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Absolutely maximally entangled (AME) states are maximally entangled for every bipartition of the system.
They are crucial resources for various quantum information protocols. We present techniques for verifying that
two AME states are equivalent concerning stochastic local operations and classical communication (SLOCC).
The conjecture that for a given multipartite quantum system all AME states are SLOCC equivalent is proven
false. We also show that the existence of AME states with minimal support of six or more particles results in the
existence of infinitely many such non-SLOCC-equivalent states. Moreover, we present AME states which are
not SLOCC equivalent to the existing AME states with minimal support.

DOI: 10.1103/PhysRevA.102.022413

I. INTRODUCTION

Entanglement of bipartite states is a widely discussed prob-
lem and, in fact, already very well understood [1]. However,
quantification of entanglement for multipartite states remains
a challenge [2]. In particular, according to different entan-
glement measures for multipartite states (like the tangle, the
Schmidt measure, the localizable entanglement, or geometric
measure of entanglement), the states with the largest entangle-
ment do not overlap in general.

We discuss AME states which are maximally entangled for
every bipartite of the system. AME states are being applied in
several branches of quantum information theory: in quantum
secret sharing protocols [3], in parallel open-destination tele-
portation [4], in holographic quantum error correcting codes
[5], among many others. Different families of AME states
have been introduced [6,7] and the problem of their exis-
tence is being investigated [8–10]. It has been demonstrated
that the simplest class of AME states, namely, AME states
with the minimal support, is in one-to-one correspondence
with the classical error correction codes [11] and combinato-
rial designs known as orthogonal arrays (OAs) [12]. Hence-
forward, two-way interaction with combinatorial designs and
quantum error correction codes is observed [8,13]. AME
states are special cases of k-uniform states characterized by the
property that all of their reductions to k parties are maximally
mixed [14].

Since the entanglement quantification becomes an ambi-
tious project while the number of parties in a system increases,
the problem of satisfactory classification of states turns out
to be essential [2]. The state space might be partitioned
into equivalence classes with respect to a selected class of
local operations [15]. Any two states from one class are
interconvertible by an adequate local operator, while such a
transformation cannot be provided for states from different
classes. Nevertheless, it is not obvious which class of local
operators provides the ultimate division of state space. One
of the reasonable choices was the division according to local
unitary (LU) operations [2]. Two states |ψ〉 and |φ〉 belong to

the same LU class if and only if there exists a local unitary
operator transforming one into the other: |φ〉 = U1 ⊗ · · · ⊗
UN |ψ〉.

The fact that entanglement is used for the transmission
of information between parties far apart restricts us to the
LU operations. Nevertheless, we may also allow classical
information to be transmitted between the distant parties. This
leads us to supersede the class of LU operations with the local
operators and classical communications (LOCC) [16,17]. It
is known that if the state |ψ〉 can be transformed into |φ〉 by
using LOCC operations only, |ψ〉 possesses at least as much
entanglement as |φ〉. In general, this transformation cannot
be inverted, and hence LOCC imposes the partial order on
the state space. Nevertheless, one may study whether two
states are LOCC equivalent with a nonvanishing probability
of success. Such operations are known as stochastic LOCC
(SLOCC). Mathematically, two states |ψ〉 and |φ〉 belong to
the same SLOCC class if and only if there exists a local in-
vertible operator transforming one into the other: |φ〉 = O1 ⊗
· · · ⊗ ON |ψ〉 [18]. Thus, the state space might be partitioned
into SLOCC classes.

The number of SLOCC classes rapidly increases with the
number of parties N and the local dimension d of a given
system. For instance, all bipartite pure states are equivalent
by SLOCC [15]. In the simplest multipartite system, namely,
the three qubit system, there are precisely six distinct SLOCC
classes (only two of them among fully entangled states, repre-
sented by Greenberger-Horne-Zeilinger (GHZ) and W states,
respectively) [18]. Those systems are the last ones with a
finite number of SLOCC classes; for N > 3 or d > 2 there
are infinitely many SLOCC classes [18]. Despite this fact,
all four-partite qubit states were classified into nine families,
some of them with infinitely many SLOCC classes but of a
similar structure [19]. This result was later corrected to eight
such classes, while one of the proposed families turned out to
be not fully entangled [20].

For larger quantum systems a comprehensive and satis-
factory description of SLOCC-class structure has not been
established yet. Several studies in this area lead us in
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constructing invariants under LU and SLOCC transformations
for three parties in [21], multipartite pure quantum systems
in [22–24], and mixed multipartite states in [25]. It is known
that that polynomial invariants are completely characterizing
LU equivalence classes [26] and that the number of nonzero
polynomials is a function of a local dimension d . SLOCC
invariant polynomials were found for three qubit systems
[27,28], for four qubit systems [29,30], and generally for
multiqubit systems [31,32]. In the qudit case, an interesting
attempt to provide polynomial invariants has been also made
[33]. Despite many attempts of classification of these poly-
nomials [34], and enhancing them with physical meaning,
their structure remains inscrutable. Many efforts have also
focused on LU and SLOCC equivalence of stabilizer states
[35], matrix-product states and projected entangled pair states
[36], Gaussian states [37,38], locally maximally entangleable
states [39], or generalized Bell states [40].

The initial motivation for our paper was the question of
whether different constructions of AME states are equivalent
by any local transformation. It was already shown that some k-
uniform states are not LU (and in fact not SLOCC) equivalent
[41]. This result was based on a comparison of the ranks of
reduced density matrices [42]. Nevertheless, in some specific
cases, the aforementioned rank argument is never conclusive.
This is the case when two k-uniform states are of minimal
support, or when the bound on k is saturated, i.e., in the
case of AME states. In this paper, we develop techniques of
SLOCC verification between such states. We provide methods
of SLOCC equivalence verification for all k-uniform states
with minimal support. We show that the conjecture of all
AME states being LU and SLOCC equivalent does not hold.
In particular, we show that some AME states cannot be
transformed into existing minimal support form by any local
invertible operation. Moreover, the class of LU and SLOCC
transformation is widely investigated and a systematic method
for verification of LU and SLOCC equivalence of AME states
and k uniformity with minimal support is provided. We expose
the vital contrast between AME states of small systems (up
to five parties) and larger systems. In particular, for larger
systems there exist infinitely many non-LU- and non-SLOCC-
equivalent AME states of minimal support differing only by
phases. Additionally, we emphasize the essential difference
between local transformation of k-uniform states or AME
states of odd number of parties (k < N/2) and AME states of
even number of parties (k = N/2). The structure of the latter
is more complex and nonclassical in some sense. Despite the
refined analysis of this case, obtained results are still intricate
and dependent on specific cases.

The paper is organized as follows. In Sec. II, we recall
construction methods of k-uniform and AME states known
from the literature, and we provide several explicit examples
of such states. Moreover, we discuss the relation between LU
and SLOCC equivalences restricted to k-uniform and AME
states. The main results of our paper are presented in the
following three consecutive sections. Section III discusses
local transformation of k-uniform states or AME states of
odd number of parties (k < N/2). Similar results concerning
AME states of even number of parties (k = N/2) are presented
in Sec IV. Section V applies general results obtained in the
previous sections. We present several examples of LU and

SLOCC nonequivalent k-uniform states. The precise number
of LU and SLOCC classes of AME states with minimal
support is specified. Moreover, the nontrivial bounds on the
number of such classes of general AME states are given. In
Sec. VI, we discuss some classes of combinatorial designs
directly related to our problem. Existence and extension of
those designs turned out to be crucial to obtain the aforemen-
tioned results. This phenomenon is presented in detail. Further
discussion and open problems are left for Sec. VII. Summary
and conclusions are presented in Sec. VIII. Proofs of state-
ments included in Sec. III might be found in Appendices A,
B, and D, whereas claims presented in Sec. IV are justified in
Appendix C.

II. NOTATION AND PRELIMINARIES

A. k-uniform states and AME states

Consider a multipartite quantum state |ψ〉 ∈ H⊗N
d of N

parties with a local dimension d each. We say that |ψ〉 is a
k-uniform state if its reduced density matrices are maximally
mixed, i.e.,

ρS (ψ ) ∝ Id

for any subsystem S of k parties (|S| = k). The uniformity k
cannot exceed �N/2� [8]. States which saturate this bound,
i.e., �N/2�-uniform states, are called AME states, and are
denoted by AME(N, d ). Particular attention is paid to AME
states of an even number of parties, which are equivalent to
notions as perfect tensors [5] or multiunitary matrices [43].

The support of a state |ψ〉 is the number of nonzero coef-
ficients when |ψ〉 is written in the computational basis. Note
that the support of the k-uniform state is at least dN−k . Indeed,
the partial trace over N − K particles is an identity matrix
IddN−k . k-uniform states with support equal to dk are called
minimal support. k-uniform states are a natural generalization
of the well-established GHZ state.

Example 1. The GHZ state

|GHZ〉 = 1√
2

(|000〉 + |111〉)

is a 1-uniform state of minimal support. Similarly, its natural
generalization to N-party qudit states (each party has exactly
d distinguishable energy levels)∣∣GHZN

d

〉 = 1√
d

(|0 · · · 0〉 + · · · + |d − 1 · · · d − 1〉)

is a 1-uniform state of minimal support.
It is worth mentioning that the GHZ state is maximizing

entanglement properties among all three qudit states. This
statement, however, is not true anymore for larger systems
[44].

Example 2. The state of four qutrits

|AME(4,3)〉 = 1
3 (|0000〉 + |0121〉 + |0212〉
+ |1110〉 + |1201〉 + |1022〉
+ |2220〉 + |2011〉 + |2102〉)

is an AME(4,3) state of minimal support [7]. It reveals larger
entanglement properties than a relevant GHZ state.
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AME(N, d ) states are maximizing entanglement properties
among all N-party states, each with d levels [3]. There is no
general construction of AME(N, d ) states, and, in fact, they
do not exist for any numbers N and d . Indeed, it was first
observed that the AME state of four qubits does not exist
[9]. Nowadays, more of such negative results are known [10].
Some cases, such as AME(4,6), are believed to not exist,
despite the fact that the mathematical proof is still missing
[12].

We would like to finish this section with two remarkable
observations. First, all known k-uniform and AME states
might be written by simple closed formulas. For instance,

|GHZ〉 = 1√
d

d−1∑
i=0

|i, . . . , i〉,

|AME(4,3)〉 = 1

d

d−1∑
i, j=0

|i, j, i + j, 2i + j〉 (1)

are relevant to the GHZ state and AME(4,3) presented in
Examples 1 and 2

Secondly, not all k-uniform states are of minimal support. It
is rather easy to verify that AME states with minimal support
of five or six qubits do not exist. Nevertheless, the construction
of AME(6,2) was provided [6,12]. We present one example of
AME states with nonminimal support relevant to the future
discussion.

Example 3. Consider the following states:

|AME(5,d)〉 = 1√
d3

d−1∑
i, j,k=0

ω(3i+ j)k|i, j, i + j, 2i + j + k, k〉,

where ω is the dth root of unity. |AME(5,d)〉 states satisfy all
properties required from AME states for any integer number
d � 2 [6,12]. They cannot be written, however, in the minimal
support form.

B. Orthogonal arrays

Orthogonal arrays [45] are combinatorial arrangements,
tables with entries satisfying given orthogonal properties.
They were created in response to optimization problems in
statistical analysis. Their most famous application can be
summarized in one sentence: “Your automobile lasts longer
today because of orthogonal arrays” [46].

A close connection between OAs and maximally entangled
states [13], error-correcting codes [45], brought a new life for
these combinatorial objects. As some OAs might be in one-to-
one correspondence with k-uniform states, the concept of OA
is briefly presented below.

An orthogonal array OA(r, N, d, k) is a table composed by
r rows and N columns with entries taken from 0, . . . , d − 1 in
such a way that each subset of k columns contains all possible
combinations of symbols with the same amount of repetitions
(see Fig. 1). The number of such repetitions is called the index
of the OA and denoted by λ. One may observe that the index
of the OA is related to the other parameters:

λ = r

dk
.

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 0 2
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 0 2
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

|AME(4,3) ω00 |0000
+ ω01 |0111
+ ω02 |0222
+ ω10 |1012
+ ω11 |1120
+ ω12 |1201
+ ω20 |2021
+ ω21 |2102
+ ω22 |2210

0 0
1 1
2 2
0 1
1 0
2 0
0 2
1 0
2 1

1 1
2 2
0 1
1 0
2 0
0 2
1 0

FIG. 1. The orthogonal array of unity index OA (9, 4, 3, 2) on
the left and repeated in the center. Each subset consisting of two
columns contains all possible combinations of symbols. Here, two
such subsets are highlighted. The relevant quantum state is obtained
by forming a superposition of states corresponding to consecutive
rows of the array enhanced by some phases (see the expression on
the right).

The OA with λ = 1 is called the OA of index unity. Figure 1
presents an example of an index unity OA.

A pure quantum state consisting of r terms might be asso-
ciated with OA(r, N, d, k), simply by reading all rows of the
OA [13,45]. With a little more effort, one may adjust phases
ω1, . . . , ωr in front of any term (see Example 4). Intriguingly,
this relevance provides a one-to-one correspondence between
k-uniform states of minimal support and OAs of index unity.

Proposition 1. There is one-to-one correspondence be-
tween k-uniform states with the minimal support of N qudits
and OA OA(dk, N, d, k) enhanced with the phase vectors

(ω1, . . . , ωdk ),

where |ωi| = 1.
From OA(dk, N, d, k) the k-uniform state is created by

reading all terms and adjusting them with the relevant phases
ωi. Conversely, from the AME state the OA of index unity
might be built, simply by erasing phases and adjusting all
terms one above the other.

Example 4. For any phases |ωi, j | = 1 the following state is
2-uniform:

|AME(4,3)ω〉 = 1

d

d−1∑
i, j=0

ωi, j |i, j, i + j, 2i + j〉.

It is defined uniquely up to global phase.
It is known that for any number N and k there exists

OA(dk, N, d, k) for a local dimension d being sufficiently
large (in fact, such construction is given for d being a
prime power satisfying d > k and N − 1) [47]. Hence, for
any number of parties N the k-uniform state with minimal
support might be created where the component systems have a
sufficiently large number of levels. The problem of existence
and classification of OAs (in particular OAs of index unity)
has been extensively studied [48,49]. We refer to the web page
of Sloane for tables of OAs [50].

Example 5. The following states

|AME(5,d)’〉 = 1

d

d−1∑
i, j=0

|i, j, i + j, 2i + j, 3i + j〉
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are AME states with minimal support for all d � 5 being
prime numbers [11].

In fact, with a little more effort such states might be
constructed for all prime powers d � 4 [11]. For instance, the
state

|AME(4,4)〉 = 1

4

d−1∑
i, j=0

∣∣i, j, M1
i, j, M2

i, j

〉
where

M1 :=

⎛⎜⎝0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎞⎟⎠, M2 :=

⎛⎜⎝0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2

⎞⎟⎠
is an AME(4,4) state of minimal support (rows and columns
of M1 and M2 are indexed by i, j = 0, . . . , 3) [11]. Construc-
tion of matrices M1 and M2 comes from the multiplication
structure in the Galois field GF(4), which might be seen as a
multiplication of irreducible polynomials of degree 2 [11]. In
fact, matrices M1 and M2 form a mutually orthogonal Latin
square MOLS(4) (see Definition 3 for details).

As we already mentioned in Example 3, not all k-uniform
states are of minimal support, which simply means that not all
AME states are obtained from OAs of index unity.

C. Composed systems

For any two k-uniform states |ψ1〉 and |ψ2〉, one may
consider the composed system |ψ1〉 ⊗ |ψ2〉, which inherits the
property of being k uniform. For instance, the state

|AME(4,9)3×3〉

= 1

9

2∑
i, j = 0
k, � = 0

|(i, k), ( j, �), (i + j, k + �), (i + 2 j, k + 2�)〉

(2)

is a composition of two |AME(4,3)〉 states from Eq. (1). Each
pair (i, k) is identified with a number 0, . . . , 8 written in the
ternary numeral system, i.e., (i, k) ∼= 3i + j.

D. Local transformations

Two N qudit states |ψ〉 and |φ〉 are LU equivalent if one can
be transformed into another by local unitary operators, i.e.,

|φ〉 = U1 ⊗ · · · ⊗ UN |ψ〉.
The LU equivalence of |ψ〉 is referred to in the text as an
automorphism.

Mathematically, two states |ψ〉 and |φ〉 are SLOCC equiv-
alent if and only if there exists a local invertible operator
connecting those states [18]:

|φ〉 = O1 ⊗ · · · ⊗ ON |ψ〉.
Since LU and SLOCC equivalences are equivalence relations,
the state space might be naturally partitioned into LU classes
and SLOCC classes, respectively.

E. The structure of SLOCC classes

We present a brief outline of some algebraic invariant
methods interconnected to the SLOCC partition problem of
multipartite entangled states. We introduce the notion of crit-
ical states and we discuss consequences of the Kempf-Ness
theorem [51] for multipartite systems. We refer to [52] for
more details.

The state ρ is called a critical state if all its reduced density
matrices ρi are proportional to the identity. In particular, the
class of critical states contains stabilizer states, cluster states,
and all k-uniform states, among many others [52].

Notice that the critical states were initially defined differ-
ently, via an action of the Lie group associated with the state
space. By applying the Kempf-Ness theorem [51] it was later
observed that, indeed, states are critical if and only if they are
maximally entangled [53].

The Kempf-Ness theorem has one more significant conse-
quence for multipartite quantum states. It follows that within
one SLOCC class the critical states are unique up to LU
equivalences. Therefore, such classes possess the canonical
representative.

Notice that not all SLOCC classes contain a critical state,
and hence there is no one-to-one correspondence between
SLOCC classes and maximally mixed states. More pre-
cisely, each SLOCC class is topologically closed (equivalently
closed with respect to Zariski topology) if and only if it
contains a critical state [54]. In fact, closed SLOCC classes
are dense in a state space [55].

We conclude this discussion with the following corollary.
Corollary 1. Two critical states are in the same SLOCC

class if and only if they are LU equivalent. Notice that all
k-uniform states are critical states.

Therefore, verification of LU equivalence between two
k-uniform states is equivalent to verification of SLOCC equiv-
alence between them.

III. LOCAL EQUIVALENCES, CASE 2k < N

We introduce another class of local unitary operations,
essential for the classification problem of k-uniform states.

Definition 1. A unitary matrix M is called a unitary mono-
mial matrix if one of the following holds.

(1) M has exactly one nonzero entry in each row and each
column.

(2) M is a product of a permutation and diagonal matrix.
(3) M does not change the support of any quantum state.
For multiparty systems, the local monomial operation will

be denoted as LM equivalency.
One can see that all conditions 1–3 are, indeed, equivalent.

Obviously, each local monomial operation provides the LU
equivalence between two states of minimal support. Indeed,
since it is a local unitary operation, it does not change the
entanglement properties of a state; moreover, it preserves
the number of elements in the support of a state. As we
shall see, the reverse statement is also true for k-uniform
states where 2k < N . In other words, searching for LU
equivalence between two such k-uniform states of minimal
support might be restricted to the search within the LM
class.

022413-4



STOCHASTIC LOCAL OPERATIONS WITH CLASSICAL … PHYSICAL REVIEW A 102, 022413 (2020)

Proposition 2. For 2k < N , each LU or SLOCC equiva-
lency between two k-uniform states of minimal support is in
fact LM equivalency.

Corollary 2. For 2k < N , two k-uniform states of minimal
support are LU or SLOCC equivalent if and only if they are
LM equivalent.

We shall prove the above statement in a slightly enhanced
version in Appendix A.

With the strengthened version of Proposition 2 at hand (see
Appendix A), we have shown that not all AME states are
equivalent, which was an initial motivation for our research.

Proposition 3. Two families of AME(5,d) states,
|AME(5,d)〉 and |AME(5,d)’〉 presented in Examples 3 and 5,
respectively, are not LU equivalent for any prime local
dimension d .

Therefore, as an immediate conclusion from Corollary 1,
states |AME(5,d)〉 and |AME(5,d)’〉 belong to different
SLOCC classes. We refer to Appendix D for the proof of the
above statement.

Both states |AME(5,d)〉 and |AME(5,d)’〉 belong to special
classes of quantum states: stabilizer states and graph states.
A comprehensive introduction to this topic might be found
in [56]. The class of natural local operation among stabilizer
and graph states is called local Clifford (LC) operations. The
verification of LC equivalence between two stabilizer states
is rather a simple problem and might be the polynomial-time
algorithm [57]. Nevertheless, LU-or SLOCC-equivalence ver-
ification of such states is generally a challenging problem.
Surprisingly, it was shown that there are LU equivalences of
graph and stabilizer states which are beyond LC class [58].
One can see our results as proof for lack of LU equivalence of
two graph and stabilizer states.

Verification of LU equivalence

The problem of verification whether two different states
are LU and SLOCC equivalent is of the most importance
from the application point of view [59]. Monomial matrices
are products of permutations and diagonal matrices. Although
permutation matrices are easy to quantify, diagonal matrices
are indexed by a real coefficient. The following statement
shows that we can overcome this apparent difficulty. In fact,
verification of LU equivalence between two states is restricted
to testing a finite number of possible equivalences.

We introduce the following notation. Consider a k-uniform
state with minimal support:

|ψ〉 =
∑
I∈I

ωI |I〉,

where I ∈ [d]n are multi-indices running over the set I of the
size |I| = dk . Denote by I i

a all those indices with a on the ith
position:

W i
a :=

∏
I∈I i

a

ωI .

Similarly, I i1,...i�
a1,...a�

denotes the set of indices with ai on the ith
position:

W i1,...i�
a1,...a�

:=
∏

I∈I i1 ,...,i�
a1 ,...,a�

ωI .

Observe that any local permutation σ = σ1 ⊗ · · · ⊗ σn acts on
W i1,...i�

a1,...a�
by permuting relevant elements:

σ
(
W i1,...i�

a1,...a�

)
:=

∏
I∈I i1 ,...,i�

σi1
(a1 ),...,σi�

(a� )

ωI .

We specify the diagonal matrices which might appear in
local equivalences described in Proposition 2.

Proposition 4. Consider two k-uniform states of minimal
support |ψ〉 and |ψ ′〉. The eventual LU equivalence between
them is of the following form:

ω(σ1D1 ⊗ · · · ⊗ σnDn)

where ω is a global phase, σ is a local permutation σ =
σ1, . . . , σn, and Di are the following diagonal matrices:

Di = diag

⎛⎝ d

√√√√ (
W i,S

0,I

)′
σ
(
W i,S

0,I

) , . . . , d

√√√√ (
W i,S

d−1,I

)′
σ
(
W i,S

d−1,I

)
⎞⎠,

with entries given by any dth root of a relevant complex
number, where S is any subset of k − 2 indices which do
not contain i, and I is any multi-index I = i2, . . . , ik−1. In
particular, for k = 2 it is the empty set S ≡ ∅.

Moreover, for k > 2 there is the following necessary con-
dition for existence of such LU equivalence. For any S ⊂
[n] \ {i}, such that |S| = k − 2 and any symbol �(

W i,S
�,I

)′
σ
(
W i,S

�,I

) =
(
W i,S

�,I ′
)′

σ
(
W i,S

�,I ′
)

for arbitrary multi-indices I=i2, . . . , ik−1 and I ′=i′2, . . . , i′k−1.
The proof of Proposition 4 is given in Appendix B. We

illustrate the usefulness of this criterion in two examples: 2-
and 3-uniform states (see Sec. V).

IV. LOCAL EQUIVALENCES, CASE 2k = N

For AME(2k, d) states, the statement of Proposition 2
does not hold anymore. The following example illustrates this
difference.

Example 6. The Fourier transform F3,

(
F3
)⊗4 =

⎛⎝1 1 1
1 ω ω

1 ω ω

⎞⎠⊗4

, (3)

provides an automorphism of the AME(4,3) state from
Eq. (1).

As we shall see, Fourier matrices are not the only non-
monomial matrices providing the LU equivalence between
AME(2k, d) states of minimal support. On the other hand,
it is not generally true that Fourier matrices preserve all
AME(2k, d) states with minimal support. Despite the exhaus-
tive analysis performed, the general structure of LU equiv-
alences between AME(2k, d) states is still puzzling and re-
mains unknown. Nevertheless, for sufficiently small values of
k and d , the complexity of the problem reduces significantly,
and the analog of Proposition 2 might be stated. We begin with
the definition of matrices beyond monomial class, which can
provide LU equivalence between AME states.

022413-5



ADAM BURCHARDT AND ZAHRA RAISSI PHYSICAL REVIEW A 102, 022413 (2020)

Definition 2. Let d and q be positive integers. A Butson-
type complex Hadamard matrix of order d and complexity q
is a unitary matrix in which each entry is a complex qth root of
unity scaled by the factor 1/d . The set of Butson-type matrices
is denoted by BH(d, q).

In literature [60,61], Butson-type matrices are defined
without scaling factor 1/d , therefore they are proportional to
the unitary matrices.

For our purpose, it is enough to focus on matrices of
the type BH(d, d ). As we shall see, those matrices (up to
monomial matrices) define all possible LU equivalences of
AME states. The problem of existence and classification of
such matrices is discussed later, in Sec. IV B.

Proposition 5. Consider two AME(2k, d) states of mini-
mal support, where k and d are sufficiently small (see Re-
mark 1). Each LU equivalency between them is of one of
the following forms: (1) the tensor product of Butson-type
matrices Bi ∈ BH(d, d ) multiplied by LM matrices from each
side or (2) the LM matrices themselves.

Similarly to the case 2k < n, we can specify the class of
diagonal matrices which might appear in LM equivalences
from Proposition 5.

Proposition 6. LU equivalence between two AME(2k,d)
states of minimal support, where k and d are sufficiently small
(see Remark 1), is of the following form: either

ω
(−→

D −1
1 B1

←−
D −1

1 ⊗ · · · ⊗ −→
D −1

n Bn
←−
D −1

n

)
(4)

or

ω(σ1D1 ⊗ · · · ⊗ σnDn) (5)

where ω is a global phase; Bi ∈ BH(d, d ) are Butson-type
matrices; σi are permutation matrices; and D,

−→
D i, and

←−
D i are

diagonal matrices.
The entries of diagonal matrices are the dth root of speci-

fied complex numbers:

Di = diag

⎛⎝ d

√√√√ (
W i,S

0,I

)′
σi
(
W i,S

0,I

) , . . . , d

√ (
W i,S

d−1,I

)′

σi

(
W i,S

d−1,I

)
⎞⎠,

−→
D i = diag

(
d

√(
W i,S

0,I

)′
, . . . ,

d

√(
W i,S

d−1,I

)′)
,

←−
D i = diag

(
d

√
W i,S

0,I , . . . , d

√
W i,S

d−1,I

)
,

where S is any subset of k − 2 indices which do not contain
i, I is any multi-index I = i2, . . . , ik−1, and σ is a local
permutation σ = σ1, . . . , σn of levels. In particular, for k = 2
it is the empty set S ≡ ∅.

Moreover, for k > 2 there are the following necessary
conditions for existence of such equivalence. Consider any
S ⊂ [n] \ {i}, such that |S| = k − 2, and any symbols �, �′. For
arbitrary multi-indices I = i2, . . . , ik−1 and I ′ = i′2, . . . , i′k−1,(

W i,S
�,I

)′
σ
(
W i,S

�,I

) =
(
W i,S

�,I ′
)′

σ
(
W i,S

�,I ′
)

TABLE I. Examples of dmin and dmax of AME states.

AME(2k, d) dmin dmax

AME(2,d) 3 3
AME(4,d) 9 9
AME(6,d) 11 16
AME(8,d) 13 25

if the equivalence is of the form Eq. (4), and

W i,S
�,I

W i,S
�′,I

= W i,S
�,I ′

W i,S
�′,I ′

,

(
W i,S

�,I

)′(
W i,S

�′,I

)′ =
(
W i,S

�,I ′
)′(

W i,S
�′,I ′
)′

if the equivalence is of the form Eq. (5).
The statement above is important from the application

point of view. The enormous class of diagonal matrices
is significantly restricted. In fact, the classes of matrices
from Proposition 5 which may provide the LU equivalence
between two states is brought to be finite. Therefore, the
LU-equivalence verification problem is discretized and made
finite. Moreover, the second part of Proposition 6 imposes
some necessary conditions for two AME(2k, d) states to be
LU equivalent for k > 2. As we shall see, such assumptions
might be easily validated, which implies the existence of
non-LU- and non-SLOCC-equivalent AME(2k, d) states for
all k > 2 (see Sec. V C). For the proof of Propositions 5 and 6,
we refer to Appendix C.

Remark 1. There is the following restriction on numbers d
and k imposed in the statement of Propositions 5 and 6:

(k + 1)(1 + k−1
√

k) � d

for k > 1 and 2 < d for k = 1. This bound is related to the
necessary condition for existence and extension of combi-
natorial designs called mutually orthogonal hypercubes. We
discuss them in detail in Sec. VI.

In particular, for k = 2, 3, 4, 5, 6 the smallest value of dmin

which does not satisfy the bound above is presented in a
Table I. The given bound is not tight. Moreover, we present
dmax as the maximal value of a local dimension d for which
Proposition 5 does not hold (we found a counterexample). In
particular, for the local dimension dmax we found LU equiva-
lence which is not of the form presented in Proposition 5. The
origin of dmax is presented in Sec. IV A.

We conjecture that those values behave asymptotically as
(k − 1)2.

In fact, assumptions on values k and d are not restrictive
from the application point of view. Indeed states outside the
described class are far beyond current laboratory possibilities
[62,63].

A. Composed systems

Consider the AME(4,9) state being a product of two
AME(4,3) states as it was described in Eq. (2). Since
the Fourier transform (F3)⊗4 and the identity Id⊗4

3 are
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automorphisms of AME(4,3), obviously

(F3 ⊗ Id)⊗4 (6)

provides an automorphism of the aforementioned AME(9,3)
state. One immediately observes that Eq. (6) is not of the form
postulated in Proposition 5. Indeed, according to Proposition 5
matrices providing LU equivalence between two AME states
of minimal support have either 1 or d nonzero entries in
each row and column, each entry of the same norm. Matrices
from Eq. (6), however, have exactly three nonzero entries in
each row and column. Nevertheless, k and d were assumed
to be sufficiently small in Proposition 5; indeed, according to
Remark 1, the statement was restricted to d < 9 for AME(4,d)
states.

Notice that similar automorphisms might be poten-
tially given for any product states. We conjecture that LU
equivalences of such a product form are the only ones vio-
lating the statement of Proposition 5.

Conjecture 1. If the LU equivalence U1 ⊗ · · · ⊗ U2k of two
AME states of minimal support is not of the form proposed in
Proposition 5 for k > 1, those states are product states and
Ui splits according to the composition of states into matrices
postulated in Proposition 5.

The conjecture excludes AME(2,d) where the structure of
LU equivalences is more abundant (see Sec. V A).

Even though Conjecture 1 seems reliable, the mathematical
proof of it is out of reach at this stage of the research. In
the most general case (without any assumptions on k and
d), we showed that the following might be noted about LU
equivalence between AME states.

Proposition 7. Consider two AME states |ψ〉 and |ψ ′〉 of
minimal support which are locally equivalent by U := U1 ⊗
· · · ⊗ Un.

(1) Each row or column of each matrix Ui has the same
number s of nonzero elements, all having the same norm

√
s.

(2) Consider a mutually orthogonal Latin hypercube
(MOLH) and the number s that satisfies the extension prop-
erty, there exists a MOLH(s) which can be further extended
onto MOLH(d).

(3) Under the assumption that all phases are trivial, i.e.,
ωI ≡ ω′

I ≡ 1 for all multi-indices I , all nonzero entries of
matrices Ui are sth roots of unity (scaled by

√
s) up to global

multiplication by a complex number.
For the notion of MOLH we refer to Sec. VI.
For the proof, we refer to Appendix C.

B. Classification of Butson-type matrices

Equation (4) provides a unitary equivalence of AME states
with minimal support which is not a monomial matrix. We
have shown that, under some restrictions on k and d (see
Remark 1), such equivalences are local Butson matrices Bi ∈
BH(d, d ) up to local monomial transformations. It is not
difficult to show that Fourier-transform and tensor products
of such are elements of the class BH(d, d ). Nevertheless
the class of Butson matrices is much larger and contains
1, 2, 1, 4, 1, 143, 23, 51, 1, and 449 773 3 matrices (classified
up to monomial matrices) for d = 3, . . . , 12 [64]. Tables of
Butson matrices are available in [65,66].

Even though the class of Butson matrices BH(d, d ) grows
rapidly with d , it seems that the subclass of such matrices
that might be involved in LU equivalences of AME states is
significantly smaller. Therefore, more specific classification of
matrices providing eventual LU equivalences of AME states
is needed. We suspect that all such matrices are Fourier-
transform and tensor products of such.

On the other hand, not all Fourier matrices might be
involved in LU equivalences of AME states. For d > 3,
we could not construct LU equivalence of AME(5,d) states
from Example 5 based on Fourier matrices F5. It is worth
mentioning that the Fourier transforms F5, F7, and F11 are the
only matrices of type BH(p, p) for p = 5, 7, 11. Hence, most
probably all automorphisms of AME(p, p) states from Exam-
ple 5 for p = 5, 7, 11 are within the LM class. Nevertheless,
for d = 4 such an equivalence might be provided by tensor
product F2 ⊗ F2, which is illustrated below.

Example 7. The action of

(F2 ⊗ F2)⊗4

on the state |AME(4,4)〉 from Example 5 is equivalent to the
following local permutation of indices:⎛⎜⎝1 · · ·

· · · 1
· 1 · ·
· · 1 ·

⎞⎟⎠⊗

⎛⎜⎝1 · · ·
· · 1 ·
· · · 1
· 1 · ·

⎞⎟⎠⊗ Id

⊗

⎛⎜⎝1 · · ·
· · · 1
· 1 · ·
· · 1 ·

⎞⎟⎠,

and hence provides the LU equivalence between AME states
of minimal support.

We shall finish this section by linking the problem of
decreasing the class of Butson matrices involved in LU equiv-
alences of AME states with two mathematical problems.

First, it has been conjectured that for prime dimensions d
the Fourier matrices Fd are the only matrices in BH(d, d ) [64].

Second, for some numbers n1 and n2 the tensor product
of two Fourier matrices Fn1 and Fn2 is isomorphic to Fn1n2 . For
instance, F2 ⊗ F3

∼= F6, while F2 ⊗ F2 �=∼= F4. The problem of
determining those numbers has been solved [67].

V. EXISTENCE AND UNIQUENESS
OF k-UNIFORM STATES

We apply so-far obtained results for various classes of
AME states here. We present 1-, 2-, and 3-uniform state
classes separately since the analysis of their LU and SLOCC
equivalences differs greatly.

A. 1-uniform states

All 1-uniform states of minimal support are of the follow-
ing form:

|ψ〉 = 1√
d

d−1∑
i=0

ωi

∣∣ j1
i , . . . , jN

i

〉
,

where j�i runs over all levels 0, . . . , d − 1 for all indices �.
One can observe that they are equivalent to the generalized
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Bell state |GHZN
d 〉 (see Example 1) and hence pairwise LU

equivalent. Indeed, the local transformation

U1
(∣∣ j1

i

〉) = (
ω−1

i

∣∣ j1
i

〉)
, U�

(∣∣ j�i 〉) = (∣∣ j1
i

〉)
for systems � = 2, . . . , N provides aforementioned LU equiv-
alence.

Observation 1. All 1-uniform states of minimal support
are LU equivalent.

This straightforward observation suggests that the structure
of one-uniform states is rather simple and, in fact, not interest-
ing. However, we point out that an intriguing property is the
automorphism group of AME(2,d) states. One can see that the
Fourier transform F2 preserves the Bell state:(

1 1
1 −1

)⊗2 1√
2

(|00〉 + |11〉) = 1√
2

(|00〉 + |11〉).

Similarly, the Fourier transform Fn ⊗ Fn preserves the gener-
alized Bell state of two parties:

|AME(2,d)〉 := 1√
d

[|00〉 + · · · + |(d − 1)(d − 1)〉]. (7)

Interestingly, the tensor product U ⊗ U of unitary matrices
preserves the generalized Bell state AME(2,d). Indeed, for
each i,

U ⊗ U |ii〉 =
d−1∑
j=0

|ui j |2| j j〉 + others,

and hence

U ⊗ U |AME(2,d)〉 = 1√
d

d−1∑
i=0

d−1∑
j=0

|ui j |2| j j〉 + others

= 1√
d

d−1∑
j=0

(
d−1∑
i=0

|ui j |2
)

| j j〉 + others

= 1√
d

d−1∑
j=0

| j j〉 + others.

Since the state was normalized, all other terms on the right-
hand side disappear.

This is in contrast to AME(2k, d) states for k > 1, where
LU equivalences were provided only by appropriate Butson
type matrices B(d, d) for all d sufficiently small.

B. 2-uniform states

Consider 2-uniform states with minimal support

|φα〉 := 1

d

(
α|0, . . . , 0〉 +

∑
i, j �=(0,0)

|i, j〉 ⊗ |φi, j〉
)

indexed by a complex numbers α, |α| = 1. Each of such a
state is LU equivalent to |φα=0〉 by the following:

U1 = diag[(ωα )n−1, 1, . . . , 1],

Ui = diag[(ωα )d−1, ωα, . . . , ωα],

for i = 2, . . . , n, where ωα = d (n−1)
√

α is an arbitrary root.

Since all states from the family |φα〉 are LU equivalent with
|φα=0〉, they are also pairwise equivalent. If the exceptional
phase stands by a different term, the similar transformation
of such a state onto |φα=0〉 might be given. Therefore, all 2-
uniform states

|φω〉 = 1

d

∑
i, j

ωi, j |i, j〉 ⊗ |φi, j〉

are LU equivalent to |φα=0〉, and hence pairwise equivalent.
Indeed, the LU equivalence is a composition of the aforemen-
tioned transformations. The matrices U1, . . . ,UN are the sim-
plest matrices satisfying restrictions given in Proposition 4,
which explains how they were found. Observe that the as-
sumption 2k < N was irrelevant in the presented analysis.
Therefore, we conclude this discussion in the following corol-
lary.

Corollary 3. Two 2-uniform states of minimal support
which differs only with phases, i.e.,

|ψ〉 =
∑
I∈I

ωI |I〉,

|ψ ′〉 =
∑
I∈I

ω′
I |I〉,

where the sum runs over multi-index set I ⊂ [d]N of size
|I| = dk , are always LU equivalent (and hence belong to the
same SLOCC class).

Example 8. All AME(4,3) states |AME(4,3)ω〉 from Ex-
ample 4 are LU equivalent, and hence they belong to the same
SLOCC class. Similarly, the states

|AME(5,d)ω〉 = 1

d

⎛⎝ d−1∑
i, j=0

ωi, j |i, j, i + j, 2i + j, 3i + j〉
⎞⎠

for |ωi, j | = 1 are LU and SLOCC equivalent.
From Corollary 3, it becomes clear that the diversity of

possible phases in front of each term in the 2-uniform state
with minimal support does not reflect the number of SLOCC
classes. In fact, each 2-uniform state with minimal support is
equivalent to the one with all phases equal to 1.

Therefore, enumeration of SLOCC classes might be re-
stricted to phase 1 states only. In fact, it is equivalent to the
classification of the relevant OA.

Corollary 4. Classification of two-uniform states with
minimal support for N > 2k is equivalent to the classification
of the relevant OA, i.e., OA(dk, N, d, k) up to permutation
of indices on each position. Potentially, for N = 2k two
AME(4,d) states of minimal support might be in the same
SLOCC class, even though the corresponding OA is not
equivalent.

In literature, the classification of OAs is considered up
to permutations of rows and columns [48,49]. Permutation
of columns resembles, however, the physical operation of
exchanging subsystems. Therefore, by dividing the state space
into SLOCC classes one should always indicate whether such
operations are considered under the division [19,20].

In particular, by the classification of OA, there exists at
most one OA(dk, N, d, k) for d = 2, . . . , 17 for any num-
ber N [50]. Hence, 2-uniform states with minimal support
and the local dimension d = 2, . . . , 17 are always SLOCC
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equivalent or SLOCC equivalent after permutation of parties.
Nevertheless, we checked that for N = 4, 5 and d = 4, 5, 6, 7
permutation of parties is not necessary for being SLOCC
equivalent. We suppose this is true in general.

Conjecture 2. All 2-uniform states of minimal support are
LU equivalent, and hence represent the same SLOCC class.

In all verified cases there exists only one 2-uniform state
of minimal support. Nevertheless, some two-uniform states
are not equivalent to the above-mentioned one. In partic-
ular, for d = 5, 7, 11, 13, . . . there are AME(5,d) states of
nonminimal support belonging to different SLOCC classes
(see Proposition 3).

C. 3-uniform states

We have shown that the number of LU and SLOCC classes
for 2-uniform states of minimal support coincides with the
number of relevant OAs which are nonisomorphic. In par-
ticular, two states which differ only with phases are always
LU and SLOCC equivalent. This is in a strong contrast to the
3-uniform states.

Example 9. There exists a AME(6,4) state with minimal
support [11]. In fact, this state might be obtained by reading
consecutive rows of OA(64,6,4,3) from the OA table [50].
Obviously, enhancing successive terms with any phase factor
|ω| = 1 also yields the AME(6,4) state:

|AME(6,d)ω〉 = 1

d
√

d

⎛⎝ d−1∑
i, j,k=0

ωi, j,k|i, j, k〉 ⊗ |ψi, j,k〉
⎞⎠.

We focus our attention on states with all phases ωi, j,k = 1
with one exception: ω0,0,0 = α. Denote them as |ψα〉 for sim-
plicity. According to Proposition 6, the necessary condition
for equivalence of such states |ψα1〉 and |ψα2〉 is(

W 1,2
00

)′
W 1,2

σ1(0),σ2(0)

=
(
W 1,2

0,1

)′
W 1,2

σ1(0),σ2(1)

for any permutations σ1 and σ2. According to the form of
permutations, we have the following.

(1) If (σ1(0), σ2(0)) = (0, 0), then α1 = α2.
(2) If (σ1(0), σ2(1)) = (0, 0), then α1 = α2.
(3) Otherwise α1, α2 = 1.
Therefore, if none of those conditions is satisfied, states

|ψα1〉 and |ψα2〉 cannot be LU equivalent. By simple analy-
sis, all states |ψeiφ 〉 are pairwise non-LU-equivalent for φ ∈
[0, π ).

Observe that, in such a way, we obtained a continuous
family of non-LU-equivalent AME(6,4) states with minimal
support. We conclude this observation in the corollary below.
In fact, if the necessary conditions from Proposition 6 are
satisfied, the LU equivalence may be provided (similarly to
the case of 2-uniform states).

Corollary 5. The AME(6,4) states

|AME(6,d)eiφ 〉 := 1

d
√

d

(
eiφ |000000〉

+
∑

i, j,k �=(0,0,0)

|i, j, k〉 ⊗ |ψi, j,k〉
)

are pairwise in different LU and SLOCC classes for all phases
φ ∈ [0, π ).

Notice that for any k-uniform state with minimal support
where k > 2 a similar construction of a continuous non-LU-
equivalent family might be provided.

Corollary 6. If there exists a k-uniform state with minimal
support |ψ〉 where k > 2,

|ψ〉 = 1√
dk

d−1∑
i1,...,ik=0

|i1, . . . , ik〉 ⊗ |ψi1,...,ik 〉,

then the family of k-uniform states

|ψeiφ 〉 := 1√
dk

(
eiφ |0, . . . , 0〉 ⊗ |ψ0,...,0〉

+
∑

(i1,...,ik )�=(0,...,0)

|i1, . . . , ik〉 ⊗ |ψi1,...,ik 〉
)

is pairwise non-LU- and non-SLOCC-equivalent for all
phases φ ∈ [0, π ).

D. Number of non-SLOCC-equivalent AME states

We summarize shortly the number of non-SLOCC-
equivalent AME states and AME states with minimal support
in Tables III and II, respectively.

The existence of AME states with minimal support for
N, d < 8 was analyzed [68] based on the table of OAs and
similar combinatorial designs. According to the discussion
presented in the previous sections, if N � 6, existence of
the AME(n, d) state with minimal support indicates the ex-
istence of infinitely many non-SLOCC-equivalent such states
(see Corollary 6).

Verification of the existence of AME states (not necessarily
with minimal support) is a far more complex problem. We
refer to the tables of AME states [69], which summarize
several results concerning this problem [9,10,68,70,71]. Even
though the exact classification of AME states up to SLOCC
equivalence is yet unobtainable, in some specific cases the
nontrivial lower bound is given.

TABLE II. The exact number of not SLOCC-equivalent AME
states with minimal support presented on a differently shaded blue
background.

AME(3,d)

AME(4,d)

AME(5,d)

AME(6,d)

AME(7,d)

2
qubits

1

0

0

0

0

3
qutrits

1

1

0

0

0

4

1

1

1

∞

0

5

1

1

1

∞

0

6

1

0

0

0

0

7

1

1

1

∞
∞

local
dimension
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TABLE III. The minimal number of non-SLOCC-equivalent
AME states. The question mark by zero value suggests that the
existence of the relevant state is dubitative, while 0 itself emphasizes
that the relevant state certainly does not exist.

AME(3,d)

AME(4,d)

AME(5,d)

AME(6,d)

AME(7,d)

2
qubits

1

0

1

1

0

3
qutrits

1

1

1

1

1

4

1

1

1

∞

1

5

1

1

2

∞

1

6

1

0?

1

1

0?

7

1

1

2

∞
∞

local
dimension

VI. COMBINATORIAL DESIGNS

We discuss a class of combinatorial designs, known as
mutually orthogonal Latin hypercubes. As we shall see, the
existence and extension of those designs turned out to be
crucial in the classification of AME states. In particular,
we show the origin of restrictions on values of d and k
imposed in Propositions 5 and 6. Exceeding those bounds
potentially yields the existence of composed AME states.
Automorphisms of such states have product form and are not
described by Propositions 5 and 6. In that sense, we show that
obtained bounds on d and k are tight.

In general, classical combinatorial designs (as orthogonal
arrays: mutually orthogonal Latin squares, cubes, and hyper-
cubes) are related to AME and k-uniform states of minimal
support. Quantized versions of such combinatorial designs are
related to arbitrary AME and k-uniform states. Our paper is
restricted to minimal support states, hence the presentation of
quantum combinatorial designs is not needed here. It is not
our intention to provide a full picture of interactions between
AME states and different combinatorial designs. For that
purpose, we refer to Goyeneche and Życzkowski [13], where
the comprehensive introduction to that topic is presented.

Consider a discrete hypercube [d]k of dimension k. One
can relate to [d]k the lower dimensional hypercube [d]s

in two natural ways. First, by choosing k − s indices S =
{s1, . . . , sk−s} ⊂ [k] and their values i1, . . . , ik−s ∈ [d], there
is an injective map:

[d]s ∼= [d]k
s1=i1,...,sk−s=ik−s

i
↪→ [d]d .

Second, for any subset S′ ⊂ [k] of indices where |S′| = s, one
can simply forget about indices out of S′. This operation is
relevant to the surjection

[d]k sur−→ [d]k
|S′ ∼= [d]s.

Definition 3. A k-MOLH of size d and dimension k is a
bijection

L : [d]k −→ [d]k

such that by choosing any set S = {s1, . . . sk−s} ⊂ [k] of k − s
indices and their values i1, . . . , ik−s ∈ [d], and any subset S′ ⊂
[k], the composition of L with above-defined injection i (on
the left) and surjection sur (on the right) provides a bijection:

[d]s ∼= [d]k
s1=i1,...,sk−s=ik−s

i◦L◦sur−−−→ [d]k
|S′ ∼= [d]s.

We denote such an object as k-MOLH(d ).
Example 10. Bijection

L : [d]2 −→ [d]2

such that in each row and on each position all elements appear
exactly once constitutes a mutually orthogonal Latin square
MOLS(d ). Here square stands for MOLH dimension k = 2.

In general, orthogonality and dimension of the MOLH
might be indexed by different numbers (here both are equal
and denoted by k) [12]. This distinction is, however, not
needed for our purpose.

There is a one-to-one correspondence between
k-MOLH(d ) and orthogonal arrays OA(dk, k, 2k, k) and,
hence, between them and AME(2k, d) states of minimal
support [12].

Proposition 8. Any AME(2k, d) state of minimal support
is equivalent to k-mutually orthogonal Latin hypercube L:

L(i1, . . . , ik ) := (
φ1

I , . . . , φ
k
I

)
.

Proof. Consider a k-MOLH(d) L. By adjusting

i1, . . . , ik, φ
1
I , . . . , φ

k
I (8)

into dk rows (with 2k elements each), one obtains
OA(dk, k, 2k, k). Indeed, choose any set of k indices and split
it into two: S ∪ S′, where S is a (k − s)-elementary subset of
the first half of indices, and S′ is an s-elementary subset of the
second half of indices. For any choice of values i1, . . . , ik−s ∈
[d], by Definition 3, there is a bijection

[d]k
s1=i1,...,sk−s=ik−s

i◦L◦sur−−−→ [d]k
|S′ ,

and hence the subset S ∪ S′ of k columns in Eq. (8) contains
all possible combinations of symbols. Since the choice of k-
elementary subset S ∪ S′ was unrestricted, this is a defining
property of an OA of index unity. Overturning this argument
provides the reverse statement. �

Example 11. The AME(4,3) state from Eq. (1) is equiva-
lent to the mutually orthogonal Latin square (2-MOLH):

As it is shown in Table IV, the entries of MOLS are pairs
of numbers (k, �) and considering this, the relevant quantum

TABLE IV. The entries of MOLS(3).

0 1 2

0 00 11 22

1 12 20 01

2 21 02 10

i j
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state can be obtained by reading all entries as

|AME(4,3)〉 = 1

d

d−1∑
i, j=0

|i, j, k, �〉.

The notion of MOLS was used for the construction of
several AME states [70].

A. Existence of Latin designs

Proposition 9. If a mutually orthogonal Latin hypercube
k-MOLH(d ) for k > 1 exists, then indices d and k satisfy

k � d − 1.

Proof. The hyper-row I := (i, 0, . . . , 0), i ∈ d defines the
following mapping:

L|I : i �−→ (
φ1

i , . . . , φ
k
i

) ∈ [d]k

where φ�
i := φ�

I for simplicity. Observe that on each position
all symbols appear, i.e.,{

φ�
i : i ∈ [d]

} = [d]. (9)

Consider now the element

( j1, . . . , jk ) := L(0, 1, 0, . . . , 0) ∈ [d]k .

From Eq. (9), clearly

j1 = φ1
i1 , . . . , jk = φk

ik

for some indices i1, . . . , ik . Observe the following.
(1) i1, . . . , ik �= 0. Suppose the contrary, is = 0. Then js =

φs
0, and hence

L(0, 0, 0, . . . , 0) = (. . . , js, . . .),

L(0, 1, 0, . . . , 0) = (. . . , js, . . .),

where dotted symbols on the right are not specified. This is
in contradiction to Definition 3 for S given by i j = 0 for all
j �= 1, and S′ = {s}.

(2) Indices i1, . . . ik are pairwise different. Suppose the
contrary, is1 = is2 . Then

L(is1 , 0, 0, . . . , 0) = (. . . , js1 , . . . , js2 , . . .),

L(0, 1, 0, . . . , 0) = (. . . , js1 , . . . , js2 , . . .).

This is in contradiction to Definition 3 for S given by i j = 0
for all j �= 0, 1, and S′ = {s1, s2}.

Since all indices i1, . . . , ik ∈ [d] are pairwise different and
nonzero, k � d − 1. �

It is worth mentioning that the condition given in Propo-
sition 9 is only a necessary condition for the existence of the
MOLH. If it is satisfied, the precise construction of the MOLH
is known for all d being prime powers. This construction
might be extended further by composing two MOLHs of a
different size. Nevertheless, the aforementioned condition is
not a sufficient one. For instance, construction of the MOLS
(2-MOLH) of size d = 6 refers to the famous problem of 36
officers of Euler [72], which was proven to have no solution
[73].

TABLE V. Extension of MOLS(3) into MOLS(9).

0 1 2 3 4 5 6 7 8

0 00 11 22 33 44 55 66 77 88

1 12 20 01 45 53 34 78 86 67

2 21 02 10 54 35 43 87 68 76

3 36 47 58 60 71 82 03 14 25

4 48 56 37 72 80 61 15 23 04

5 57 38 46 81 62 70 24 05 13

6 63 74 85 06 17 28 30 41 52

7 75 83 64 18 26 07 42 50 31

8 84 65 73 27 08 16 51 32 40

i
j

B. Extension of Latin designs

As we shall see, Latin designs are not only related to
the construction of AME states with minimal support, but
also to the local unitary relations between such. In particular,
the problem of existence and extension of the k-dimensional
MOLH is relevant to the description of LU equivalences
between AME(2k, d) states. Therefore, a short outline of the
extension problem is presented below.

Definition 4. A MOLH(s) of size k and dimension s,

L : [s]k −→ [s]k,

might be extended to MOLH(d ) if there exists MOLH(d ):

L′ : [d]k −→ [d]k,

which preserves the structure of L, i.e., L′
|[s]k

≡ L. Moreover,

we refer to L as a sub-MOLH(s) of MOLH(d ).
Example 12. A MOLS(3) L might be extended into

MOLS(9) presented in Table V. Indeed, one can see that
entries in the square consisting of three first rows and columns
are taken from 0, 1, and 2 only. In fact, this extension is
relevant to a tensor product of two identical Latin squares L.

Remark 2. Consider a MOLH(d ) L. If there exists a sub-
hypercube S = S1 × · · · × Sk ⊆ [k]d which is mapped by
L on another hypercube S′ = S′

1 × · · · × S′
k ⊆ [k]d , then up

to permutation of labels L′ := L|S is the sub-MOLH(s) of

MOLH(d ). Moreover, L cannot map hyper-rectangles onto
hyper-rectangles except hypercubes into hypercubes. Hence,
a sub-hyper-rectangle of L does not exist.

The problem of extension of Latin designs might be traced
to Ryser’s theorem [74], and is a plentiful scientific problem
considered in several papers [75,76].

There are the following dimension bounds for extend-
ing MOLH(s) into MOLH(d ) or, equivalently, finding sub-
MOLH(s) of MOLH(d ).
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Proposition 10. Inequality

s � 1

1 + k−1
√

k
d

is a necessary condition for extending MOLH(s) into
MOLH(d ) for any k > 1.

Proof. Suppose that L′ extends to L. Consider pairwise
disjoint sets:

Si := S × S︸ ︷︷ ︸
i−1

×Sc × S × S︸ ︷︷ ︸
k−i

where S := [s]. Denote their sum by S′ = ∪k
i=1Si. Observe that

for any multi-index I ∈ S′

L(I ) ∈ Sc × · · · × Sc.

Indeed, it follows from the fact that L(S) = S, and hence on
any position no indices from S might appear in L(S′). Since L
is the bijection

|S′| � |Sc × · · · × Sc|,
and hence

ksk−1 � (d − s)k−1,

which is equivalent to the statement of Proposition 10. �
As we shall see, the existence of nontrivial sub-MOLH(s)

in MOLH(d ) is directly related to the problem of describing
the automorphisms of AME(2k, d) states. More precisely,
assumptions that either nontrivial sub-MOLH(s) does not
exist or cannot be extended to MOLH(d ) allows us to pro-
vide a comprehensive description of LU equivalences of
AME(2k, d) states. Therefore, the necessary conditions of
existence and extension of MOLH are limiting the statements
of Propositions 5 and 6. This limitation is notified in Proposi-
tion 1, which follows directly from Propositions 9 and 10.

VII. FURTHER DISCUSSION AND OPEN PROBLEMS

Ultimate LU and SLOCC classification of k-uniform
states, even of minimal support, is in fact a complex project
involving many open mathematical problems, such as (1)
existence and extension of mutually orthogonal Latin hyper-
cubes (see Sec. VI), (2) classification of Hadamard matrices
of Butson type B(d, d ), and (3) classification and uniqueness
of OAs of index unity (without permutation), among others.
Therefore, with great conviction, we claim it to be currently
out of reach. Below, we discuss three open problems regarding
LU and SLOCC classification of k-uniform states with mini-
mal support in a detailed way. We show their connections with
some open mathematical problems.

First, consider two k-uniform states of minimal support |ψ〉
and |ψ ′〉 with all phases equal to 1 for simplicity. With this
constraint on phases, Proposition 2 shows that |ψ〉 and |ψ ′〉
are LU equivalent if and only if there exist local permutation
matrices relating |ψ〉 and |ψ ′〉:

|ψ ′〉 = σ1 ⊗ · · · ⊗ σn|ψ〉.
States |ψ〉 and |ψ ′〉 are in one-to-one correspondence with
two OAs of index unity. The existence of local permutation
matrices is equivalent to an isomorphism between two OAs
of index unity. Hence LU classification of such states is
equivalent to the classification of OAs of index unity. Such

a classification is, however, an open mathematical problem.
In many situations, when number of parties N , uniformity k,
and local dimension d are small, it is known that all OAs of
index unity are isomorphic [77–79].

Conjecture 3. All OAs of index unity are isomorphic by
permutations of symbols on each level. Equivalently, all k-
uniform states with minimal support and all term phases equal
are LU equivalent.

Second, in Propositions 5 and 6, the form of the arbitrary
LU operator between two AME(2k, d) states with minimal
support is provided for small numbers k and d . It is given by
a Butson-type matrix B(d, d ) or an identity matrix, multiplied
by local monomial matrices from both sides. We have shown
that for a composed system there are local operators beyond
the provided formula. Indeed, in this case, the tensor product
of the Butson-type matrix and the identity matrix may provide
LU equivalence. We conjecture that it is a general form for LU
equivalences for all AME(2k, d) states, and it is tightly related
to the possible decomposition of a system. This supposition is
stated in Conjecture 1.

Third, Proposition 2 states that any LU operator between
two k-uniform states of minimal support |ψ〉 and |ψ ′〉 is a
local product of phase (diagonal) and permutation matrices
(for 2k < N). By considering states |ψ〉 and |ψ ′〉 with terms
of various phases, we showed that not all of them are LU
equivalent for k > 2. Nevertheless, the precise description of
SLOCC classes containing such states is not given. Therefore,
the role of permutation matrices in LU classification is not yet
absolutely clear.

Finally, in Sec. IV the basic difference between k-uniform
states of minimal support where 2k < N and 2k = N is dis-
cussed. LU equivalence between two k-uniform states with
2k = N decomposes into multiplication of the Butson-type
matrix and LM matrices from both sides. Obviously, Butson-
type matrices significantly increase the class of LU equiva-
lences between two states. Nevertheless, it is not known yet
whether such LU equivalences are beyond local monomial
equivalences. In fact, in all provided examples involving
Butson-type matrices in LU equivalence, states were always
LM equivalent. Therefore we conjecture that Corollary 2
holds true in the case 2k = N (even though Proposition 2 does
not hold anymore).

Conjecture 4. All AME(2k, d) states with minimal sup-
port are LU equivalent if and only if they are LM equivalent.

Notice that any attempt to prove the statement above makes
sense only if Conjecture 3 is true. In such a case, the classifi-
cation of Butson type B(d, d ), which is an open mathematical
problem, and refined analysis of such are required.

VIII. CONCLUSIONS

In this paper, we develop techniques of SLOCC verification
between k-uniform and AME states. In particular, we show
that two k-uniform states are SLOCC equivalent if and only if
they are LM equivalent. We further specify the matrices which
might appear in such equivalences. These results significantly
restrict the class of possible local transformations to a finite
set, which makes SLOCC verification feasible.

For AME(2k, d) states, the aforementioned statement is
not true anymore. Intriguingly, SLOCC equivalences might

022413-12



STOCHASTIC LOCAL OPERATIONS WITH CLASSICAL … PHYSICAL REVIEW A 102, 022413 (2020)

be provided by Fourier transforms and, in general, by Butson-
type matrices. This restriction is valid, however, only for small
local dimensions d and number of parties N (in particular
for arbitrary N and d < 9). The exact bound on d and N is
related to the necessary condition for existence and extension
of combinatorial designs called mutually orthogonal hyper-
cubes. Despite the exhaustive analysis performed, the general
structure of SLOCC equivalences between AME(2k, d) states
is still puzzling and remains unknown. We present evidence
that exceeding this class of equivalences is possible only
in composed systems. General results concerning SLOCC
equivalences of AME(2k, d) states are also presented.

We illustrate the usefulness of the provided criteria on
various examples. First, we show that the existence of AME
states with minimal support of six or more particles yields
the existence of infinitely many such non-SLOCC-equivalent
states. The exact number of SLOCC classes containing AME
states with minimal support is given. Second, we show that
some AME states cannot be locally transformed into existing
AME states of minimal support. This shows that the notion of
support is relevant even for AME states.
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APPENDIX A: THE PROOF OF PROPOSITION 2

We shall prove Proposition 2 in a slightly enhanced ver-
sion. Notice that LU and SLOCC equivalences coincide on
the class of AME states, which is an immediate conclu-
sion from Corollary 1. Therefore, we restrict our argument
to LU equivalences only. We would like to emphasize the
statement below as primary and more valuable for the LU-
verification procedure than the claim of Proposition 2 itself.
Indeed, this extended version is used later in Appendix D
for the demonstration of nonequivalence of two families of
AME(5,d) states.

Proposition 11. Consider two k-uniform states |ψ〉 and |φ〉
with minimal support. For any subsystem S consisting of s >

k parties, the reduced density matrices ρS (ψ ) and ρS (φ) are
LU equivalent if and only if they are LM equivalent.

Observe that Proposition 2 is an immediate consequence
of the statement above for subsystem S of all parties, i.e.,
|S| = N . Without loss of generality it is enough to prove the
statement of Proposition 11 only for the smallest possible
subsystems S, i.e., consisting of k + 1 parties. Indeed, assume
that the reduced states ρS′ (ψ ) and ρS′ (φ) are equivalent by
a local unitary matrix U . Consider any subsystem S ⊆ S′ of
k + 1 parties. The local operator U splits:

U = USUS′\S

where US is the local operation on the S subsystem and US′\S is
the local operation on the S′ \ S subsystem equivalently. Since
the (partial) trace is invariant under cycling permutations, we
have

ρS (ψ ) = US[ρS (φ)]

and, by Proposition 11, US is a local monomial operation.
Since the subsystem S was chosen arbitrary, U is a local
monomial operator.

Notice that the size s > k of the subsystem S in Propo-
sition 11 is the largest possible. Indeed, after taking the
partial trace over the larger subsystem, both states |ψ〉 and
|φ〉 become proportional to the identity, and hence any local
unitary operation provides their equivalence.

We introduce the following notation. Consider two LU-
equivalent k-uniform states: |ψ〉 and |φ〉 of minimal sup-
port form. We make use of the decomposition into support
elements:

|ψ〉 =
dk∑

i=1

αi|ψi〉

where |ψi〉 are of unity support. Moreover, we denote ele-
ments of |ψi〉 as follows:

|ψi〉 = ∣∣xi
1 · · · xi

N

〉
where xi

j = 0, . . . , d − 1. We use similar notation for the state
|φ〉:

|φ〉 =
dk∑

i=1

αi|φi〉, |φi〉 = ∣∣yi
1 · · · yi

N

〉
.

Lemma 1. For a partial trace over any subsystem S of |S| �
k parties

trS |ψ〉〈ψ | =
dk∑

i=0

|ψ̃i〉〈ψ̃i|

where |ψ̃i〉 = trS |ψi〉. Moreover, for any i �= j, |ψi〉 and |ψ j〉
coincide on at most k − 1 positions.

Proof. For any subsystem S such that |S| = N − k,
trS |ψ〉〈ψ | = Iddk . Hence, for any i �= j, vectors |ψi〉 and |ψ j〉
coincide on at most k − 1 positions. Indeed, suppose the con-
trary, i.e., they coincide on some k positions. Then, by tracing
out the rest of parties, we get trN−k |ψi〉〈ψi| = trN−k |ψ j〉〈ψ j |
and by the minimality of the support trN−k |ψ〉〈ψ | �= Iddk .
The statement of the lemma follows immediately from the
presented observation. �

Proof of Proposition 11. As we already discussed, it is
enough to prove Proposition 11 for subsystems S of k + 1
parties. Without loss of generality, analyze the reduction to
the subsystem S of the first k + 1 parties. Consider a local
unitary operation U := U1 ⊗ · · · ⊗ Uk+1 transforming ρS (ψ )
into ρS (φ). Unitary operators Ui might be seen as the follow-
ing change of basis:

|î1 · · · îk+1〉 := |U1(i1) · · ·Uk+1(ik+1)〉. (A1)
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From Lemma 1 we have

ρS (ψ ) =
dk∑

i=1

∣∣xi
1 · · · xi

k+1

〉〈
xi

1 · · · xi
k+1

∣∣ (A2)

and

ρS (φ) =
dk∑

i=1

∣∣yi
1 · · · yi

k+1

〉〈
yi

1 · · · yi
k+1

∣∣. (A3)

Observe that

UρS (ψ )U −1 =
dk∑

i=1

∣∣x̂i
1 · · · x̂i

k+1

〉〈
x̂i

1 · · · x̂i
k+1

∣∣,
and since U is the LU equivalence the two expressions above
are equal. Consequently, we have equality of the following
spaces:

span
{∣∣yi

1 · · · yi
k+1

〉
; i = 1, . . . , dk

}
= span

{∣∣x̂i
1 · · · x̂i

k+1

〉
; i = 1, . . . , dk

}
.

In general, each vector from the first space is a linear com-
bination of vectors from the second space. We will show,
however, that there is a one-to-one correspondence between
vectors from both spaces; namely, for any index i there exists
an index ji such that∣∣x̂i

1 · · · x̂i
k+1

〉 = ∣∣y ji
1 · · · y ji

k+1

〉
. (A4)

With this observation at hand, and by Eq. (A1), the statement
of Proposition 2 follows immediately.

What remains to be shown is that, indeed, Eq. (A4) holds.
Consider the vector |x̂i

1 · · · x̂i
k+1〉 and present it as the following

linear combination:

∣∣x̂1
1 · · · x̂1

k+1

〉 = dk∑
i=1

βi

∣∣yi
1 · · · yi

k+1

〉
. (A5)

On the other hand,∣∣x̂1
1 · · · x̂1

k+1

〉 = ∣∣U1
(
x1

1

) · · ·Uk+1
(
x1

k+1

)〉
(A6)

=
d−1∑

j1,..., jk+1=0

u1
x1

1 j1
· · · uk+1

x1
k+1 jk+1

| j1 · · · jk+1〉 (A7)

where uk
lm = (Uk )lm, and hence

βi = u1
x1

1yi
1
· · · uk+1

x1
k+1yi

k+1
.

Suppose now that, for i �= j, βi, β j �= 0. Consequently,

um
x1

myi
m

�= 0, um
x1

my j
m

�= 0,

for m = 1, . . . , k + 1. By Lemma 1, |yi
1 · · · yi

k+1〉 and

|y j
1 · · · y j

k+1〉 differ on at least two positions; without loss of

generality suppose yi
1 �= y j

1. Observe that

u1
x1

1yi
1
�= 0, u2

x1
j y

j
2
�= 0, . . . , uk+1

x1
k+1y j

k+1

�= 0

and hence the expression∣∣yi
1y j

2 · · · y j
k+1

〉〈
yi

1y j
2 · · · y j

k+1

∣∣

appear on the right-hand side of Eq. (A3) with nonzero
coefficient, which is in contradiction to Lemma 1.

Since there is at most one βi �= 0, the sum in Eq. (A5)
collapses to the one term. Similar reasoning shows that
|x̂m

1 · · · x̂m
k+1〉 is in general equal to |yi

1 · · · yi
k+1〉 for some i =

1, . . . , dk , which should have been shown. �
Notice that the presented argument does not hold if 2k =

N . Indeed, the smallest nontrivial reduced system of k-
uniform states consists of k + 1 parties. The proof is based on
Lemma 1 to justify that vectors |yi

1 · · · yi
k+1〉 and |y j

1 · · · y j
k+1〉

differ on at least two positions. For 2k = N , however, the
argument of Lemma 1 might be used only for the trivial
reduction to k parties.

APPENDIX B: THE PROOF OF PROPOSITION 4

Proof of Proposition 4. From Proposition 2 the LU equiv-
alence between two states of minimal support is a product
of permutation and diagonal matrices. Suppose that the local
permutation σ was already applied to the state |ψ〉. Therefore,
we may assume that |ψ〉 and |ψ ′〉 are related only by diagonal
operators.

Since both states |ψ〉 and |ψ ′〉 are k-uniform states of
minimal support related only by diagonal operators, they
might be written in the following form:

|ψ〉 =
∑
I∈I

ωI |I〉, (B1)

|ψ ′〉 =
∑
I∈I

ω′
I |I〉 (B2)

where I ⊂ [d]n has dimension |I| = [d]k . Denote by

D� = diag
(
u�

1, . . . , u�
d

)
the diagonal operators relating |ψ〉 and |ψ ′〉. Clearly,

ω′
I = u1

i1 · · · un
inωI (B3)

for any index I = i1, . . . , in. Denote by U � := ∏
i∈[d] u�

i the
product of all nonzero elements from the matrix D�.

For simplicity, let us choose S = {1, . . . , k − 1} as the
set of first k − 1 indices. We shall show the statement with
respect to the first matrix D1. Consider any multi-index
I = i2, . . . , ik−1. By multiplying adequate expressions from
Eq. (B3) by sides, one may obtain(

W S
i,I

)′ = (
u1

i

)d(
u2

i2

)d · · · (uk−1
ik−1

)d
(U k · · ·U n)W S

i,I .

The fact that U k · · ·U n appears on the right-hand side follows
from the basic properties of OAs related to the states |ψ〉 and
|ψ ′〉. Hence(

u1
0

)d W S
0,I(

W S
0,I

)′ = · · · = (
u1

d−1

)d W S
d−1,I(

W S
d−1,I

)′ . (B4)

From this immediately follows that

D1 = ω1diag

⎛⎜⎝ d

√√√√(W S
0,I

)′
W S

0,I

, . . . ,
d

√√√√(W S
d−1,I

)′
W S

d−1,I

⎞⎟⎠,

for some phase factor ω1.
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Since the multi-index I is arbitrary, from Eq. (B4) follows
that (

W S
0,I

)′
W S

0,I

=
(
W S

0,I ′
)′

W S
0,I ′

(B5)

for any other multi-index I ′ = i′2, . . . , i′k−1.
Since we assumed that the local permutation σ was already

applied to the state |ψ〉, one has to consider the action of
σ on the denominator in Eq. (B5) in the general case. This
shows the statement of Proposition 4 for the set S of first k − 1
indices. The same reasoning might be applied for other sets S,
and further for any indices: 2, . . . , n. The global phase is then
a multiplication of obtained factors ωi. �

APPENDIX C: SEC. IV REVISITED

We discuss in detail LU equivalences of AME(2k, d) states
with minimal support. In particular, proofs of Propositions 5
to 7 are presented. We begin with the necessary notation. For
simplicity, all AME(2k, d) states considered in Appendix C
are normalized to

√
dk . In such a way, all terms in the compu-

tational basis of states with minimal support are normalized
to one. For a local unitary operator U := U1 ⊗ · · · ⊗ U� and a
subset of indices S ⊆ [�], we define its S part by

US :=
⊗
i∈S

Ui.

Observation 2. Let U := U1 ⊗ · · · ⊗ U� be a local unitary
operator transforming a state ρ(ψ ) ∈ H⊗� onto ρ(ψ ′), i.e.,

U [ρ(ψ )] = ρ(ψ ′).

Then, for any subset S ⊆ [�] of indices,

US[ρS (ψ )] = ρS (ψ ′). (C1)

Moreover, if

ρS (ψ ) = |ψ1〉〈ψ1| + · · · + |ψk〉〈ψk|,

ρS (ψ ′) = |ψ ′
1〉〈ψ ′

1| + · · · + |ψ ′
k〉〈ψ ′

k|,
where vectors |ψi〉 and |ψ ′

i 〉, respectively, are orthogonal, i.e.,
〈ψi|ψ j〉 = ciδi j and 〈ψ ′

i |ψ ′
j〉 = c′

iδi j , then

US|ψi〉 =
k∑

j=1

vi j |ψ ′
j〉 (C2)

for some elements vi j , which form a unitary matrix V := (vi j )
if and only if all the vectors |ψi〉 and |ψ ′

i 〉 have the same norm.
Proof. Equation (C1) follows immediately from basic

properties of partial trace and unitary operations.
By imposing the orthogonality relations between vectors

|ψi〉 and |ψ ′
i 〉, respectively, one may extend both families (up

to normalization of vectors |ψi〉 and |ψ ′
i 〉) into the basis of

the entire Hilbert space. Consider now the matrix US in this
basis. Since Eq. (C1) holds and US is a unitary matrix, US has
a block structure, which transfers subspace spanned by vectors
|ψi〉 onto the subspace spanned by vectors |ψ ′

i 〉, which implies
Eq. (C2).

Assume now that vectors |ψi〉 and |ψ ′
i 〉 are normalized.

Observe that, in the aforementioned basis, V is a block matrix
of US , and hence is a unitary matrix. �

Each AME(2k, d) state |ψ〉 might be written in the follow-
ing form:

|ψ〉 =
∑

I∈[d]k

|I〉 ⊗ |φI〉,

where I is multi-index I = i1, . . . , ik which runs over the
space [d]k . If |ψ〉 is of minimal support, the vector |φI〉 ∈ H⊗k

d
is separable in the computational basis, i.e.,

|ψ〉 =
∑

I∈[d]k

ωI |I〉 ⊗ ∣∣φ1
I

〉⊗ · · · ⊗ ∣∣φk
I

〉
, (C3)

where vectors |φ j
I 〉 are from the computational basis, i.e.,

|φ j
I 〉 = |0〉, . . . , |d − 1〉.
Lemma 2. Consider two AME states |ψ〉 and |ψ ′〉 of the

form

|ψ〉 =
∑

I=i1,...,ik

ωI |I〉 ⊗ |φI〉,

|ψ ′〉 =
∑

I=i1,...,ik

ω′
I |I〉 ⊗ |φ′

I〉,

which are local unitary equivalent by U . For any multi-index
I = i1, . . . , ik

U (ωI |φI〉) =
∑

I ′∈[d]k

v1
i1i′1

v2
i1i′1

(i1) · · · vk
ik i′k

(i1, . . . , ik−1)

ωI ′ |φI ′ 〉,
where elements v�

i j (i1, . . . , i�−1) form a unitary matrix

V �(i1, . . . , i�−1) := [
v�

i j (i1, . . . , i�−1)
]

for any � = 1, . . . , k and indices i1, . . . , i�−1.
Notice that structure constants v�

i j (i1, . . . , i�−1) depend on
indices i1, . . . , i�−1, which in fact is the main obstruction
for obtaining more general results as those presented in this
section.

Proof. We shall use Observation 2 repetitively k times, by
tracing out parties 1, . . . , k, respectively. In fact, the order of
the procedure does not matter. In each step, the orthogonality
of adequate vectors is fulfilled by relations 〈φI ′ |φI〉 = δI,I ′ . We
present the first two steps of the procedure in a more detailed
way.

We know that U (|ψ〉) = |ψ ′〉. Consider the partial traces
over the first subsystem in both vectors |ψ〉 and |ψ ′〉:

ρ1c (ψ ) =
d−1∑
i1=0

|ψi1〉〈ψi1 |,

ρ1c (ψ ′) =
d−1∑
i1=0

|ψ ′
i1〉〈ψ ′

i1 |,

where

|ψi1〉 =
∑

I=i2,...,ik

ωi1,I |I〉 ⊗ |φi1,I〉, (C4)
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and similarly ∣∣ψ ′
i1

〉 = ∑
I=i2,...,ik

ω′
i1,I |I〉 ⊗ ∣∣φ′

i1,I

〉
.

From Observation 2 follows that

U1c

(∣∣ψi1

〉) =
d−1∑
i′1=0

v1
i1i′1

∣∣ψ ′
i′1

〉
, (C5)

and the elements v1
i1i′1

form the unitary matrix V 1 := (v1
i1i′1

).
We shall consider vectors |ψi1〉 separately. For an arbitrary

index i1, consider a partial trace over the second party of |ψi1〉.
From Eq. (C4)

ρ2c

(
ψi1

) =
d−1∑
i2=0

∣∣ψi1,i2

〉〈
ψi1,i2

∣∣,
where ∣∣ψi1,i2

〉 = ∑
I=i3,...,ik

ωi1,i2,I |I〉 ⊗ ∣∣φi1,i2,I
〉
.

The partial trace over the second party of the right-hand side
of Eq. (C5) is equal to

d−1∑
i2=0

∣∣ψ ′
i1,i2

〉〈
ψ ′

i1,i2

∣∣,
where ∣∣ψ ′

i1,i2

〉 = ∑
i′1

v1
i1i′1

∑
I=i3,...,ik

ω′
i1,i2,I |I〉 ⊗ ∣∣φ′

i1,i2,I

〉
,

and hence by Observation 2 applied to both sides of Eq. (C5)
we have

U{1,2}c

(∣∣ψi1,i2

〉) =
d−1∑
i′2=0

v2
i2i′2

(i1)
∣∣ψ ′

i1,i2

〉
, (C6)

for elements v2
i2i′2

(i1), which form a unitary matrix. Notice that

the matrix V 2(i1) := [v2
i2i′2

(i1)] is in particular dependent on
the chosen index i1.

We repeat the presented procedure for an arbitrary pair of
indices i1 and i2; then for i1, i2, and i3; and in general k times
up to i1, . . . , ik . Finally, we obtain

U{1,...,k}c

(∣∣ψi1,...,ik

〉) =
d−1∑
i′k=0

vk
ik i′k

(i1, . . . , ik−1)
∣∣ψ ′

i1,...,ik

〉
(C7)

where elements vk
ik i′k

(i1, . . . , ik−1) form a unitary matrix. No-
tice that |ψi1,...,ik 〉 = ωI |φi1,...,ik 〉. On the other hand∣∣ψ ′

i1,...,ik

〉 = ∑
i′1,...,i

′
k−1

v1
i1i′1

· · · vk−1
ik−1i′k−1

(i1, . . . , ik−2)

ω′
i1,...,ik

∣∣φ′
i1,...,ik

〉
.

By the analysis of the recursion, substitution of this formula
to Eq. (C7) proves the proposition. �

Corollary 7. For two AME states of minimal support

|ψ〉 =
∑

I=i1,...,ik

ωI |I〉 ⊗ ∣∣φ1
I

〉⊗ · · · ⊗ ∣∣φk
I

〉
,

|ψ ′〉 =
∑

I=i1,...,ik

ω′
I |I〉 ⊗ ∣∣φ1

I
′〉⊗ · · · ⊗ ∣∣φk

I
′〉
,

which are local unitary equivalent by U , the equivalence is of
the following form:

U[k](ωI |I〉) =
∑

I ′=i′1,...,i
′
k

v1
φ1

I φ1
I′

′v
2
φ2

I φ2
I′

′
(
φ1

I

) · · ·
× vk

φk
I φk

I′
′
(
φ1

I , . . . , φ
k−1
I

)
ωI ′ |I ′〉. (C8)

Proof. The proof follows immediately from Lemma 2
applied to the second half of indices. �

The above obtained statements are rather technical. We
shall demonstrate their effectiveness.

Proof of Proposition 7. Fix a multi-index I = i1, . . . , ik .
By the definition,

U[k](|I〉) =
∑

I ′=i′1,...,i
′
k

u1
i1i′1

· · · uk
ik i′k

|I ′〉. (C9)

On the other hand, U[k] might be expressed in the form
Eq. (C8). For simplicity of the proof, we use the following
notation:

u�
i′�

:= u�
i�i′�

, v�

φ�
I′

′ := v�

φ�
I φ

�
I′

′
(
φ1

I , . . . , φ
�−1
I

)
,

which is correctly defined once the index I = i1, . . . , ik is
fixed. Furthermore, we define

�I ′ := u1
i′1

· · · uk
i′k
, pI ′ := v1

i′1
· · · vk

i′k
,

for any multi-index I ′ = i′1, . . . , i′k .
By comparison of Eqs. (C8) and (C9), we have

�I ′ = pφ′
I′
ω′

I ′

ωI
, (C10)

where φ′
I ′ := (φ1

I ′
′
, . . . , φk

I ′
′
) for any I ′ = i′1, . . . , i′k .

Consider now the mutually orthogonal Latin hypercube
MOLH(d ) (see Proposition 8 for details):

L(i′1 . . . i′k ) := (
φ1

I ′
′
, . . . , φk

I ′
′)
.

On the one hand, the set of indices I ′ = i′1, . . . , i′k for which
�I ′ �= 0 forms a rectangle S := S1 × · · · × Sk ⊆ [d]k . Indeed,
it follows from the product form of �I ′ . On the other hand,
the set of indices I ′′ = i′′1, . . . , i′′k for which pI ′′ �= 0 also forms
a rectangle S′ := S′

1 × · · · × S′
k ⊆ [d]k , which follows from

the product form of pI ′′ . From the equality in Eq. (C10)
follows that L maps S onto S′. From Remark 2, S and S′ are
hypercubes and L|S is a MOLH(s), where s := |S1| = · · · =
|Sk| = |S′

1| = · · · = |S′
k|. This proves the second statement of

Proposition 7.
So far, we showed that for any fixed multi-index I =

i1, . . . , ik the relevant rows of matrices U1, . . . ,Uk , i.e.,
vectors (

u1
i1i

)d−1
i=0 , . . . ,

(
uk

ik i

)d−1
i=0 ,
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have the same number s of nonzero elements. Ob-
serve that this is also true for any other multi-index
I ′ = i′1, . . . , i′k . Indeed, the analogous reasoning, for other
multi-indices I ′

0 = i1, i′2, . . . , i′k (I ′ and I ′
0 are equal on the first

position), ensures us that the vectors(
u1

i1i

)d−1
i=0 ,

(
u2

i′2i

)d−1
i=0 . . . ,

(
uk

i′k i

)d−1
i=0

have the same number of nonzero elements, equal to s. From
here, one can deduce it for arbitrary I ′ = i′1, . . . , i′k . Since
the inverse of the unitary matrix is its conjugate transpose,
the matrices U †

1 , . . . ,U †
k , . . . provide the local unitary equiv-

alence between |ψ ′〉 and |ψ〉. Reasoning similar to the above
proves that those matrices have the same number of nonzero
elements in each row. This is equivalent to the fact that
U1, . . . ,Uk have the same number of nonzero elements in
each column. This proves the first statement of Proposition 7
for matrices U1, . . . ,Uk (without stating the equality of the
element’s norms). Observe that by taking another set of in-
dices S ⊂ [n] one may extend this reasoning to all matrices
U1, . . . ,Uk, . . . ,U2k .

In fact, more detailed analysis of matrices U1, . . . ,Uk

might be performed. Once more, fix I = i1, . . . , ik , and keep
the notation introduced before in the proof. For each Ī ′ =
i′1, . . . , i′k−1 ∈ S1 × · · · × Sk−1, we have∏

i′k∈Sk

�Ī ′i′k
= (

u1
i′1

)s · · · (uk−1
i′k−1

)s
C1 (C11)

where C1 = ∏
i′k∈Sk

uk
i′k

. By Eq. (C10), the left-hand side of
Eq. (C11) is equal to∏

i′k∈Sk

pφ′
Ī′ i′k

ω′̄
I ′i′k

ωI
= 1

ωI
W [k−1]

Ī ′

∏
i′k∈Sk

v1
L1

Ī′ i′k
· · · vk

Lk
Ī′ i′k

. (C12)

Here, we use the notation of W [k−1]
Ī ′ introduced in Sec. III A

with a slight modification. Namely, the product

W [k−1]
Ī ′ :=

∏
i′k∈Sk

ωĪ ′i′k

runs only over all nonzero elements ωĪ ′i′k
, which is exactly s.

One of the basic properties of a MOLH is that in each row
and on each position all elements appear exactly once (see
Definition 3 for details). Hence, Eq. (C12) is equal to

1

ωI
W [k−1]

Ī ′ C2, where C2 =
∏
I ′′∈S′

v1
i′′1

· · · vk
i′′k
. (C13)

Equations (C11)–(C13) combine to the following:(
u1

i′1

)s · · · (uk−1
i′k−1

)s 1

W [k−1]
Ī ′

= 1

ωI

C2

C1
(C14)

for each Ī ′ = i′1, . . . , i′k−1 ∈ S1 × · · · × Sk−1, where constants
C1 and C2 are independent of Ī ′. From Eq. (C14), one can
deduce the proportions of nonzero elements in rows of U1.
Indeed, choose a multi-index Ĩ ′ ∈ S2 × · · · × Sk−1 and two
indices i′1, i′′1 ∈ S1. From Eq. (C14) applied to Ī ′ = i′1 Ĩ ′ and
i′′1 Ĩ ′ follows that(

u1
i′1

)s 1

W [k−1]
i′1 Ĩ ′

= (
u1

i′′1

)s 1

W [k−1]
i′′1 Ĩ ′

. (C15)

Since W [k−1]
i′1 Ĩ ′ and W [k−1]

i′′1 Ĩ ′ have the same norms, there is the

following equality: |u1
i′1
| = |u1

i′′1
|. Those, however, under the

introduced notation denote elements of the local unitary ma-
trix: ui1,i′1 and ui1,i′′1 . We conclude that in the i1th row of the
matrix U1 there are exactly s nonzero elements, all having
the same norm. Since U1 is a unitary matrix (in particular,
it preserves the norms), all nonzero elements from the i1th
row have norm equal to 1/

√
s. Analogous reasoning might

be performed with respect to each row of matrix U1 and
further to each matrix Ui, i = 1, . . . , 2k. Therefore, we affirm
the equality of the element’s norms in the first statement of
Proposition 7.

In fact, Eq. (C15) is the last general result concerning the
characteristic of local unitary matrices Ui. We restrict now to
the case when ωI ≡ ω′

I ≡ 1 for all multi-indices I = i1, . . . ik .
Obviously, W [k−1]

i′1 Ĩ ′ = 1 for all multi-indices i′1Ĩ ′ ∈ S1 × · · · ×
Sk−1. Thus, from Eq. (C15) follows that all nonzero entries
of the i1th row have not only equal norms but also equal sth
powers. In other words, all nonzero entries of the i1th row
are sth roots of unity up to some scaling complex number wi1 .
Analogous reasoning might be performed with respect to each
row of matrix U1. In such a way we obtain scaling factors
wi for i = 1, . . . , d . Observe that matrix U1 multiplied by the
diagonal matrix

√
s diag(w1, . . . ,wd )

consists only of zeros and sth roots of unity. Similarly, one can
show the same property for local matrices U2, . . . ,U2k . This
proves the third statement of Proposition 7. �

We conjecture that the matrices U1, . . . ,Uk, . . . ,U2k from
Proposition 7 have the block structure

U� =

⎡⎢⎢⎣
S�,1 0 · · · 0
0 S�,2 · · · 0
...

...
. . .

...
0 0 · · · S�,d/s

⎤⎥⎥⎦,

where matrices Si, j are s × s unitary matrices with all entries
of the same norm. Unfortunately, coefficients v�

i j (i1, . . . , i�−1)
depend on indices i1, . . . , i�−1, which impose selection of the
index I at the beginning of the proof above. This enables us to
deduce the general block structure of matrices Ui. Notice that
not all unitary matrices having the same number of nonzero
elements in each row and column of the same norm each are
necessarily of the block structure.

Concluding the block structure of matrices U� is not within
our reach yet. Nevertheless, in two specific cases when s = 1
or d the block structure is obvious. Interestingly, those two
values of s are the only possibilities for most small dimen-
sional AME(2k, d) states (see Remark 1). This follows from
the requirement of appropriate dimensional MOLH extension.

Proof of Propositions 5 and 6. Suppose that the matrix
U := U1 ⊗ . . . ⊗ U2k provides an LU equivalence between
two AME(2k, d) states with minimal support. Assumption of
k and d being small enough is equivalent to the fact that the
only possible values of s are simply 1 and d .

In the first case when s = 1, matrices Ui are, by the defi-
nition, monomial matrices. This gives the second possibility
in Proposition 5. Each monomial matrix is a product of
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permutation and the diagonal matrix, hence the form of Eq. (5)
in Proposition 6 follows. Similarly to the proof of Proposi-
tion 4 presented in Appendix B, it may be shown that the
form of diagonal matrices Di from Eq. (5) are exactly as it
is indicated in Proposition 6.

The second case, when s = d , is new and goes beyond
the analysis performed so far. We investigate matrix U1. Let
us recall the last general formula in our analysis, namely,
Eq. (C15). By descrambling the notation introduced in the
proof of Proposition 7, Eq. (C15) takes the following form:

(
u1

i j

)d 1

W [k−1]
jI

= (
u1

i j′
)d 1

W [k−1]
j′I

, (C16)

where i ∈ [d] and j, j′ ∈ [d] are arbitrary indices, and I ∈
[d]k−2 is an arbitrary multi-index. This equation describes the
proportion of dth powers of elements in the ith row of the
matrix U1. Observe that they are independent of the index i.
Indeed, multiply the matrix U1 on the right-hand side by the
following diagonal matrix:

←−
D 1 = diag

(
d

√(
W [k−1]

0,I

)
, . . . ,

d

√(
W [k−1]

d−1,I

))
.

Observe that the entries of Ū1 := U1
←−
D 1 satisfy(

ū1
i j

)d = (
ū1

i j′
)d

,

for any number i indexing the rows and any pair of indices
j, j′ ∈ [d]. As we already discussed while proving Propo-
sition 7, the Hermitian-conjugate matrix U † provides the
reverse LU equivalence. One can analyze the proportions of
elements in rows of U †

1 in the same way as we did for U1. The
analog of Eq. (C16) yields the following conclusions on the
columns of matrix U1:(

u1
i j

)d 1(
W [k−1]

iI

)′ = (
u1

i′ j

)d 1(
W [k−1]

i′I

)′ , (C17)

where i, i′, j ∈ [d] are arbitrary indices and I ∈ [d]k−2 is an
arbitrary multi-index. Therefore, by multiplying the matrix Ū1

from the left-hand side by the diagonal matrix

−→
D i = diag

(
d

√(
W [k−1]

0,I

)′
, . . . ,

d

√(
W [k−1]

d−1,I

)′)
,

we obtain the matrix

Ũ1 := −→
D iU1

←−
D 1

with the following property:(̃
u1

i j

)d = (̃
u1

i′ j′
)d

,

for any indices i, i′ j, j′ ∈ [d]. Up to some global factor ω1, all
entries of the matrix Ũ1 are dth roots of unity. By the definition
ω1Ũ1 is a Butson-type matrix.

We have shown that under the assumption s = d the state-
ment in Eq. (4) of Proposition 6 holds for the matrix U1 and
the set S of the consecutive next k − 2 indices. The same
reasoning might be applied for another matrix Ui and set S.
The global phase in Eq. (4) is then a multiplication of obtained
factors ωi.

What is left for the analysis is the necessary condition for
existence of LU equivalence. Consider Eq. (C16). Since I ∈

[d]k−2 is an arbitrary multi-index and the ratio of two matrix
elements u1

i j/u1
i j′ is constant, we immediately obtain

W [k−1]
jI

W [k−1]
j′I

= W [k−1]
jI ′

W [k−1]
j′I ′

for any multi-indices I, I ′ ∈ [d]k−2. Similarly, from Eq. (C17),
we have (

W [k−1]
jI

)′(
W [k−1]

j′I

)′ =
(
W [k−1]

jI ′
)′(

W [k−1]
j′I ′

)′ .
This ends the proof of Proposition 6. Obviously, Proposition 5
is an immediate consequence of Proposition 6. �

APPENDIX D: THE PROOF OF PROPOSITION 3

We begin this section manifesting the problem of LU
verification of two given AME states. In general, for two given
k-uniform states, one can compare ranks of reduced density
matrices in order to exclude a local equivalence between them
[42]. We illustrate this phenomenon in the following example
of two 1-uniform states of four qubits:

|ψ1〉 = 1√
2

1∑
i=0

|i, i, i, i〉, |ψ2〉 = 1

2

1∑
i,k=0

|i, k, k, i + k〉.

Observe that rankρ12(ψ1) �= rankρ12(ψ2), hence the states
|ψ1〉 and |ψ1〉 are not LU equivalent. Nevertheless, this simple
argument is never conclusive for both states being AME.
Indeed, all reduced density matrices of AME state |ψ〉 have
precisely determined ranks: rankρS (ψ ) = min{|S|, |Sc|}.

Our initial attempt for showing that states |AME(5,d)〉 and
|AME(5,d)’〉 presented in Examples 3 and 5 are not locally
equivalent was to reduce this problem to smaller subsystems.
We investigated the reduced density matrices:

ρ345[AME(5,d)’]

=
d−1∑

i, j=0

|i + j, i + 2 j, i + 3 j〉〈i + j, i + 2 j, i + 3 j|

and

ρ345[AME(5,d)]

=
d−1∑

i, j=0

⎛⎝ d−1∑
k,k′=0

ω(i+3 j)(k−k′ )|i + j, k + i + 2 j, k〉

〈i + j, k′ + i + 2 j, k′|
⎞⎠,

where ω is the dth root of unity. Even though
ρ345[AME(5,d)’] and ρ345[AME(5,d)] have the same rank, we
attempt to show that they are not LU equivalent. Surprisingly,
it turned out that they are. We present both reduced density
matrices for a local dimension d = 3 in Figs. 2 and 3,
respectively.

It is not a straightforward observation that both states are
actually LU equivalent. Standard procedures of diagonalizing
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FIG. 2. The density matrix ρ345[AME(5,d)].

the density matrix ρ345[AME(5,d)] lead to nonlocal opera-
tions. Attentive analysis of low local dimensions (d = 3, 5)
showed that diagonalization might be performed in a local
way. Indeed, for a local dimension d = 3, the unitary matrices
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FIG. 3. The density matrix ρ345[AME(5,d)’].
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Ũ = Id⊗
⎛
⎝ 1 1 ω2

ω2 1 1
1 ω2 1

⎞
⎠ ⊗

⎛
⎝1 1 ω

1 ω 1
ω 1 1

⎞
⎠

+

+

=

+

+

=

FIG. 4. The matrix Id ⊗Ũ4 ⊗ Ũ4 transforms ρcde(ψ ) into ρcde(φ).
The figure depicts how it acts on the first block of Fig. 2.

Ũ3 = Id3,

Ũ4 = 1

3

⎛⎝ 1 1 ω2

ω2 1 1
1 ω2 1

⎞⎠, Ũ5 = 1

3

⎛⎝1 1 ω

1 ω 1
ω 1 1

⎞⎠

provide a local equivalence between ρ345[AME(5,3)’] and
ρ345[AME(5,3)]. This equivalence is illustrated in Fig. 4.
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Similarly, for a local dimension d = 5, matrices Ũ3 = Id5,

Ũ4 = 1

5

⎛⎜⎜⎜⎝
1 1 ω4 ω2 ω4

ω4 1 1 ω4 ω2

ω2 ω4 1 1 ω4

ω4 ω2 ω4 1 1
1 ω4 ω2 ω4 1

⎞⎟⎟⎟⎠,

and

Ũ5 = 1

5

⎛⎜⎜⎜⎝
1 1 ω ω3 ω

ω ω3 ω 1 1
ω 1 1 ω ω3

1 ω ω3 ω 1
ω3 ω 1 1 ω

⎞⎟⎟⎟⎠
provide a local equivalence between ρ345[AME(5,5)’] and
ρ345[AME(5,5)]. In order to provide the general formula,
for any odd local dimension d , we introduce the following
recursive construction of two (d × d )-dimensional matrices:

W = (wi j ) and V = (vi j )

with coefficients in GF(d).
(a) w00 = 0, v00 = 0.
(b) w0( j+1) is defined by the formula w0( j+1) = w0 j + 2 j;

similarly, v0( j+1) = v0 j − 2 j (definition of first rows).
(c) wi j := w(i−1)( j−1); similarly, vi j := v(i−2)( j−1) (defini-

tion of succeeding rows).
Notice that in order to define rows of the matrix V correctly

we impose 2 � d . The matrices Ũ4 and Ũ5 are of the following
form:

Ũ4 = (ωwi j ) and Ũ5 = (ωvi j ).

This construction overlaps with the aforementioned construc-
tions in dimensions d = 3, 5. In fact, there is a close formula
for entries of matrices W and V (and hence for matrices Ũ4

and Ũ5) given in terms of triangular numbers:

wi j = 2t j−i−1, vi j =
{ −2t j−i/2−1 for 2 | i
−2t j−(i+d )/2−1 for 2 � i

where ti = 0, 1, 3, 6, 10, 15, . . . are consecutive triangular
numbers defined as

tk =
k∑

i=0

i = (k + 1)k

2
. (D1)

Lemma 3. For any odd local dimension d , the matrices Ũ4

and Ũ5 provide the LU equivalence between ρ345[AME(5,d)’]
and ρ345[AME(5,d)], i.e.,

ρ345[AME(5,d)’] = Id ⊗Ũ4 ⊗ Ũ5{ρ345[AME(5,d)]}.
Proof. Observe that

d−1∑
s, j=0

|s, s + j, s + 2 j〉〈s, s + j, s + 2 j| Id3 ⊗Ũ4⊗Ũ5�−−−−−−→

d−1∑
s=0

d−1∑
m,m′,k,

k′=0

⎡⎣d−1∑
j=0

ω(w(s+ j)mw(s+ j)m′ v(s+2 j)kv(s+2 j)k′ )

|s, m, k〉〈s, m′, k′|
⎤⎦.

We examine the coefficient by

|s, k + s + j, k〉〈s, k′ + s + j′, k′|
in the expression above:

1

d

d−1∑
i=0

ω(w(s+i)(k+ j+s)w(s+i)(k′+ j′+s)v(s+2i)kv(s+2i)k′ )

= 1

d

d−1∑
i=0

ω2(tk+i− j−1−tk′+ j′−i−1−tk−s/2−i−1tk′−s/2−i−1 ), (D2)

where we assumed 2 | s; the argument for the opposite case,
where 2 � s, is similar to the one we present. Using Eq. (D1),
after elementary transformations Eq. (D2) is equal to

1

d
ω[s(k−k′ )+2 jk−2 j′k′]ω[ j( j−1)− j′( j′−1)]

d−1∑
i=0

ω[2i( j− j′ )]

︸ ︷︷ ︸
dδ j j′

= ω(s+2 j)(k−k′ ),

which remains to be shown. �
Proof of Proposition 3. We show the statement by contra-

diction. Assume that states |AME(5,d)〉 and |AME(5,d)’〉 are
LU equivalent by some unitary matrices:

U1 ⊗ U2 ⊗ U3 ⊗ U4 ⊗ U5 =: U12 ⊗ U345.

We keep “⊗” in our notation in order to distinguish it from
the matrix multiplication. Since the (partial) trace is invariant
under cycling permutations, we have

ρ345[AME(5,d)’]

= tr12 |AME(5,d)’〉〈AME(5,d)’|
= tr12

[
U12 ⊗ U345|AME(5,d)〉〈AME(5,d)|U −1

12 ⊗ U −1
345

]
= U345

{
tr12

[
U12|AME(5,d)〉〈AME(5,d)|U −1

12

]}
U −1

345

= U345{tr12 [|AME(5,d)〉〈AME(5,d)|]}U −1
345

= U345{ρ345[AME(5,d)]}U −1
345.

Hence, the operator U345 := U3 ⊗ U4 ⊗ U5 provides
the local equivalence between ρ345[AME(5,d)] and
ρ345[AME(5,d)’].

Notice that in Lemma 3 we pointed out that the earlier
constructed matrices Ũ4 and Ũ5 provide the LU equivalence
between ρ345[AME(5,d)’] and ρ345[AME(5,d)] for any odd
local dimension d . Precisely,

ρ345[AME(5,d)] = Id ⊗Ũ4 ⊗ Ũ5{ρ345[AME(5,d)’]}.
Therefore from Proposition 2 we conclude that

U3 = M3, U4 = M4Ũ4, U5 = M5Ũ5,

for some monomial matrices M3, M4, and M5. Indeed,
U345(Id ⊗Ũ4 ⊗ Ũ )−1 constitutes an automorphism of
ρ345[AME(5,d)’] and hence, by Proposition 2, is a tensor
product of monomial matrices. We shall prove that
such restriction on matrices U3,U4, and U5 leads to a
contradiction.
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To sum up the discussion so far, LU equivalence between
states |AME(5,d)〉 and |AME(5,d)’〉 has the following form:

U1 ⊗ U2 ⊗ M3 ⊗ M4Ũ4 ⊗ M5Ũ5

where Ui are arbitrary unitary matrices, while Mi is the
product of diagonal and permutation matrices. Therefore

|AME(5,d)〉 = (U1 ⊗ U2)|i, j〉 ⊗ M3|i + j〉 ⊗ Bi j (D3)

where

Bi j := (M4Ũ4 ⊗ M5Ũ5)|i + 2 j, i + 3 j〉.

Observe that Bi j are linearly independent. Indeed, they
are unitary transformed linearly independent vectors
|i + 2 j, i + 3 j〉.

We shall show that matrices U1 and U2 are monomial
matrices. Suppose for simplicity that M3 = Id. Recall that
|AME(5,d)〉 has the following form:

|AME(5,d)〉 = |i, j, i + j〉 ⊗ Ci j, (D4)

where

Ci j = ω(i+3 j)k|k + 2 j, k〉.

We compare this expression with Eq. (D3). Suppose now
that in some column of the matrix U1 there are at least two
nonzero elements: u1

lk, u1
l ′k (l �= l ′); consider some nonzero

element u2
nm of the matrix U2. Observe that it leads to the

expressions

|l, n〉 ⊗ |k + m〉 ⊗ Bkm and |l ′, n〉 ⊗ |k + m〉 ⊗ Bkm

in Eq. (D3). Clearly, there is an additional contribution from
other nonzero elements of matrices U1 and U2. Since Bi j are
linearly independent, there are the terms

|l, n〉 ⊗ |k + m〉 ⊗ Dln and |l ′, n〉 ⊗ |k + m〉 ⊗ Dl ′n

in Eq. (D3), where Dln and Dl ′n are some nonzero elements.
Observe that such terms might appear in Eq. (D4) only if
l + n = k + m and l ′ + n = k + m, which is contradictory
to l �= l ′. Similarly, one can show that none of the matrix
U1 columns have two nonzero elements. We have shown
that, indeed, matrices U1 and U2 are monomial under the
assumption M3 = Id. Nevertheless, the assumption M3 = Id
is not essential here; a similar argument might be given for ar-
bitrary monomial matrix M3. Hence U1 and U2 are monomial
matrices in general.

Observe that supp(Bi j ) = d2. Indeed,

supp(Ũ4 ⊗ Ũ5|i + 2 j, i + 3 j〉) = d2,

and the monomial operators M4 and M5 do not change the
support. Since U1 and U2 are monomial matrices, the support
of the right-hand side in Eq. (D3) is equal to d4. This is
contradictory to the fact that supp[|AME(5,d)〉] = d3. �

We have shown that two families of AME(5,d) states are
not LU and SLOCC equivalent. Even though only a special
family of states is considered here, analysis of the proof of
Proposition 3 reveals the general method of LU verification
of AME and k-uniform states where one of them is written
with minimal support. First, the formula for LU equivalence
between reduced (k + 1)-dimensional systems should be pro-
vided. Second, based on Proposition 2, one can classify such
equivalences between those reduced states. Finally, it should
be shown that none of such equivalences can be extended to
the local equivalence of initial states.
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