satisfied, up to a distance of d km.

VII. DISCUSSION

By noticing a nontrivial connection between the early
protocol from [13] and linear optical transformations, we
answer the question of the implementability of quantum weak
coin flipping, and show that it is achievable with current tech-
nology over a few-hundred meters. Both parties require a set
of beam splitters and single-photon threshold detectors. State
generation on Alice’s side can be performed with any heralded
probabilistic single-photon source. Only Alice requires an
optical switch, which is commercially available. Although
short-term quantum storage is needed, a spool of optical fiber
with twice the length of the quantum channel suffices, and
provides the required storage and retrieval efficiency.

As the distance increases, the issue of interferometric
stability should also be considered. Prior to the protocol, Alice
and Bob may use similar techniques to twin-field quantum key
distribution implementations to lock the interference [25,26],
as it is in their interest to collaborate on this task to avoid the
protocol from aborting.

FIG. 2. Practical quantum advantage for a fair and balanced
protocol. Numerical values for the lowest classical and quantum
cheating probabilities, PC

d and PQ
d , are plotted as a function of

distance d in dashed blue and dotted red lines, respectively. Honest
abort probability Pab (responsible for PQ

d being lower than our ideal
quantum cheating probability 1/

√
2) is plotted as a solid magenta

line. Our quantum protocol performs strictly better than any classical
protocol when PQ

d < PC
d . We set η f = ηsη

2
t , where ηs is the fiber

delay transmission corresponding to 500 ns of optical switching time,

and η2
t = (10− 0.2

10 d )
2

is the fiber delay transmission associated with
traveling distance d twice (once for quantum, once for classical) in
single-mode fibers with attenuation 0.2 dB/km. We have ηd = 0.95
and z = 0.57. For performance with lower ηd = 0.90, please see
Appendix G.

On the fundamental level, our results also raise the question
of a potentially deeper connection between the large family
of protocols from [8,14,15]—which achieves biases as low
as 1/6—and linear optics. Recalling that the protocol from
[13], and hence our protocol, is conjectured to be optimal for
this family, its extension to many rounds should be necessary
in order to lower the bias. The optimality of the one-round
protocol is crucial, as a recent result shows that the WCF bias
decreases very inefficiently with the number of rounds [27].
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APPENDICES

In the following appendices, we give detailed proofs of
the results presented in the main text. Appendix A contains
the preliminary technical results. In Appendix B, we provide
the security analysis for Dishonest Alice. In Appendix C, we
show how an unbalanced version of our WCF protocol may
yield a SCF protocol. In Appendix D, we derive the complete-
ness of the protocol in the lossy case, and, in Appendix E, we
extend the security analysis to the case of a lossy protocol. In
Appendix F, we solve the system in Eq. (4) of the main text
and derive the constraints that the parameters of the protocol
must satisfy in order to obtain a fair and balanced protocol
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which still outperforms all classical WCF protocols in the
lossy case. Finally, in Appendix G, we display the practical
performance of our fair and balanced protocol for various
detection efficiencies.

APPENDIX A: PRELIMINARY RESULTS

Single photons are obtained by the action of the creation
operator onto the vacuum. Beam splitters act linearly on
creation operators, and leave the vacuum invariant. More
precisely, a beam splitter of reflectivity t acting on modes k, l
maps the creation operators â†

k, â†
l onto b̂†

k, b̂†
l , where(

b̂†
k

b̂†
l

)
= H (t )

kl

(
â†

k

â†
l

)
, (A1)

and where

H (r)
kl =

( √
r

√
1 − r√

1 − r −√
r

)
. (A2)

In the following, we make use of a simple reduction which
allows one to simplify calculations in the proofs:

Lemma 1. Let U = (H (z) ⊗ 1)(1 ⊗ H (y) ), with z > 0. For
all density matrices τ ,

Tr[(τ ⊗ |0〉 〈0|)U †(1 ⊗ |00〉 〈00|)U ]

= Tr[(τ ⊗ |0〉 〈0|)V †(|0〉 〈0| ⊗ 1 ⊗ |0〉 〈0|)V ], (A3)

where V = (1 ⊗ H (b) )(H (a) ⊗ 1)[1 ⊗ R(π ) ⊗ 1], with a =
y(1−z)

1−(1−y)(1−z) and b = 1 − (1 − y)(1 − z), and R(π ) a phase
shift of π acting on mode 2.

Proof. The action of U on the creation operators is given
by

U =

⎛
⎜⎝

√
z

√
1 − z 0√

1 − z −√
z 0

0 0 1

⎞
⎟⎠
⎛
⎝1 0 0

0
√

y
√

1 − y

0
√

1 − y −√
y

⎞
⎠

=

⎛
⎜⎝

√
z

√
y(1 − z)

√
(1 − y)(1 − z)√

1 − z −√
yz −√

(1 − y)z

0
√

1 − y −√
y

⎞
⎟⎠. (A4)

Linear interferometers map product coherent states onto
product coherent states, and, for all α ∈ C, we have that
U † |α00〉 = |β1β2β3〉, where⎛

⎝β1

β2

β3

⎞
⎠ =

⎛
⎝ α

√
z

α
√

y(1 − z)

α
√

(1 − y)(1 − z)

⎞
⎠. (A5)

We have V = (1 ⊗ H (b) )(H (a) ⊗ 1)[1 ⊗ R(π ) ⊗ 1], with
a, b ∈ [0, 1], and R(π ) a phase shift of π acting on mode 2.
The action of V on the creation operators is given by

V =

⎛
⎜⎝

1 0 0

0
√

b
√

1 − b

0
√

1 − b −√
b

⎞
⎟⎠
⎛
⎜⎝

√
a

√
1 − a 0√

1 − a −√
a 0

0 0 1

⎞
⎟⎠

×
⎛
⎝1 0 0

0 −1 0

0 0 1

⎞
⎠

=

⎛
⎜⎝

√
a −√

1 − a 0√
b(1 − a)

√
ab

√
1 − b√

(1 − a)(1 − b)
√

a(1 − b) −√
b

⎞
⎟⎠. (A6)

For all α ∈ C, V † |0α0〉 = |γ1γ2γ3〉, where⎛
⎝γ1

γ2

γ3

⎞
⎠ =

⎛
⎜⎝α

√
b(1 − a)

α
√

ab

α
√

1 − b

⎞
⎟⎠. (A7)

Since a = y(1−z)
1−(1−y)(1−z) and b = 1 − (1 − y)(1 − z), we have

b(1 − a) = z, ab = y(1 − z), and 1 − b = (1 − y)(1 − z), so
(β1, β2, β3) = (γ1, γ2, γ3). Then,

Tr[(τ ⊗ |0〉 〈0|)U †(1 ⊗ |00〉 〈00|)U ]

= 1

π

∫
C

d2αTr[(τ ⊗ |0〉 〈0|)U † |α00〉 〈α00|U ]

= 1

π

∫
C

d2αTr[(τ ⊗ |0〉 〈0|)V † |0α0〉 〈0α0|V ]

= Tr[(τ ⊗ |0〉 〈0|)V †(|0〉 〈0| ⊗ 1 ⊗ |0〉 〈0|)V ], (A8)

where we used the completeness relation of coherent states
1 = 1

π

∫
C |α〉 〈α| d2α. �

We also recall a useful simple property, which we will use
extensively in the following:

Lemma 2. Equal losses on various modes can be commuted
through passive linear optical elements acting on these modes.

This result was proven, e.g., in [28], and we give here a
quick proof for completeness.

Proof. One way to prove this statement is to use the fact that
any interferometer may be decomposed as beam splitters and
phase shifters [29]. Then, losses trivially commute with phase
shifters and are easily shown to commute with beam splitters.
Indeed, consider a beam splitter of reflectivity t acting on
modes 1 and 2. Its action on the creation operators of the
modes is given by

â†
1, â†

2 → √
t â†

1 + √
1 − t â†

2,
√

1 − t â†
1 − √

t â†
2, (A9)

while equal losses η on both modes act as

â†
1, â†

2 → √
ηâ†

1,
√

ηâ†
2. (A10)

Hence, the action of the beam splitter followed by losses is
given by

â†
1, â†

2 → √
η(

√
t â†

1 + √
1 − t â†

2),
√

η(
√

1 − t â†
1 − √

t â†
2),

(A11)
while losses followed by the beam splitter act as

â†
1, â†

2 → √
t (

√
ηâ†

1) + √
1 − t (

√
ηâ†

2),
√

1 − t (
√

ηâ†
1) − √

t (
√

ηâ†
2), (A12)

which is equal to the previous evolution. �
In what follows, we let the parameters x, y, z vary freely

and derive the relation these parameters need to satisfy to
enforce a honest protocol without abort cases. As presented
in the main text, when both parties are honest (Fig. 1), the
evolution of the quantum state over the three modes up to
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Bob’s first measurement reads

|100〉 →
(x),12

√
x |100〉 + √

1 − x |010〉

→
(y),23

√
x |100〉 +

√
(1 − x)y |010〉

+
√

(1 − x)(1 − y) |001〉 , (A13)

where the notation (t ), kl indicates the reflectivity of the beam
splitter and the corresponding spatial modes. Hence, the prob-
ability that Bob obtains outcome c = 1 when measuring the
third register is P(1) = (1 − x)(1 − y), while the probability
of outcome c = 0 is P(0) = 1 − P(1).

If Bob registers the outcome c = 1, then the postmeasure-
ment state on Alice’s side is |0〉, which will always pass the
verification step.

If Bob registers the outcome c = 0, then the postmeasure-
ment state reads√

x

1 − (1 − x)(1 − y)
|10〉 +

√
(1 − x)y

1 − (1 − x)(1 − y)
|01〉 .

(A14)
The value of the parameter z should be fixed to

z = x

1 − (1 − x)(1 − y)
, (A15)

so that this state passes the verification step and the protocol
does not abort in the honest case. We assume this relation
holds in the following. In that case, the winning probabilities
of Alice and Bob in the honest case are given by

P(A)
h = 1 − (1 − x)(1 − y),

P(B)
h = (1 − x)(1 − y).

(A16)

The protocol is fair when (1 − x)(1 − y) = 1
2 . In that case,

y = 1 − 1
2(1−x) and z = 2x.

Let us also recall from the main text that in the general
case, the winning probability of Dishonest Bob is given by

P(B)
d = 1 − x. (A17)

APPENDIX B: SECURITY ANALYSIS FOR DISHONEST
ALICE WITHOUT LOSSES

1. Bob has number-resolving detectors

When using number-resolving single-photon detectors, any
projection onto the n > 1 photon subspace leads to Alice
getting caught cheating. Alice must therefore maximize the
overlap with the projective measurement |100〉 〈100| only
(Fig. 3).

Let σ be the state sent by Alice. Let U = (H (z) ⊗ 1)(1 ⊗
H (y) ), with z = x

1−(1−x)(1−y) . Alice needs to maximize the

FIG. 3. Dishonest Alice. Alice aims to maximize the outcome
(b1, b0, c) = (1, 0, 0): an outcome 0 on the third mode means that
Bob declared Alice the winner, while an outcome (1,0) for modes 1
and 2 means that Alice passed Bob’s verification. The reflectivities
of the beam splitter are given by y = 1 − 1

2(1−x) and z = 2x.

probability of the overall outcome (b1, b0, c) = (1, 0, 0),
which is given by

P(A)
d = Tr[U (σ ⊗ |0〉 〈0|)U † |100〉 〈100|], (B1)

since Bob uses number-resolving detectors. By convexity of
the probabilities, we may assume without loss of generality
that Alice sends a pure state σ = |ψ〉 〈ψ |, which allows us to
write

P(A)
d = Tr[U (|ψ〉 〈ψ | ⊗ |0〉 〈0|)U † |100〉 〈100|]

= Tr[(|ψ〉 〈ψ | ⊗ |0〉 〈0|)U † |100〉 〈100|U ]

= Tr[〈ψ | ⊗ 〈0|U † |100〉 〈100|U |ψ〉 ⊗ |0〉]. (B2)

We have

U † |100〉 = (1 ⊗ H (y) )(H (z) ⊗ 1) |100〉
= (1 ⊗ H (y) )(

√
z |100〉 + √

1 − z |010〉)

= √
z |100〉 +

√
y(1 − z) |010〉

+
√

(1 − y)(1 − z) |001〉 , (B3)

and therefore

U †|100〉〈100|U = z|100〉〈100| + y(1 − z)|010〉〈010|
+ (1 − y)(1 − z)|001〉〈001|
+
√

yz(1 − z)(|100〉〈010| + |010〉〈100|)
+
√

z(1 − y)(1 − z)(|100〉〈001| + |001〉
× 〈100|) + (1 − z)

√
y(1 − y)(|010〉〈001|

+ |001〉〈010|). (B4)

Substituting back into Eq. (B2) then reduces to

P(A)
d = 〈ψ |[z|10〉〈10| + y(1 − z)|01〉〈01| +

√
yz(1 − z)(|10〉〈01| + |01〉〈10|)]|ψ〉

:= 〈ψ |(√z|10〉 +
√

y(1 − z)|01〉)(
√

z〈10| +
√

y(1 − z)〈01|)|ψ〉
= |〈ψ |(√z|10〉 +

√
y(1 − z)|01〉)|2.

(B5)
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Using the Cauchy-Schwarz inequality then allows one to
upper bound P(A)

d as

P(A)
d � ‖ψ‖2‖(

√
z|10〉 +

√
y(1 − z)|01〉)‖2

� [1 − (1 − y)(1 − z)]‖ψ‖2, (B6)

which is maximized for ‖ψ‖ = 1. Hence, we finally get

P(A)
d � 1 − (1 − y)(1 − z). (B7)

In order to find Alice’s optimal cheating strategy (i.e.,
the optimal pure state |φ〉 that she must send to achieve
this bound), we remark that the unnormalized state

√
z|10〉 +√

y(1 − z)|01〉 maximizes the expression in Eq. (B6). Normal-
izing this state then provides Alice’s optimal strategy, which
is to prepare the state

|φ〉 :=
√

z

1 − (1 − y)(1 − z)
|10〉

+
√

y(1 − z)

1 − (1 − y)(1 − z)
|01〉. (B8)

Hence,

P(A)
d = 1 − (1 − y)(1 − z). (B9)

In the case of a fair protocol, y = 1 − 1
2(1−x) and z = 2x, so

P(A)
d = 1

2(1 − x)
, (B10)

and Alice’s optimal strategy is to prepare the state

|φx〉 := 2
√

x(1 − x)|10〉 + (1 − 2x)|01〉. (B11)

2. Bob has threshold detectors

Unlike the previous case, incorrect outcomes with higher
photon number could still pass the test: for n � 1, the thresh-
old detectors cannot discriminate between a |100〉 and |n00〉
projection. We show in the following that this does not help
a Dishonest Alice, and that the strategy described previously
for the case of number-resolving detectors is still optimal in
the case of threshold detectors.

With the same notations as in the previous proof, Alice
needs to maximize the probability of the overall outcome
(b1, b0, c) = (1, 0, 0), and hence the overlap with the projec-
tor

∑∞
n=1 |n00〉〈n00| = (1 − |0〉〈0|) ⊗ |00〉〈00|. This allows

us to write

P(A)
d = Tr{U (|ψ〉〈ψ | ⊗ |0〉〈0|)U †[(1 − |0〉〈0|)

⊗ |00〉〈00|]}, (B12)

since Bob uses threshold detectors, where U = (H (z) ⊗
1)(1 ⊗ H (y) ), with z = x

1−(1−x)(1−y) .
Linear optical evolution conserves the photon number.

Hence, if Alice sends the vacuum state, the detectors will
never click. Removing the two-mode vacuum component
of the state prepared by Alice and renormalizing therefore
always increases her winning probability. Since we are look-
ing for the maximum winning probability, we can assume,

FIG. 4. Equivalent picture for Dishonest Alice. In the original
dishonest setup of Fig. 3, Alice aims to maximize the outcome
(b1, b0, c) = (1, 0, 0). This is equivalent to Alice maximizing out-
come 0 on spatial modes 1 and 3, independently of what is detected
on mode 2. The outcomes indicated correspond to Alice winning.
The reflectivity is b = 1 − (1 − y)(1 − z).

without loss of generality, that 〈ψ |00〉 = 0, i.e.,

Tr[U (|ψ〉〈ψ | ⊗ |0〉〈0|)U †|000〉〈000|] = |〈ψ |00〉|2. (B13)

So maximizing the winning probability in Eq. (B12) is equiv-
alent to maximizing

P̃(A)
d = Tr[U (|ψ〉〈ψ | ⊗ |0〉〈0|)U †(1 ⊗ |00〉〈00|)], (B14)

given the constraint 〈ψ |00〉 = 0. We have

P̃(A)
d = Tr[U (|ψ〉〈ψ | ⊗ |0〉〈0|)U †(1 ⊗ |00〉〈00|)]

= Tr[(|ψ〉〈ψ | ⊗ |0〉〈0|)U †(1 ⊗ |00〉〈00|)U ]. (B15)

With Lemma 1 and Eq. (B15), we may thus write

P̃(A)
d = Tr[(|ψ〉〈ψ | ⊗ |0〉〈0|)V †(|0〉〈0| ⊗ 1 ⊗ |0〉〈0|)V ],

(B16)
where V = (1 ⊗ H (b) )(H (a) ⊗ 1)[1 ⊗ R(π ) ⊗ 1], with a =

y(1−z)
1−(1−y)(1−z) and b = 1 − (1 − y)(1 − z). Let us now define

|ψa〉 := H (a)[1 ⊗ R(π )]|ψ〉. (B17)

The constraints 〈ψ |00〉 = 0 and 〈ψa|00〉 = 0 are equivalent
because the above transformation leaves the total number of
photons invariant. With Eq. (B16), we obtain

P̃(A)
d = Tr[(|ψa〉〈ψa| ⊗ |0〉〈0|)(1 ⊗ H (b) )

× (|0〉〈0| ⊗ 1 ⊗ |0〉〈0|)(1 ⊗ H (b) )], (B18)

with the constraint 〈ψa|00〉 = 0.
Maximizing this expression thus corresponds to maximiz-

ing the probability of the outcome (0,0) when measuring
modes 1 and 3 of the state obtain by mixing the second half
of |ψa〉 with the vacuum on a beam splitter of reflectivity
b = 1 − (1 − y)(1 − z) (Fig. 4).

We now show that an optimal strategy for Alice is to ensure
that |ψa〉 = |01〉. Let us write

|ψa〉 =
∑

p+q>0

ψpq|pq〉, (B19)
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where we take into account the constraint 〈ψx|00〉 = 0. Then, with Eq. (B18), we obtain

P̃(A)
d =

∑
p+q>0,p′+q′>0

ψpqψ
∗
p′q′Tr{|pq0〉〈p′q′0|[|0〉〈0| ⊗ H (b)(1 ⊗ |0〉〈0|)H (b)]}

=
∑

q>0,q′>0

ψ0qψ
∗
0q′Tr[|q0〉〈q′0|H (b)(1 ⊗ |0〉〈0|)H (b)]

=
∑

n�0,q>0,q′>0

ψ0qψ
∗
0q′Tr[|q0〉〈q′0|H (b)|n0〉〈n0|H (b)]

=
∑
n>0

|ψ0n|2|〈n0|H (b)|n0〉|2

=
∑
n>0

|ψ0n|2bn, (B20)

where we used, in the fourth line, the fact that H (b) does not
change the number of photons. Since b ∈ [0, 1], this shows
that

P̃(A)
d � b

∑
n>0

|ψ0n|2

= b, (B21)

since |ψa〉 is normalized, and this bound is reached for
|ψ01|2 = 1, i.e., |ψa〉 = |01〉. With Eq. (B17), this implies that
an optimal strategy for Alice is to prepare the state

|ψ〉 = (1 ⊗ R(π ))H (a)|01〉
= √

1 − a|10〉 + √
a|01〉

=
√

z

1 − (1 − y)(1 − z)
|10〉

+
√

y(1 − z)

1 − (1 − y)(1 − z)
|01〉

= |φ〉, (B22)

where |φ〉 is the state that Dishonest Alice needs to send to
maximize her winning probability when Bob uses number-
resolving detectors [Eq. (B8)]. Her winning probability is then

P(A)
d = 1 − (1 − y)(1 − z). (B23)

We therefore recover the same result as for number-resolving
detectors. Once again, if the protocol is fair, then y = 1 −

1
2(1−x) and z = 2x, so

P(A)
d = 1

2(1 − x)
, (B24)

and an optimal strategy for Alice is to prepare the state

|φx〉 := 2
√

x(1 − x)|10〉 + (1 − 2x)|01〉. (B25)

APPENDIX C: QUANTUM SCF PROTOCOL

An unbalanced quantum WCF protocol can be turned into a
quantum SCF protocol using an additional classical protocol,

as described in [10]. In particular, let us consider a WCF
protocol such that

P(A)
h = p, P(B)

h = 1 − p,

P(A)
d = p + ε, P(B)

d = 1 − p + ε,
(C1)

for p ∈ [0, 1] and ε > 0. Then, the corresponding SCF proto-
col has bias [10]

max

[
1

2
− 1

2
(p − ε),

1

2 − (p + ε)
− 1

2

]
. (C2)

For our WCF protocol, we have Eqs. (A16), (A17), and (B23):

P(A)
h = 1 − (1 − x)(1 − y),

P(B)
h = (1 − x)(1 − y),

P(A)
d = 1 − (1 − y)(1 − z),

P(B)
d = 1 − x,

(C3)

with the constraint z = x
1−(1−x)(1−y) [so that the protocol does

not abort in the honest case, Eq. (A15)]. Enforcing the condi-
tions in Eq. (C1) and optimizing over the corresponding SCF
bias implies

x = y2

(1 − y)(1 − 2y)
,

z = y

(1 − y)2
,

1 − x

2
= 1

2 − y − z + yz
,

(C4)

which in turn give the values

x ≈ 0.38, y ≈ 0.31, z ≈ 0.66, (C5)

by enforcing x, y, z ∈ [0, 1], and a bias of ≈ 0.31, which is
a lower bias than the best implemented SCF protocol so far
[20].

APPENDIX D: CORRECTNESS, WITH LOSSES

We give a representation of the honest protocol with losses
in Fig. 5. The efficiency of Alice’s and Bob’s detectors are
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denoted η
(A)
d and η

(B)
d , respectively. The efficiency of the

quantum channel from Alice to Bob is denoted ηt , and η
(A)
f

and η
(B)
f are the efficiencies of Alice’s and Bob’s fiber delay

lines, respectively.
The honest winning probability for Bob is directly given

by his chance of detecting the photon (the photon gets to his

detector and does not get lost):

P(B)
h = ηtη

(B)
d (1 − x)(1 − y). (D1)

On the other hand, Alice wins if the photon, starting from her
first input mode, is detected by Bob in the last step.

The evolution of the creation operator of the first mode during the lossy honest protocol is given by

â†
1 → √

xâ†
1 + √

1 − xâ†
2

→
√

xη(A)
f â†

1 +
√

(1 − x)ηt â
†
2

→
√

xη(A)
f â†

1 +
√

(1 − x)ηt yâ†
2 +

√
(1 − x)(1 − y)ηt â

†
3

→
√

xη(A)
f â†

1 +
√

(1 − x)ηt yâ†
2 +

√
(1 − x)(1 − y)ηtη

(B)
d â†

3

→
√

xη(A)
f ηt â

†
1 +

√
(1 − x)ηt yη

(B)
f â†

2 +
√

(1 − x)(1 − y)ηtη
(B)
d â†

3

→ (√
xη(A)

f ηt z +
√

(1 − x)ηt yη
(B)
f (1 − z)

)
â†

1 + (√
xη(A)

f ηt (1 − z) −
√

(1 − x)ηt yη
(B)
f z

)
â†

2 +
√

(1 − x)(1 − y)ηtη
(B)
d â†

3

→ (√
xη(A)

f ηt zη
(B)
d +

√
(1 − x)ηt yη

(B)
f (1 − z)η(B)

d

)
â†

1 + (√
xη(A)

f ηt (1 − z)η(B)
d −

√
(1 − x)ηt yη

(B)
f zη(B)

d

)
â†

2

+
√

(1 − x)(1 − y)ηtη
(B)
d â†

3. (D2)

In particular, the photon reaches Bob’s uppermost detector
with probability

P(A)
h = (√

xη(A)
f ηt zη

(B)
d +

√
(1 − x)ηt yη

(B)
f (1 − z)η(B)

d

)2

= ηtη
(B)
d

(√
xzη(A)

f +
√

(1 − x)y(1 − z)η(B)
f

)2
. (D3)

FIG. 5. Representation of the honest protocol with losses. The
dashed boxes indicate Alice and Bob’s laboratories, respectively.
The reflectivity of the beam splitters is indicated in red brackets.
The efficiencies of the detectors are indicated in white. Curly lines
represent the fiber used for quantum communication from Alice
to Bob, or delay lines within Alice’s or Bob’s laboratory. |0〉 and
|1〉 are the vacuum and single-photon Fock states, respectively.
Bob broadcasts the classical outcome c, which controls an optical
switch on Alice’s side. The protocol when Bob declares c = 0/1 is
represented in orange or green. The final outcomes are the expected
outcomes when both parties are honest.

Finally, the protocol aborts for all other detection events:

Pab = 1 − P(A)
h − P(B)

h . (D4)

APPENDIX E: SECURITY ANALYSIS FOR DISHONEST
ALICE, WITH LOSSES

The losses η correspond to a probability 1 − η of losing a
photon. These can be modeled as a mixing with the vacuum
on a beam splitter of reflectivity η. Dishonest Bob wins with
probability

P(B)
d = 1 − xη(A)

f η
(A)
d , (E1)

by performing the same attack as in the lossless case since
he has no control over Alice’s laboratory. In what follows, we
provide the security analysis for Dishonest Alice.

1. Lossy delay line

We show in this section that Alice’s maximum winning
probability when Bob is using a delay line of efficiency η f

is always lower than when Bob’s delay line is perfect, i.e.,
η f = 1, independently of the efficiency ηd of his detectors.
The lossy delay line of efficiency η f may be modeled as
a mixing with the vacuum on a beam splitter of trans-
mission η f .

Alice prepares a state σ , which goes through the interfer-
ometer depicted in Fig. 6, and wins if the measurement out-
come obtained by Bob is (b1, b0, c) = (1, 0, 0). In particular,
note that the outcome 0 must be obtained for the third mode.
Hence, Alice’s winning probability is always lower than if the
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FIG. 6. Alice aims to maximize the outcome (b1, b0, c) =
(1, 0, 0) by sending the state σ . The lossy delay line is represented
by a mixing with the vacuum on a beam splitter of transmission
amplitude η f . The quantum efficiency of the detectors is indicated
in white.

third mode was mixed with the vacuum on a beam splitter of
transmission amplitude η f just before the detection (Fig. 7)
since this increases the probability of the outcome 0 for this
mode. Let us assume that this is the case. Then, by Lemma 2,
the losses η f on output modes 2 and 3 may be commuted back
through the beam splitter of reflectivity y, acting on modes 2
and 3.

Since the input state on mode 3 is the vacuum, the losses
on this mode may then be removed (Fig. 8). In that case, the
probability of winning is clearly lower than when the delay
line is perfect (Fig. 9) because Alice is now restricted to lossy
state preparation instead of ideal state preparation.

This reduction shows that Alice’s maximum winning prob-
ability when Bob is using a lossy delay line is always lower
than when Bob’s delay line is perfect, independently of the
efficiency ηd of his detectors.

Moreover, Alice’s maximum cheating probability and op-
timal cheating strategy may be inferred from the case where
Bob has a perfect delay line, as we show in what follows.
By convexity of the probabilities, Alice’s best strategy is to
send a pure state, |ψ〉 = ∑

k,l�0 ψkl |kl〉. Let us denote by W
the interferometer depicted in Fig. 6, including the detection
losses. Let us consider the evolution of Alice’s state and the
vacuum on the third input mode through the interferometer W .
The creation operator for the first mode evolves as

â†
1 → √

zâ†
1 + √

1 − zâ†
2

→ √
zηd â†

1 +
√

(1 − z)ηd â†
2

= W â†
1W †, (E2)

FIG. 7. Adding losses on the third mode increases Alice’s win-
ning probability.

FIG. 8. The losses η f are commuted back to Alice’s state prepa-
ration. The losses on input mode 3 can be omitted since the input
state is the vacuum.

while the creation operator for the second mode evolves as

â†
2 → √

yâ†
2 +

√
1 − yâ†

3

→ √
yη f â†

2 +
√

1 − yâ†
3

→ √
y(1 − z)η f â†

1 − √
yzη f â†

2 +
√

1 − yâ†
3

→ √
y(1 − z)η f ηd â†

1 − √
yzη f ηd â†

2 +
√

(1 − y)ηd â†
3

= W â†
2W †. (E3)

Hence, the output state (before the ideal threshold detection)
is given by

W |ψ0〉 = W
∑

k,l�0

ψkl |kl0〉

= W

⎡
⎣∑

k,l�0

ψkl√
k!l!

(â†
1)k (â†

2)l

⎤
⎦|000〉

=
⎡
⎣∑

k,l�0

ψkl√
k!l!

(W â†
1W †)k (W â†

2W †)l

⎤
⎦|000〉

=
∑

k,l�0

ψkl√
k!l!

[√
zηd â†

1 +
√

(1 − z)ηd â†
2

]k

× [√
y(1 − z)η f ηd â†

1 − √
yzη f ηd â†

2

+
√

(1 − y)ηd â†
3

]l |000〉. (E4)

Now Alice’s maximum cheating probability is given by

P(A)
d = Tr[W |ψ0〉〈ψ0|W †(1 − |0〉〈0|)|00〉〈00|]. (E5)

FIG. 9. Alice aims to maximize the outcome (b1, b0, c) =
(1, 0, 0) by sending the state σ . The delay line efficiency η f is equal
to 1.
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Hence, the state after a successful projection (1 −
|0〉〈0|)|00〉〈00|, which has norm P(A)

d , reads{ ∑
k+l>0

ψkl√
k!l!

(zηd )k/2[y(1 − z)η f ηd ]l/2(â†
1)k+l

}
|000〉. (E6)

When Bob has a perfect delay line (η f = 1), this state reads{ ∑
k+l>0

ψkl√
k!l!

(zηd )k/2[y(1 − z)ηd ]l/2(â†
1)k+l

}
|000〉, (E7)

and its norm is the winning probability of Alice in that case.
Hence,

P(A)
d [η f , ηd , y, z] = P(A)

d [1, ηd , yη f , z], (E8)

i.e., we can obtain Alice’s cheating probability by solving the
case with perfect delay line, and replacing the parameter y by
yη f . In the following, we thus derive Alice’s optimal strategy
in that case.

2. Perfect delay line

Let σ be the state sent by Alice, and ηd the detector
efficiency. She needs to maximize the probability of the
overall outcome (b1, b0, c) = (1, 0, 0) at the output of the
interferometer depicted in Fig. 10, and hence the overlap with

the projector:

�
ηd
(1,0,0) =

[
1 −

∑
m

(1 − ηd )m|m〉〈m|
]

⊗
[∑

n,p

(1 − ηd )n+p|n〉〈n| ⊗ |p〉〈p|
]
. (E9)

By convexity of the probabilities, we may assume without
loss of generality that Alice sends a pure state σ = |ψ〉〈ψ |.
Moreover, the imperfect threshold detectors of quantum ef-
ficiency ηd can be modeled by mixing the state to be mea-
sured with the vacuum on a beam splitter of transmission
amplitude ηd , followed by an ideal threshold detection [30].
In that case, this corresponds to losses ηd on modes 1, 2,
and 3, followed by ideal threshold detections. By Lemma 2,
commuting the losses back through the interferometer leads
to the equivalent picture depicted in Fig. 11, where the losses
on input mode 3 have been omitted since the input state is the
vacuum.

In that case, Alice’s probability of winning is clearly lower
than when the threshold detectors are perfect (Fig. 3) because
she is restricted to lossy state preparation instead of ideal state
preparation. Let |ψ̃〉 be the lossy state obtained by applying
losses ηd on both modes of Alice’s prepared state |ψ〉. Alice’s
winning probability may then be written as

P(A)
d = Tr[U (|ψ̃〉〈ψ̃ | ⊗ |0〉〈0|)U †(1 − |0〉〈0|) ⊗ |00〉〈00|]

= Tr[U (|ψ̃〉〈ψ̃ | ⊗ |0〉〈0|)U †(1 ⊗ |00〉〈00|)] − Tr[U (|ψ̃〉〈ψ̃ | ⊗ |0〉〈0|)U †|000〉〈000|], (E10)

where U = (H (z) ⊗ 1)(1 ⊗ H (y) ) is the unitary corresponding to the general interferometer of the lossless protocol. By Lemma
1, we have

Tr[(τ ⊗ |0〉〈0|)U †(1 ⊗ |00〉〈00|)U ] = Tr[(τ ⊗ |0〉〈0|)V †(|0〉〈0| ⊗ 1 ⊗ |0〉〈0|)V ], (E11)

for any density matrix τ , where V = (1 ⊗ H (b) )(H (a) ⊗ 1)[1 ⊗ R(π ) ⊗ 1], with a = y(1−z)
y+z−yz and b = y + z − yz, and R(π ) a

phase shift of π acting on mode 2. Hence,

P(A)
d = Tr[V (|ψ̃〉〈ψ̃ | ⊗ |0〉〈0|)V †(|0〉〈0| ⊗ 1 ⊗ |0〉〈0|)] − Tr[|ψ̃〉〈ψ̃ ||00〉〈00|], (E12)

where we used U †|000〉 = |000〉 for the second term. Setting |ψ̃x〉 = (H (a) ⊗ 1)[1 ⊗ R(π )]|ψ̃〉 yields

P(A)
d = Tr[(|ψ̃x〉〈ψ̃x| ⊗ |0〉〈0|)(1 ⊗ H (b) )(|0〉〈0| ⊗ 1 ⊗ |0〉〈0|)(1 ⊗ H (b) )]︸ ︷︷ ︸

≡P1

− Tr[|ψ̃x〉〈ψ̃x||00〉〈00|]︸ ︷︷ ︸
≡P2

, (E13)

where we used |00〉 = [1 ⊗ R(π )]H (a)|00〉 for the second term P2.

Let us consider the first term P1. Since |ψ̃〉 is the state
obtained by applying losses ηd on both modes of the state
|ψ〉, we obtain the equivalent picture in Fig. 12, where we
have added losses ηd also on mode 3 since the input state is
the vacuum.

Let |ψx〉 = H (a)[1 ⊗ R(π )]|ψ〉. With Lemma 2, commut-
ing the losses ηd to the output of the interferometer in Fig. 12,
and combining the losses on mode 2 and 3, yields

P1 = Tr
[|ψx〉〈ψx|�ηd

(0) ⊗ �
ηd (1−b)
(0)

]
, (E14)

where �
η

(0) is the positive operator-valued measure (POVM)
element corresponding to no click for a threshold detector of

quantum efficiency η (recall that this is the same as an ideal
detector preceded by a mixing with the vacuum on a beam
splitter of transmission amplitude η). The same reasoning for
the second term P2 gives

P2 = Tr
[|ψx〉〈ψx|�ηd

(0) ⊗ �
ηd
(0)

]
, (E15)

and we finally obtain, with Eq. (E13),

P(A)
d = Tr

[|ψx〉〈ψx|�ηd
(0) ⊗ (

�
ηd (1−b)
(0) − �

ηd
(0)

)]
. (E16)
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FIG. 10. Alice aims to maximize the outcome (b1, b0, c) =
(1, 0, 0) by sending the state σ . The quantum efficiency of the
detectors is indicated in white.

Let us write |ψx〉 = ∑+∞
k,l�0 ψkl |kl〉. With the expression of

the POVM in Eq. (E9), the last equation reads

P(A)
d =

∑
k,l�0

|ψkl |2(1 − ηd )k{[1 − ηd (1 − b)]l − (1 − ηd )l}

� max
k,l�0

(1 − ηd )k{[1 − ηd (1 − b)]l − (1 − ηd )l}

×
∑

k,l�0

|ψkl |2

= max
k,l�0

(1 − ηd )k{[1 − ηd (1 − b)]l − (1 − ηd )l}

= max
l�1

{[1 − ηd (1 − b)]l − (1 − ηd )l}

= max
l�1

{[1 − ηd (1 − y)(1 − z)]l − (1 − ηd )l}, (E17)

where we used b = y + z − yz. Let l0 ∈ N∗ such that
maxl�1 {[1 − ηd (1 − b)]l − (1 − ηd )l}=[1 − ηd (1 − b)]l0 −
(1 − ηd )l0 . This last expression is an upper bound for P(A)

d ,
which is attained for ψkl = δk,0δl,l0 , i.e., |ψx〉 = |0l0〉. Thus,
the best strategy for Alice is to send the state

|ψ〉 = [1 ⊗ R(π )]H (a)|ψx〉
= [1 ⊗ R(π )]H (a)|0l0〉, (E18)

where a = y(1−z)
y+z−yz , and her winning probability is then

P(A)
d = [1 − ηd (1 − y)(1 − z)]l0 − (1 − ηd )l0 , (E19)

when Bob has a perfect delay line. Recalling Eq. (E8), the
best strategy for Alice when Bob has a lossy delay line of

FIG. 11. The quantum efficiency is modeled as losses ηd on
modes 1, 2, and 3, which are then commuted through the interfer-
ometer, back to Alice’s state preparation. The losses on input mode
3 can be omitted since the input state is the vacuum.

FIG. 12. An equivalent picture for the first term P1 of Eq. (E13).
The term P1 is the probability of the simultaneous outcomes 0 for
modes 1 and 3.

efficiency η f is to send the state

|ψ〉 = [1 ⊗ R(π )]H (a)|ψx〉
= [1 ⊗ R(π )]H (a)|0l1〉, (E20)

where a = y(1−z)η f

yη f +z−yzη f
, and l1 ∈ N∗ maximizes [1 − ηd (1 −

yη f )(1 − z)]l − (1 − ηd )l . Her winning probability is then

P(A)
d = max

l>0
{[1 − (1 − yη f )(1 − z)ηd ]l − (1 − ηd )l}

= [1 − ηd (1 − yη f )(1 − z)]l1 − (1 − ηd )l1

= ηd [1 − (1 − yη f )(1 − z)]
l1−1∑
j=0

(1 − ηd ) j

× [1 − ηd (1 − yη f )(1 − z)]l1− j−1

� ηd [1 − (1 − yη f )(1 − z)]
l1−1∑
j=0

(1 − ηd ) j

= ηd [1 − (1 − yη f )(1 − z)]
1 − (1 − ηd )l1

1 − (1 − ηd )

= [1 − (1 − yη f )(1 − z)][1 − (1 − ηd )l1 ]

� 1 − (1 − yη f )(1 − z)

� 1 − (1 − y)(1 − z), (E21)

and this last expression is the winning probability when there
are no losses.

Let us derive the value of l1. For this, we define

r = 1 − ηd (1 − yη f )(1 − z),

s = 1 − ηd .
(E22)

We then consider a λ1 ∈ R∗+ which maximizes (rλ − sλ) for
λ ∈ R∗+. We have

d

dλ1
(rλ1 − sλ1 ) = 0 ⇔ λ1 = ln ln s − ln ln r

ln r − ln s
, (E23)
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for strictly nonzero r and s, and where ln denotes the complex logarithm function. This allows one to deduce

l1 =
{

floor(λ1) if rfloor(λ1 ) − sfloor(λ1 ) � rceil(λ1 ) − sceil(λ1 )

ceil(λ1) if rceil(λ1 ) − sceil(λ1 ) � rfloor(λ1 ) − sfloor(λ1 ).
(E24)

APPENDIX F: SOLVING THE SYSTEM FROM EQ. (4)

1. Condition (i)

The first condition enforces a fair protocol, i.e., P(A)
h = P(B)

h . With Eqs. (D1) and (D3), we aim to solve for y as a function of
x and z:

(i) ⇔ ηtη
(B)
d

(√
xzη(A)

f +
√

(1 − x)y(1 − z)η(B)
f

)2 = ηtη
(B)
d (1 − x)(1 − y),

(i) ⇔ (1 − x)
[
(1 − z)η(B)

f + 1
]
y + 2

√
x(1 − x)z(1 − z)η(A)

f η
(B)
f

√
y + xzη(A)

f − (1 − x) = 0.

(F1)

We make the substitution Y = √
y in order to transform Eq. (F1) into a second-order polynomial equation. We then take only the

positive solution (since y must be positive), which reads

Y =
√

xz(1 − z)η(A)
f η

(B)
f − [

(1 − z)η(B)
f + 1

][
xzη(A)

f − (1 − x)
]−

√
xz(1 − z)η(A)

f η
(B)
f√

1 − x
[
(1 − z)η(B)

f + 1
] . (F2)

We may finally write

(i) ⇔ y = f
(
x, z, η(i)

f , ηd , ηt
)
, (F3)

where

f
(
x, z, η(i)

f , ηd , ηt
) =

(√
(1 − x)

[
(1 − z)η(B)

f + 1
]− xzη(A)

f −
√

xz(1 − z)η(A)
f η

(B)
f

)2

(1 − x)
[
(1 − z)η(B)

f + 1
]2 .

Note that y should be a real number, and hence we
require that the expression under the first square root of
f (x, z, η(i)

f , ηd , ηt ) is positive, i.e.,

z �
(1 − x)

(
1 + η

(B)
f

)
xη(A)

f + (1 − x)η(B)
f

. (F4)

Furthermore, note that for η
(A)
f = η

(B)
f = η f , y should be an

increasing function of η f , and therefore a decreasing function
of d when η f = 10− 0.2

10 2d . Mathematically speaking, this is to
prevent y′(d ) → ∞ and y(d ) > 1. Physically speaking, this

condition ensures that as the probability of transmitting the
photon (and of preserving it for verification) gets smaller, Bob
should encourage a detection on the third mode, which evens
out the honest probabilities of winning.

2. Condition (ii)

The second condition enforces a balanced protocol, i.e.,
P(A)

d = P(B)
d . With Eqs. (E1) and (E21), this translates into the

following expression for x:

(ii) ⇔ x = g
(
y, z, η(i)

f , η
(i)
d

)
, (F5)

where

g
(
y, z, η(i)

f , η
(i)
d

) = 1

η
(A)
f η

(A)
d

(
1 − max

l�1

{[
1 − η

(B)
d

(
1 − yη(B)

f

)
(1 − z)

]l − (
1 − η

(B)
d

)l})
. (F6)

3. Condition (iii)

We recall the general coin flipping formalism from [24], in
which any classical or quantum coin flipping protocol may be
expressed as

CF(p00, p11, p∗0, p∗1, p0∗, p1∗), (F7)

where pii is the probability that two honest players output
value i ∈ {0, 1}, p∗i is the probability that Dishonest Alice
forces Honest Bob to declare outcome i, and pi∗ is the
probability that Dishonest Bob forces Honest Alice to declare
outcome i. In this formalism, a perfect SCF protocol can

then be expressed as CF( 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 ), while a perfect
WCF may be expressed as CF( 1

2 , 1
2 , 1

2 , 1, 1, 1
2 ). We may now

express our quantum WCF protocol in the lossless setting as

CF

(
1

2
,

1

2
,

[
1

2(1 − x)

]
, 1, 1, [1 − x]

)
. (F8)

In the lossy setting, note that the probabilities that Alice
and Bob each choose to lose (i.e., p∗1 and p0∗, respectively)
both remain 1. When Dishonest Bob chooses to lose, he may
always declare outcome 0 regardless of what he detects, which
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yields p0∗ = 1. When Dishonest Alice chooses to lose, she may send a state |n〉 to Bob, and so

p∗1 = Tr[H (y)|n0〉〈n0|H (y)I ⊗ (I − �0)]

= 1 − Tr
[
H (y)|n0〉〈n0|H (y)(I ⊗ �0)

]
, (F9)

where �0 = ∑
l�0(1 − η)l |l〉〈l|.

Now,

H (y)|n0〉 = H (y) (â†
1)n

√
n!

|00〉 = 1√
n!

(
√

yâ†
1 +

√
1 − yâ†

2)n|00〉

= 1√
n!

n∑
k=0

(
n

k

)
y

k
2 (1 − y)

n−k
2 â†k

1 â†(n−k)
2 |00〉 =

n∑
k=0

√(
n

k

)
yk (1 − y)n−k|k (n − k)〉. (F10)

We thus obtain, by linearity of the trace,

p∗1 = 1 −
∑

l,l ′�0

(1 − η)l
n∑

k,k′=0

√(
n

k

)
yk (1 − y)n−k

√(
n

k′

)
yk′ (1 − y)n−k′Tr[|k (n − k)〉〈k′ (n − k′)||l ′l〉〈l ′l|] (F11)

= 1 −
n∑

k=0

(1 − η)n−k

(
n

k

)
yk (1 − y)n−k

= 1 − [y + (1 − η)(1 − y)]n, (F12)

which goes to 1 when n goes to infinity, for y < 1. Hence, in
the lossy setting, the protocol becomes

CF
(
P(A)

h , P(B)
h , P(A)

d , 1, 1, P(B)
d

)
, (F13)

where P(A)
d = maxl>0 [1 − (1 − yη(A)

f )(1 − z)η(B)
d ]

l −
(1 − η

(B)
d )

l
and P(B)

d = 1 − xη(A)
f η

(A)
d .

Using Theorem 1 from [24], there exists a classical proto-
col that implements an information-theoretically secure coin
flip with our parameters if and only if the following conditions
hold:

P(A)
h � P(A)

d ,

P(B)
h � P(B)

d ,

Pab = 1 − P(A)
h − P(B)

h �
(
1 − P(A)

d

)(
1 − P(B)

d

)
. (F14)

Our quantum protocol therefore presents an advantage over
classical protocols if at least one of these conditions cannot
be satisfied. Since we are interested in fair and balanced pro-

FIG. 13. Parameters ηd = 0.95 and z = 0.57. Note that honest
abort probability Pab is plotted as a solid magenta line.

tocols, setting Ph = P(A)
h = P(B)

h and Pd = P(A)
d = P(B)

d allows
one to rewrite (F14) as

Ph � Pd ,

Pab = 1 − 2Ph � (1 − Pd )2 ⇔ Ph � 1
2 [1 − (1 − Pd )2].

(F15)

Let us finally remark that for all x, we have 1
2 [1 − (1 − x)2] =

x − x2

2 � x, so the first inequality above is implied by the
second. The system is thus equivalent to the second inequality,

Pab = 1 − 2Ph � (1 − Pd )2, (F16)

provided that P(A)
h = P(B)

h = Ph and P(A)
d = P(B)

d = Pd .
In order to get a clearer insight into the meaning of quan-

tum advantage, we express this condition in terms of cheating
probability: our protocol displays quantum advantage if and
only if the lowest classical cheating probability,

PC
d = 1 −

√
1 − 2Ph = 1 − √

Pab, (F17)

exceeds our quantum cheating probability PQ
d .

FIG. 14. Parameters ηd = 0.90 and z = 0.63. Note that honest
abort probability has been omitted in order to zoom in, but it lies
around 0.15 for these distances.
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APPENDIX G: PRACTICAL QUANTUM ADVANTAGE FOR
VARIOUS DETECTION EFFICIENCIES

In Figs. 13 and 14, we plot the numerical solutions to the
system from Eq. (4) in order to display the quantum advantage
as a function of distance for various detection efficiencies.
Numerical values for the lowest classical and quantum cheat-
ing probabilities, PC

d and PQ
d , are plotted as a function of

distance d in blue and red, respectively. Our quantum protocol
performs strictly better than any classical protocol when PQ

d <

PC
d . We set η f = ηsη

2
t , where ηs is the fiber delay trans-

mission corresponding to 500 ns of optical switching time,

and η2
t = (10− 0.2

10 d )
2

is the fiber delay transmission associated
with traveling distance d twice (once for quantum, once for
classical) in single-mode fibers with attenuation 0.2 dB/km.
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