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With the current interest in building quantum computers, there is a strong need for accurate and efficient
characterization of the noise in quantum gate implementations. A key measure of the performance of a quantum
gate is the minimum gate fidelity, i.e., the fidelity of the gate, minimized over all input states. Conventionally,
the minimum fidelity is estimated by first accurately reconstructing the full gate process matrix using the
experimental procedure of quantum process tomography (QPT). Then, a numerical minimization is carried out to
find the minimum fidelity. QPT is, however, well known to be costly, and it might appear that we can do better if
the goal is only to estimate one single number. In this work, we propose a hybrid numerical-experimental scheme
that employs a numerical gradient-free minimization (GFM) and an experimental target-fidelity estimation
procedure to directly estimate the minimum fidelity without reconstructing the process matrix. We compare
this to an alternative scheme, referred to as QPT fidelity estimation, that does use QPT, but directly employs the
minimum gate fidelity as the termination criterion. Both approaches can thus be considered as direct estimation
schemes. General resource estimates suggest a significant resource savings for the GFM scheme over QPT
fidelity estimation; numerical simulations for specific classes of noise, however, show that both schemes have
similar performance, reminding us of the need for caution when using general bounds for specific examples. The
GFM scheme, however, presents potential for future improvements in resource cost, with the development of

even more efficient GFM algorithms.
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I. INTRODUCTION

Quantum computing is much in the news these days, with
the recent achievement of quantum supremacy by the Google
device [1] and the renewed interest in building a quantum
computer (see, for example, Refs. [2,3]). The main obstacle to
realizing a quantum computer of a useful scale and accuracy
is the noise that threatens to destroy the quantum features
that give quantum computers their power. A key focus of any
implementation of a quantum information processing device
is hence the characterization, and subsequent control and
mitigation, of the noise that unavoidably accompanies the
operation of a quantum gate.

An often used measure of the quality of a quantum gate
implementation is the fidelity of the gate, i.e., a quantification
of how close the action of the actual gate is to the theoretical
ideal. Efficient and easy-to-implement procedures such as
randomized benchmarking [4-6] can offer information on the
average fidelity of a gate, averaged over input states according
to some distribution of interest (e.g., Haar-distributed pure
states for randomized benchmarking). What is often more
telling about the gate performance, however, is the minimum
fidelity, i.e., the fidelity of the gate operation, minimized
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over all possible input states. This is a state-distribution-
independent quantity and gives a minimum guarantee for the
quality of the gate, which is important to assure that the
quantum computer functions correctly in all scenarios.

Conventionally, the minimum fidelity is estimated by first
a full quantum process tomography (QPT) of the noisy gate
operation, followed by a numerical minimization, using the
estimated process matrix, to find the minimum fidelity over
all possible input states. This is a potentially costly procedure:
For a d-dimensional system, QPT requires an accurate esti-
mation of d* real parameters, all to yield one number, i.e., the
minimum fidelity. Resource estimates of the number of uses of
the channel required for an accurate full QPT can be deduced
from bounds for state tomography [7,8], giving O(d®/€”),
where €’ is the accuracy of the reconstruction, measured by
a distance between quantum processes.

One expects to be able to do better if the desire is only
to estimate the minimum fidelity to some desired accuracy
€, without the full reconstruction of the process matrix of
the noisy gate. In this work, we propose a direct route to
estimating the minimum fidelity, without the use of QPT.
It combines a numerical gradient-free minimization (GFM)
algorithm with the direct target fidelity estimation scheme
of Refs. [9,10] to perform a hybrid numerical-experimental
descent of the fidelity function to the minimum. We compare
this GFM scheme with an alternative route, which we name
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QPT fidelity estimation. QPT fidelity estimation does go
through QPT, but rather than employing a process distance
as the figure of merit as done in standard QPT, we make direct
use of the minimum fidelity as the stopping rule. In this sense,
this second route can also be regarded as a direct estimation
of the minimum fidelity and offers fair comparison with the
GFM scheme.

Resource estimates suggest that QPT fidelity estimation
needs O(d®/e?) uses of the gate to achieve an estimate of
the minimum fidelity to accuracy €. This follows from an
argument (see Sec. IV A) that relates the desired minimum
fidelity accuracy of € to the Choi-state trace-distance accuracy
of ¢’ used in Refs. [7,8]. This O(d®) uses of the gate, for fixed
€, 1s a prohibitively high resource cost. The GFM approach, in
contrast, is expected (see Sec. IV A) to require much milder
0(d*) gate uses. It is thus, from this perspective, a much more
efficient procedure for estimating the minimum fidelity.

For specific classes of noisy gates, however, our numer-
ical results suggest a somewhat different conclusion. We
numerically simulated both GFM and QPT fidelity estima-
tion procedures for two natural classes of noisy gates: noisy
gates random in the Hilbert-Schmidt sense, and gates with
random Pauli and amplitude-damping noise. For both classes,
our GFM scheme performs close to (though better than)
the resource estimates; the QPT fidelity estimation scheme,
surprisingly, took only O(d*) gate uses, much fewer than
the O(d®) prediction. The performance of the two schemes
is hence comparable for these two classes of noisy gates,
with only slightly better scaling for the GFM scheme. This
better performance for QPT is especially unexpected as our
simulations do not follow the optimal procedure behind the
theoretical bounds obtained in Refs. [7,8]. This reminds us
that for specific classes of noisy gates, the resource estimates,
which account even for worst-case scenarios, may not provide
a reliable gauge of typical performance.

Nevertheless, while there is little room for improvement in
the resource scaling for QPT fidelity estimation, the scaling
for the GFM scheme is limited largely by the efficiency of the
numerical GFM algorithm, a subject of intense study in the
field of numerical optimization. Our work also emphasizes
the importance of making direct use of the quantity of in-
terest, in this case the minimum fidelity, in the measurement
procedure, rather than a secondary quantity such as a process
distance. Both schemes explored here, the GFM scheme as
well as the QPT fidelity estimation, can be considered when
looking for methods of direct estimation of the minimum gate
fidelity, with the GFM offering potential for further reduction
in resource cost, while the QPT fidelity estimation offers the
advantage of a measurement setup familiar from standard
QPT.

Whether the observation of Ref. [11], namely, that very
few measurements chosen at random may be sufficient for the
estimation of particular properties, has a bearing on estimating
the minimum gate fidelity is currently unknown, and this
deserves to be explored. The matter is, however, not within
the scope of this work.

Below, we begin in Sec. II with a description of our
GFM algorithm, also providing a reminder of the direct target
fidelity estimation scheme following the analysis of Ref. [9].
We then explain the QPT fidelity estimation procedure in

Sec. III. Section IV gives the resource estimates and numerical
simulations that compare the performance of the two schemes.
We conclude in Sec. V.

II. DIRECT ESTIMATION WITH GRADIENT-FREE
MINIMIZATION

For a known ideal gate G, acting on an n-qubit system, and
its noisy implementation G, we are interested in how close G
is to G. One way to quantify this is to compare the fidelity
between the output state of G with the ideal output state
after G. The minimum fidelity, minimized over all input states,
is defined as

Finin = mwinF(g(W), G = mwinF(W, E@W). (D

Here, ¢ = |) (| is a pure state on the d(=2")-dimensional
Hilbert space of the quantum system, F'(|¢) (@], p) = (¢|p|p)
denotes the squared fidelity between the pure state |¢) and the
(possibly mixed) state p, and £ = G~! o G is the noise process
that describes the imperfections in the gate implementation G.
G~! is the inverse of the ideal unitary gate G(-) = U(-)yT,
for unitary U, i.e., G7!(-) = UT(-)U. We assume that G is
a completely positive (CP) and trace-preserving (TP) map—
also referred to as a quantum channel—and hence so is £.
Even though the minimization in Eq. (1) appears to only be
over pure states ¥, Fyy, is, in fact, the minimum fidelity over
all states, pure or mixed, as the concavity of F ensures that the
minimum is attained on a pure state.

The goal here is to estimate Fpi, without first estimating
the full process matrix of the noisy gate G, or, equivalently, of
the noise channel £. We assume the following experimental
capabilities: (i) We can prepare any input state of our choice;
(i) we can send that input state through the noisy gate and
access the output state; (iii) we can perform product-Pauli
measurements on the output state. The noisy gate is regarded
here as a black box G in the laboratory that takes the input v
and gives back the output G ).

We need two additional ingredients. The first is the tech-
nique of direct estimation of target fidelity (DTFE) invented
in Ref. [9], allowing the estimation of the fidelity of an n-qubit
state p with some target pure state |y) without full state
tomography. One needs only make probabilistic product-Pauli
measurements, according to a distribution determined by the
target pure state (see Sec. Il A for more details).

The second ingredient is a numerical method for gradient-
free minimization (GFM), implementable on a classical com-
puter. A GFM method finds a local minimum of a function in
the case where function values, but not the gradient values,
are easily available as inputs to the algorithm. A common
situation is one where the function itself cannot be written
down explicitly, but is accessible only through a numerical
procedure. The gradient of the function is hence also not
available as a function that can be written down explicitly, and
methods of numerically approximating the gradient typically
do not work well or are prohibitively expensive to evaluate.
GFM methods incorporate the gradient estimation with the
minimization by choosing trial points in the domain space,
deducing some gradient information (often only a rough es-
timate) from the function values evaluated at those points,

022410-2



DIRECT ESTIMATION OF MINIMUM GATE FIDELITY

PHYSICAL REVIEW A 102, 022410 (2020)

taking a small step in a direction expected to lower the
function value according to that gradient information, and
then repeating the process with new trial points at the new
location. With standard regularity criteria on the function, one
eventually arrives at a local minimum and a repetition of the
procedure sufficiently many times gives a good chance of
finding the global minimum.

We now put the ingredients together for our GFM scheme
of direct estimation of the minimum fidelity. Again, the
goal is to estimate Fi,;, without full knowledge of G, apart
from access to it as an input-output black box in the lab-
oratory. As is typical in such problems, the requirement is
to estimate Fi,, to within a target accuracy of € from the
true value with high probaﬁ)i\lity, i.e., |Fuin — Fmin] < € for
some small € > 0, where F;, is the estimate while F;, is
the (unknown) true value. The function we are minimizing
hereis f(¥) = F (¥, £(Y)), over the domain of pure states .
A full description of f and its gradient for minimization using
gradient-descent methods requires knowledge of £, which we
do not possess. However, we can evaluate the function value in
the laboratory by preparing v, feeding it into the black box G,
and then estimating f(y) by carrying out the DTFE scheme
in the laboratory, treating G(v/) as the target (pure) state and
G(y) as the state to be compared with the target. In this way,
we have access, from measurements in the laboratory on the
black box G, to the function values f ().

Our scheme then proceeds as follows: We run, on a clas-
sical computer, a GFM algorithm to minimize f (). At each
iterative step, the GFM suggests a set of trial states v, for
which it requires the values f(y). These values are obtained
from the experiment by preparing those ¥ states and then
performing the DTFE algorithm in the laboratory for each
Y. We iterate the GFM algorithm until a stopping rule is
satisfied to confirm the attainment of a local minimum. The
whole procedure is repeated sufficiently many times to find
the global minimum with a specified (high) probability. The
stopping rule is carefully tuned, as we will describe below, to
attain the desired € accuracy. The scheme is summarized in
Fig. 1.

In the following two sections, we describe, in greater detail,
first the DTFE scheme of Ref. [9] and then the GFM algorithm
employed in our numerical examples.

A. Direct estimation of the target fidelity

We describe here the basic ideas of the DTFE scheme of
Ref. [9] needed to understand our work. The analysis and
formulas here are taken from that reference, and we refer
the reader to the original paper for further details. The target
fidelity, i.e., the quantity of interest in Ref. [9], is the fidelity
between a particular state p, imagined to be the actual state
produced by a source, and a pure state |y), taken to be the
target state the source is designed to produce in the ideal
situation. The target fidelity hence quantifies how close the
source is to that ideal. That the target state is pure is important
technically for the linearity, in p and v, of the squared fidelity
used as the logical basis of the scheme; a pure target state
is anyway the often-encountered situation in many quantum
information processing tasks. For our purpose here, it suffices
as well, as our minimization is over pure input states only.

GFM Scheme

Converge

tofn;

Update @

experimental numerical

Minimize to Converge
_— —_
get Fmin to E[li[l

|
|
p— & |—>{Measurement{'> & —
|
|

More gate uses

FIG. 1. Schematic depictions of the two approaches explored
in our paper: GFM scheme and QPT fidelity estimation. Both
approaches involve interwoven experimental and numerical steps.
In the GFM approach, the experimental—via the direct target fi-
delity estimation procedure—and the numerical—via gradient-free
descent—steps alternate seamlessly in a hybrid minimization algo-
rithm, until convergence to the minimum fidelity fn:l In QPT fidelity
estimation, the experimental reconstruction of the process matrix
occurs first, followed by a numerical minimization to obtain fm\in,
and this is repeated, if needed, with more uses of the gate until the
estimated accuracy of Fp,;, meets our set target.

We write the square of the target fidelity, for a d = 2"-
dimensional situation, as

F(y, p) = tr(¥p) = Y x(¥)xc(p), 2)
k

where x;(-) = fdftr{Wk( -)}, with W, an n-qubit product Pauli

2.
operator, so that the set {\/LEW,{};::1 is an orthonormal operator

basis. x;(t) for any state 7 is then the (real) coefficient of
\/LEW" when writing t as a linear combination of elements of
that Pauli operator basis. The sum over k in Eq. (2) above is
understood to be only over those k values with x; () # 0. In
our present situation, the x; (y)s are known, while the x;(p)’s
are not.

The fidelity can be rewritten as

F,p) =) piXe. 3)
k

with py = [ (¥))? and X = ;‘:((i)) Note that {p;} is a proba-

bility distribution: >, px = F(y, ¥) = 1, and p; > 0. Let us
define a random variable X which takes value X; with proba-
bility px. Then, observe that F' (¥, p) = (X), the expectation
value of X, which depends on the unknown p. Now, for each &,
X (p) can be estimated from the experiment by measuring W,
a product-Pauli measurement, on p. Then, the target fidelity,
now understood to be equal to (X), can be estimated by
repeated trials where W; is chosen as the measurement to be
performed on p with probability py.

How good is this estimate? Suppose we do h=
1/(nd%) trials, with ki, ks,...,k, chosen according
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to the distribution {p;}, and so obtain estimates for
Xi,s Xty ooy Xi,.  Then, Y = %ZZZLX,Q satisfies  the
inequality: Probability(|]Y — (X)| > n) < 6. We cannot,
however, know X, precisely with only a finite number of
copies of p. To estimate Xj,, it suffices to measure W, on #,
copies of p, where

21n(2/6)
B o= )
dpy,hn
Then, Y, now built from estimates of Xj, using the above
number of copies, satisfies instead the inequality

Probability(|Y — (X)| > 21) < 26. (5)

The expected total number of copies of p required to attain an
estimate of the target fidelity 2n away from the true value is
then

21In(2/8 d
DWIESD R amem G ©)
k

giving a scaling of O(d/n?) copies, for fixed §. A more
accurate estimate of the expected number of copies is given
in Ref. [9] by taking into account that #, has to be an integer,
but that does not change the O(d /n?) scaling with d.

B. Gradient-free minimization with CMA-ES

Our GFM direct estimation scheme accommodates the use
of any GFM algorithm. The efficiency of the GFM algo-
rithm is of crucial importance in the present context, but
other considerations such as ease of coding and number of
tuning parameters can also affect one’s choice. There are
many known GFM algorithms, including the downhill sim-
plex method [12,13], the directional direct search [14—16], the
stochastic method [17,18], and the covariance matrix adap-
tation evolution strategy [19-22] (CMA-ES), among others.
The downhill simplex method is arguably the most well-
studied one, but may not perform well in high-dimensional
problems [23]. Trying out a few methods on our problem,
we found CMA-ES to work well, converging more quickly
than the downhill simplex method in our problem instances,
with more stable performance than the directional direct
search, and having fewer tuning parameters than the stochastic
method. We thus focus on CMA-ES in our numerical exam-
ples below. We emphasize that a different user can choose a
different GFM algorithm and observe a different efficiency
performance; therein lies the potential for improvement be-
yond what we report here, with more efficient GFM methods.

Here, we provide some pertinent details of the CMA-
ES algorithm, referring the reader to the original papers
(Refs. [19-22]) for further explanation. We pay special atten-
tion to how we choose the stopping criteria that terminates
the CMA-ES algorithm, as they are crucial for attaining the
desired accuracy for Fiyy.

To implement the CMA-ES algorithm, we parametrize
the domain space, the d-dimensional Hilbert space of pure
(n-qubit) states, as ¥ = ££7/tr(££7), where £ is the complex
column vector,

0= (1 +ily, b3+ ily, ... Loy 1 +ily)". (7)

The domain space is 2d-dimensional, but there is a single
extra parameter—the trace of v, constrained to be 1—when
regarded as a parametrization for 1. This extra parameter does
no harm to the minimization and, in fact, we observe this
2d-parameter approach to work better for CMA-ES in our
numerical examples than an alternative (2d — 1)-dimensional
parametrization with spherical coordinates.

In the kth iterative step of the CMA-ES algorithm,

a set of A points in the domain space, L® =
{e® = (Eg‘i, fo‘%, cees E(k;d) } _,» is drawn from the normal
distribution,

(O ~m® 1 o®N©O,cP) fora=1,...,%, (8)

where m®, ¢®_and C® are the mean, step-size, and covari-
ance matrix, respectively, for the kth step. At the initialization
step, m! is set as a Haar-random pure state, CV) is set equal
to the identity matrix, and ¢! is set to be 0.3. m! is set to
be a Haar-random pure state to reflect our lack of knowledge
of the state which attains the minimum value of fidelity. We
observed empirically that the performance remains roughly
the same even if we increase or decrease ¢! by an order
of magnitude. As long as o) is not set to be too large or
too small, the performance will not be affected too much. For
the case with many local minima, choosing a larger value of
o " might increase the chance of finding the global minimum.
The fidelity value f* = f(y0), for ¥* built from X, is
estimated using the DTFE scheme for each ¢%) € L®. The
points are then ranked according to the £*) values, with ¢*)
having the ath smallest value of f, i.e., f (w(k) <f (w(k)

<f (w(k)) The mean for the normal distribution is then
updated by the weighted average,

m D = Z walyy), ©)

where w; > 0 and p < A. The step-size and covariance ma-
trix are also updated according to rules based on the ranking
of the f values. Further details of the algorithm, as well as the
appropriate choice of parameters, can be found in Ref. [24].

In effect, the updates of m®, ¢®, and C® move the
“region of interest” within the domain space in the direction
of smaller f values, in correspondence with our goal of
minimizing f. In the next iterative step, we draw the domain
points L**D from the updated region of interest and continue
the move towards small f values. This continues until the
stopping criteria (more on these below) are met. Our estimate
for Fpin, for one run of CMA-ES, is then the fidelity for the
best (smallest f) point found in the final iterative step, £\ .
Each run of the CMA-ES algorithm returns an estimate of a
local minimum value for f; the entire procedure is repeated
sufficiently many times, with different initial conditions, to
have confidence that one of those local minima is the global
minimum. We estimate the number of repeats needed, for a
95% chance of obtaining the global minimum, using random
channels in our numerical simulation (see the numerical ex-
amples in Sec. IV B).

To determine when to stop the CMA-ES descent, we
calculate two quantities in each iterative step. The first is the
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FIG. 2. Diagrammatic representation of the stopping criteria
used in the GFM scheme. See main text for a description of the
various quantities.

range of fidelities for the current set of sample points L*,
Af® = max {ﬁfk)} — min {fa(k)}. (10)
a a

The second is

(k) (k)
Vit = 2ﬂ@>f’ (1

where £ is the centroid of L®, and £® is the corresponding
fidelity. V f® can be taken as an estimation of the magnitude
of the gradient at £®). The stopping criteria are then imposed
adaptively to accommodate the variety of possible behaviors
of the descent function f(v) for different noisy channels. We
set an initial threshold g'!) for the gradient estimate V f(!). The
target Fi, accuracy is €, as before. In subsequent iterative
steps, if Vf® > ¢®) we retain the gradient threshold level,
i.e., set g&*D = ¢® and continue with the next iterative step.
If, instead, Vf® < ¢® but Af® > €, we halve the gradi-
ent threshold, i.e., set g(k“) = g(k) /2, before taking the next
iterative step. If V% < ¢® and A f® < ¢, the algorithm is
terminated. A schematic of the stopping criteria is given in
Fig. 2.

The rationale for the adaptive stopping criteria is as fol-
lows. The algorithm should terminate when it gets to a sta-
tionary point, a minimum, where both the gradient and the
range of fidelity values in the set of sample points are small.
That the range is small is demanded by our set target accuracy;
that the gradient is small enough is needed to ensure that
we have arrived at the minimum value. If we know the f
function, requiring the gradient alone to be small enough
would also guarantee that the range is small, as the sample
points are picked from a local region around the current
position. However, since we do not have information about
f(), we also do not know how small a gradient threshold
is needed for sufficient convergence in the range. Instead, the
gradient threshold has to be adjusted adaptively according to
the noise channel at hand. We make use of the range of the
fidelity values to judge whether the current gradient threshold

is sufficiently stringent to ensure that we have arrived at the
minimum point. If the gradient is below the set threshold, but
the range is still beyond €, this indicates that our gradient
criterion is simply not stringent enough; g® is thus halved
and the iteration continues.

Note that the value of initial gradient threshold g'" has to
be prechosen according to the expected channel distribution
and the target ¢ value, to prevent early termination of the
algorithm. In our numerical examples, the value of g\ was
chosen, for each distribution of n-qubit chann% so that the
probability (over the channel distribution) that |Fiui, — Finin| <
€ is around 0.95, with € = 0.01, with the 0.95 judged from
numerical simulations using a number of trial true channels.

There is one more important detail that has to be addressed:
the accuracy of the DTFE procedure needed for the CMA-
ES algorithm, as quantified by the § and n parameters of
Sec. II A. The DTFE, with a given number of copies of the
noisy state, estimates f (i) only to a certain accuracy. If the
DTFE accuracy is set too high, the resource cost of our GFM
direct estimation scheme will become very high; if it is set too
low, the CMA-ES algorithm may not converge to the correct
minimum value, if it converges at all. CMA-ES, like many
evolutionary algorithms of a similar flavor, is relatively robust
to noise in function evaluations [25], but proper handling of
the accuracy of the function evaluation is still needed. In our
numerical examples, we set § = 0.05 in our DTFE subroutine
and update the needed 1 value in the kth iteration of the CMA-
ES according to the uncertainty handling algorithm [26,27]
described next.

The CMA-ES update rule of Eq. (9) is based on the ranking
of the f values. This means that noisy function evaluation
will not affect it as long as the inaccuracies are not large
enough to change the f ranking. One can judge whether
the function evaluation is sufficiently accurate by checking
for rank changes after reevaluations of the function. In our
specific context, reevaluation of f(i) refers to repeating the
DTFE procedure with the same parameters, to get a second
estimate of the value of f(i) for a given target state .
The inherent randomness of the DTFE procedure will yield
different values, with larger variations from fewer number of
uses of the channels, and hence more inaccurate evaluation
of f. We follow the uncertainty handling algorithm proposed
in [26,27]. At each iterative step k, we reevaluate f(v,) for
each v, built from ¢} € L&), calculate the rank changes after
the reevaluations, compute a measure of the uncertainty level,
and adjust the accuracy of the DTFE procedure as needed.
Specifically, we carry out the following steps:

Uncertainty handling algorithm.

(1) For each L®, compute f for each f(ak) e L® twice.
Denote the two values obtained as X and £©).

(2) For each a=1,...,A, compute the rank change
AR® = |R(f®)) — R(f("))| — 1, where R(f®) and R(f("’)
are the ranks of % and f Flk) , respectively, in the combined
set (£, fY_,.

(3) Compute the uncertainty level,

A

S0 = % Y {2ARP —my[R(FP) -

a=1

— mo[R(fX) — H(fP

H(f~ 1]

— ] (12)
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where H(-) is the step function and my(R) is the (500)-th
percentile of all possible rank changes (given by the set
{It—=R|,|12—R|,...,|2x — 1 — R}}) for a given rank R.

(4) If s© > 0, increase the accuracy in DTFE in the (k +
1)-th iteration by setting n**D = an®, with 0 < o < 1. If
s® <0, set p*+D = n® /g, _

(5)Fora=1,...,x set f& = 1(f0 4+ f0),

In our numerical examples, § = 0.7 and o =
found to be good choices.

were

Sl-

II1. QPT FIDELITY ESTIMATION

The performance of our GFM direct estimation scheme
has to be compared with the standard alternative of quantum
process tomography (QPT), whereby the full process matrix
of the unknown channel £ is first estimated, and then the
Fhin value is numerically computed from the obtained process
matrix. For completeness, we remind the reader of a few
aspects of QPT important for our work; of course, many
textbooks and papers are available on the subject (see, for
example, Ref. [28]).

QPT attempts to reconstruct the full description of an un-
known quantum channel (or process) £ from a finite number
of uses of the channel. A chosen set of states {po;} is sent in
as inputs to the channel, and state tomography is done on
the outputs of the channel, using a measurement (a positive
operator-valued measure, or POVM) {I1,}. The probability of
getting outcome Iy if the input state p; was sent is given by
the Born rule,

Pre = [T E(pi)]. (13)

One estimates the values of the py,’s from the experiment
using the channel N times for each input state p;, amounting
to a total of N =), Nj uses of the channel. The sets {o}
and {I1,} are chosen to be informationally complete, i.e., there
is a one-to-one mapping between the py,’s and the quantum
channel £. Once we have the estimate for {py.}, we apply the
mapping to get an estimate for £.

In our numerical examples below, we used a particular
choice of {p} and {II,}, namely, the product tetrahedron
states and the product tetrahedron measurement. The set of n-
qubit product tetrahedron states is the pure states ¥y, x,.. k, =
Vi, ® Y, - - - @ Y, with each ¥ a single-qubit state written
in the Bloch-sphere representation as

1/,/(:%(]1 +a;-0), k=1,2,3,and4, (14)

where the four a;s are three-dimensional unit vectors sub-
tending a tetrahedron in the Bloch sphere [29], and o is the
vector of Pauli operators. The product tetrahedron measure-
ment is also defined in terms of these tetrahedron states:
H@lygz _____ 0, = H(g] ® Hg2 L. ® H[ﬂ, with each H[ = %1//[, for
£ =1,2,3, and 4. The tetrahedron states and measurements
form an informationally complete QPT scheme. For n qubits,
the scheme requires 42" different settings of input state and
output measurement. Owing to the tetrahedron geometry, this
scheme uses the minimal number of different input states and
measurement outcomes in a symmetric way.

The data from the QPT experiment consist of a sequence
of detector clicks, which we summarize into {rn;,}, with n
being the number of clicks in the detector for I, for input

state o, where k, £ = 1,2, ..., 4" The total number of uses
of the channel is N = )", , ng. To reconstruct the channel £
from the data, we first do linear inversion, i.e., solving for £
(using the Choi-state representation) by replacing, in the Born
rule given by Eq. (13), px, with the relative frequency ng,/N.
This does not guarantee that the £ obtained from the linear
inversion will be a valid, i.e., completely positive, channel.
Complete positivity is then enforced by projecting the solution
from linear inversion onto the nearest CPTP map using the
algorithm of Ref. [30], thereby giving us an estimate £ of the
channel. The minimum fidelity Fy,, our quantity of interest,
is then estimated by numerically minimizing F (v, £(y)) over
Y, with standard conjugate-gradient methods.

We want to obtain an estimate of Fy;, that is within €
of the true value. The accuracy of Fy, is controlled by the
accuracy of the estimate £—a better estimate of £, obtained
with a larger N, will give a more accurate estimate of Fy,. A
priori, we do not know the N needed to attain the specified
accuracy on Fp;,. That depends on the unknown channel £.
For a fair comparison with our GFM scheme, we need N just
large enough so that Fy,j, attains the desired accuracy. We thus
increase N slowly and look for convergent behavior. See Fig. 1
for the summary of the scheme.

We begin with a small number of uses of the channel N to
estimate £ and then Fy,. In the next iteration, we double the
number of uses by measuring a further N; uses, combining the
obtained data with that from the previous iteration to obtain a
second estimate of Fi.;,. In subsequent iterations, the amount
of data used to estimate Fpj, is doubled each time by doubling
the number of uses of the channel. We continue the iteration,
obtaining (hopefully) more and more accurate estimates of
Fin until both stopping criteria are met. The first requires
that the error bar &*¥)—estimated through bootstrapping of
the obtained data—of Fp;, is smaller than 2¢. The second
criterion demands that the change of Fp,;, from the previous
iteration (with half the number of channel uses) is smaller than
some threshold gyes- A schematic of the stopping criteria is
given in Fig. 3.

Note that despite the similarity to our GFM approach
where the procedure was also terminated according to range
and gradient criteria, the reason why a gradient criterion is
needed here for QPT is rather different. The F;, estimation
from QPT was observed in our numerical investigations to
be biased, usually underestimating the Fi,;, unless N is large
enough. Similar to how we chose our gV values for the GFM
scheme, suitable values of g5, different for different number
of qubits and € values, were chosen by running tests for 100
randomly chosen trial channels and setting gres such that the
Fin value is within the desired accuracy for 95% of the test
channels.

IV. PERFORMANCE OF OUR SCHEME

How well does our GFM scheme perform, in terms of the
number of uses of the channel, compared with the alternative
using QPT fidelity estimation? We are interested, in particular,
with the scaling of the resource cost with the number of qubits,
for fixed target precision €. The resource cost of QPT is well
known to scale poorly with the dimension; does our scheme
do better in that respect?

022410-6



DIRECT ESTIMATION OF MINIMUM GATE FIDELITY

PHYSICAL REVIEW A 102, 022410 (2020)
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l Yes

Stop

FIG. 3. Diagrammatic representation of the stopping criteria
used in the QPT fidelity estimation. See main text for a description
of the various quantities.

Intuitively, one would expect our GFM scheme to outper-
form QPT fidelity estimation. Our scheme directly estimates
the one quantity of interest, Fi,;,, while QPT first estimates the
full process matrix, which contains all information about the
channel, and then estimates Fp,,, discarding the rest of the
gathered information. Our minimalistic approach should thus
win over QPT. Indeed, resource estimates suggest this, as we
explain below. However, our numerical examples, which take
into full account the complexities of both schemes, as well as
the particular class of channels considered, tell a somewhat
different story. Below, we first discuss resource estimates
to give some indication of potential performance and then
describe the numerical comparison obtained from simulations
of two specific classes of noise channels.

A. Resource estimates

We can gain some insights into the possible performance
by considering known theoretical bounds on the various com-
ponents of our scheme as well as on QPT. We begin with QPT.
A general scaling law for the resource cost of quantum state
tomography was derived in Refs. [7,8]: O(dr?/€’?) number
of copies are needed to estimate the density operator p of
a d-dimensional system to accuracy €', as measured by the
trace-distance deviation from the true state. r is the rank of p.
The channel-state duality via the Choi-Jamiotkowski isomor-
phism [31,32] allows us to apply this result directly to QPT.
Specifically, a d-dimensional quantum channel corresponds to
a d?-dimensional Choi state. Further assuming that the Choi
state is full rank (supposing we have no reason to assume
otherwise), we see that the bound for the resource cost of QPT
becomes O(d®/e’?) uses of the quantum channel, to estimate
the Choi state within €’ (trace) distance from that of the true
channel.

We are, however, interested in the accuracy of Fp;,, not in
the Choi-state trace distance. Accurate reconstruction of the
Choi state of the channel, of course, assures that the estimate

of Fin will be accurate as well. Specifically, we can show a
relationship between the deviation in minimum fidelity and
the Choi-state trace distance (see Appendix A),

|Fin — Funin] < 2dlper — pellus 15)

for the Choi states pg and pg of two arbitrary channels £
and &', respectively, where Fn, and F. are the minimum
fidelity of the channels £ and &', respectively, and |M ||, =
%tr(x/ MTM) denotes the trace norm. The factor of d in the
first term on the right-hand side of Eq. (15) is unavoidable; in
fact, there exist (see Appendix A) one-parameter families of
channels £ and £’ such that |F. — Fuin| = d|lpg — pellir-

To attain accuracy € for F,, i.e., Im — Foin] < €,
Eq. (15) indicates that it is sufficient that the trace-distance ac-
curacy of the QPT scheme satisfies ||pg — pglle < €, where
€’ = €/(2d) and pg is the reconstructed Choi state from QPT.
This yields a resource cost of O(d®/(e/d)*) = O(d®/€?), i.e.,
O(d®) uses of the channel for fixed €, an altogether prohibitive
scaling.

Next, we look at the resource estimates for our GFM
scheme. Our two main ingredients, the DTFE scheme and the
chosen GFM algorithm, directly determine the resource cost.
The efficiency of the chosen GFM algorithm determines the
number of function evaluations needed to arrive at the min-
imum point; the efficiency of the DTFE scheme determines
how many uses of the channel are needed for each function
evaluation to obtain an estimate of the required accuracy. For
the latter, Ref. [9] gives O(d/n?) for estimating the target
fidelity to an accuracy 7. We cannot, however, directly use
this estimate. As explained earlier, in our GFM scheme, 7 is
not a fixed value, but is a quantity that is adjusted as the GFM
iteration proceeds. We thus also need to consider possible
dimensional dependence of 7. In all our numerical examples,
we observe that n ~ 1/d, for the n values used in the course of
the iterations, for Fin;, accuracy € = 0.01. Using this empirical
estimate, we thus have that each use of the DTFE subroutine
requires O(d>) uses of the channel.

For a GFM algorithm, there are generally two aspects to
consider when estimating the resource cost: (i) the number of
function evaluations needed in the course of the descent to
a local minimum; (ii) the number of repeats of the descent
to obtain the global minimum with high confidence. In our
numerical examples fixed at € = 0.01, we observe that only
a constant, d-independent number of repeats was needed to
arrive at the global minimum with high confidence [33].
We thus disregard aspect (ii) in our considerations of the
resource cost. For aspect (i), the CMA-ES algorithm has been
observed empirically [21] to require O(d) to 0(d?) function
evaluations in total to attain a fixed accuracy of the extremum
function value. Combining this with the fact that each function
evaluation invokes the DTFE scheme that requires 0(d?) uses
of the channel, we see that our scheme requires o@d*) to
O(d’) channel uses, a possible improvement over QPT fidelity
estimation.

B. Numerical examples

While resource estimates can provide initial clues to the
performance of a scheme, a more accurate test comes from
numerical simulations of the scheme. Numerical tests, in

022410-7



LU, SIM, SUZUKI, ENGLERT, AND NG

PHYSICAL REVIEW A 102, 022410 (2020)

particular, are able to give indications of variations in perfor-
mance for different classes of channels, an aspect often not
easily captured in a theoretical analysis. In this section, we
present our numerical comparisons of the performance of our
GFM scheme with that of QPT fidelity estimation to estimate
the minimum fidelity for channels on one to five qubits.

The test channels used in our numerical simulations are
drawn from two commonly encountered classes of random
channels. It is possible to construct specific channels where
one of the schemes outperforms the other. However, these
examples are artificial and seldom relevant in practice. The
first class, which we label as Class-HS, comprises channels
chosen randomly according to the Hilbert-Schmidt measure
on the space of quantum channels [34]. To sample from
this class, Haar-random unitary matrices U are chosen on a
d?-dimensional Hilbert space, considered as the space of the
system with an equal-dimensional ancilla A, and the channel
is defined as £(-) = tra[U (- @ ¥a)U ], for ¥ra a pure state on
A. This first class of channels is a well-studied class used in
many discussions of generic properties of quantum channels.

The second class, which we label as Class-PA, imitates
noise channels observed in many quantum experiments today:
n-qubit weak noise channels composed of a random Pauli
channel followed by a random amplitude-damping channel.
Here, the Pauli channel is Epyyi(-) = ZZ; PiWi oWy, ford =
2" with W a tensor-product Pauli operator and {p;} a proba-
bility distribution. The random Pauli channel is generated by
drawing numbers g3, g3, . . ., gz uniformly from a (d* — 2)-
simplex, and then setting p, = ugqy, fork = 2,3, ..., d?, with
u uniformly randomly chosen from the range 0O to 0.1, and
pr=1- ZZ; pk- The upper limit of 0.1 on u ensures that
we have a weak (i.e., close to the identity) Pauli channel. The

amplitude-damping channel is Eap(-) = Zf;(l) Eﬂ,~(~)E;, with

d—1
Eo= Y JT=vlyW;l,
j=0

and E;= Jyilo)(¥;l, j=12,....d—1, (16)

where Yo =0, y1 = 0.1, ¥, 3, ... Y4— are uniformly ran-
domly chosen from the range 0 and 0.1, and {y j}‘;;é is a Haar-
random basis for the system Hilbert space. The amplitude-
damping channel models population decay of the n-qubit
system towards some |y) state. Physically, |¢) is typically
the energetic ground state of the system, which may or may
not be aligned with the chosen Pauli axes directions.

In each numerical experiment, we randomly (from the
chosen class of channels) choose an n-qubit channel and esti-
mate Fi, using our GFM scheme and, separately, using QPT
fidelity estimation. The target accuracy for Fp., is set to € =
0.01. The experiment is repeated 100 times (i.e., 100 different
channels) for a fixed channel class and fixed n. The tuning
parameters, namely, the parameters in the CMA-ES algorithm
and the DTFE procedure, and those in the stopping criteria
for the GFM scheme and the QPT fidelity estimation scheme
are prechosen for each channel class and n (see Sec. II) and
fixed throughout the 100 experiments. The histograms for the
experiments are given in Fig. 4.
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FIG. 4. The total number of channel uses for our GFM scheme
and for QPT fidelity estimation for n qubits and fixed target Fiy,
accuracy of € = 0.01. Two classes of random channels were used:
(a) Class-HS, and (b) Class-PA (see main text). Each histogram is
generated from 100 randomly chosen channels, with the same 100
channels used for both schemes. The medians are indicated by the
arrows; the gray bars mark the height of 10 counts. The numbers on
the right (top number for GFM, bottom for QPT) of the histograms
give the number of channels, out of 100, for which the estimated
Fiin 1s within the desired accuracy. The stopping criteria are adjusted
so that these numbers are around 95. The scaling of the number
of channel uses with the dimension d = 2" is observed, using the
medians of the histograms, as (a) Class-HS: O(d*?) for QPT and
0(d*7) for GFM; and (b) Class-PA: O(d*?®) for QPT and O(d>*) for
GFM.
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The numerical experiments tell a rather different story than
the resource estimates of the previous section. The most strik-
ing feature of Fig. 4 is that QPT fidelity estimation requires
fewer uses of the channel than our GFM scheme, at least
for up to the tested five-qubit situation. In terms of scaling
with the dimension of the system, the number of uses of the
channel for our GFM scheme is about O(d?), not far from the
resource estimates; that for QPT is, however, closer to O(d*),
rather than the O(d®) behavior of the resource estimates.
Overall, the numerics suggest that our GFM scheme shows
some advantage over QPT in terms of scaling with the size
of the system, with a larger advantage for Class-HS than
for Class-PA (see Fig. 4). However, when the system size is
small, i.e., the case of practical interest in the near future,
QPT outperforms our scheme in actual number of uses of the
channel.

One possible reason behind the significant difference be-
tween the observed numerical scaling and the resource esti-
mates on the number of channel uses is that the inequality
relation in Eq. (15) merely provides an upper bound on the
Frin deviation. Given a true channel £ and its estimate £ from
QPT, the deviation in minimum fidelity of £ and £ is typically
much smaller than the upper bound indicated in Eq. (15).
This is particularly true for the two classes of channels in our
numerical examples, as we observed empirically. Therefore,
the use of Eq. (15) grossly overestimates how stringent we
need to be in the trace-distance deviation to achieve a desired
fidelity deviation. This highlights the importance of directly
incorporating the desired figure of merit—the minimum fi-
delity in our case—into the QPT scheme, using it within the
stopping criteria, rather than imposing a target accuracy on the
deviation of the full process matrix.

Note that the spread in the number of channel uses visible
in Fig. 4 is not solely due to our random choice of channels.
The fluctuations in the data (and hence the final estimated F;,
values) for each run of both schemes also contribute to the
observed spread. The histograms shown in Fig. 4 show only
one run per scheme per random channel. Additional numerical
studies indicate that if each procedure were repeated 100 times
on the same channel, the spread in the number of channel uses
would be roughly as large as what is seen in Fig. 4. Also, note
that the gaps in the histograms for the QPT fidelity estimation
in Fig. 4 (blue bars) are due to our choices of N, the base
number of channel uses, subsequently doubled in each round
of the iterative procedure.

A further remark concerns the resource scaling of our
GFM scheme for Class-HS. Observe in Fig. 4(a) that we need
0(d*") channel uses for our scheme, a more favorable scaling
than the O(d*?) of QPT fidelity estimation. In fact, we suspect
a further slowdown in the increase in channel uses with d
beyond five qubits for our scheme, gaining further advantage
over QPT fidelity estimation. This is because, numerically, we
observe that for a typical channel from Class-HS, the range
of fidelity values over all pure states shrinks logarithmically
as d increases. This means that for large d and fixed target
accuracy for the estimation of F,, we only need to pick any
pure state ¥, estimate f(y) using the DTFE scheme, and that
is already close to the true F;, value, even without further
minimization using the GFM algorithm. We thus expect the
number of uses of the channel for our GFM scheme to be

much reduced in that case. Note that this reduction in the
fidelity range is not observed for Class-PA.

As the classical computational resource remains one of
the limiting factors of tomography, it is also important to
compare the two schemes in this aspect. The classical com-
putational resource cost of the GFM scheme is estimated
to be O(d”). For the QPT fidelity estimation scheme, the
estimated classical computational resource cost is at least
0(d®). See Appendix B for the discussion. In this aspect, the
GFM scheme has better performance compared with the QPT
fidelity estimation scheme.

V. CONCLUSION

We have explored two different direct schemes for esti-
mating the minimum gate fidelity. The GFM scheme presents
an interesting hybrid application of numerical GFM algo-
rithms together with the experimental procedure of direct
target fidelity estimation. We compared this to the alternative
approach of QPT fidelity estimation, a key difference of which
from standard QPT procedures is the direct incorporation
of the quantity of interest as the stopping criterion in the
iteration. Resource estimates suggest an extremely high cost
for QPT fidelity estimation, with a scaling for O(d®) gate
uses, compared with O(d*) for the GFM approach. This large
difference in performance, however, was not seen for the nu-
merical tests carried out on specific classes of noise channels,
with both schemes showing a gate-use scaling closer to O(d*).
This reminds us of the need to examine the performance of
every procedure for the particular context at hand, in addition
to general results that apply in all situations.

In practice, one could consider using either scheme. QPT
fidelity estimation has the advantage that the QPT experiment
can be easier to perform, using familiar measurement setups.
Its performance, however, appears limited to O(d*) gate uses
(for our specific numerical examples) to achieve an estimate
of the minimum fidelity of a specified accuracy. On the other
hand, while the current performance in our numerical exam-
ples is also O(d*), the GFM approach presents a potential
for future improvement with an increase in the efficiency of
the numerical GFM scheme used. The GFM approach is also
more efficient in terms of classical computational resource
cost. The downside, though, is that the GFM scheme, with
the need for preparing arbitrary input states suggested by the
GFM iteration, can be more difficult to implement experimen-
tally. That may, nevertheless, be well worth the effort if the
number of gate uses can be significantly lowered for large d.
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APPENDIX A: DERIVATION OF EQ. (15)

Here, we explain the steps leading to Eq. (15) which relates
|E. — Fminl to |lpgr — pelle. We are concerned with two
arbitrary CPTP channels, £ and £’. The Choi state of £ is

022410-9



LU, SIM, SUZUKI, ENGLERT, AND NG

PHYSICAL REVIEW A 102, 022410 (2020)

denoted as pg = (1 ® &£)(P), where ® = |D)(P| with |D) =
\/%7 Z;j:l |i)|i), a specific choice of a maximally entangled
bipartite state. The fidelity of state |1) under the action of £

is Fe(Y) = F([Y), EW)) = (Y |EW)IY), and the minimum
fidelity Fi,i, is attained by state |Y¢). Analogous definitions
apply for the channel &', with Choi state pg/ and minimum
fidelity F,. , attained by state |/¢/).

We begin with the fidelity difference, and employ the
triangle inequality,

|F/ _Fmin|

= |Fe(Ye) — Fe(Ye)l
= 3|Fe(Ye) — Fe(Ye) + Fe(Ye) — Fe(Ye)
+ Fe(Ye) — Fe(Ye) + Fo(Ye) — Fe(Ye)l
< 51Fe(Ye) — Fe(Ye)| + 31Fe (Ye) — Fe(Ye)
+ 3|Fe(Ye) — Fe (W)l + 5|Fe(We) — Fe(Ye)
= 1|Fe(Ye) — Fe(Ye)| + 31Fe(We) — Fe ()l
+ 3[Fe(We) — Fe(Ye)] + 3[Fe(Ye) — Fe(Yre)]
< 3|Fe(We) = Fe(Yen| + 51Fe (W) — Fe (e )
+ | Fe (Ye) — Fe(Ye)l + 3|Fer(Ye) — Fe(er)
= |Fe(Ye) — Fe(We)l + [Fe(Ye) — Fe(Ye)l. (Al

Above, we noted that Fe(¥g) > Fe(Ye) and Fe(Ye) >
Fe/(Yg) since Fe and Fg attain their minimum values on ¢
and ¢/, respectively.

Now, straightforward calculation tells us that Fr(y) =
d(Y|(¥|pr|¥)|¥) for any state ), a CPTP channel F, and
its associated Choi state pr. Here, |$) is a state associated
with |¢) by the Choi-Jamiotkowski isomorphism (see, for
example, Ref. [35], Sec. II for further explanation). Then, for
any state |,

|Fer(¥) — Fe(¥)| = d(¥ (¥ |(per — pe)l¥) )

< d11|13>x(\lf|(pg/ — pe)IV). (A2)
We can relate this to the trace distance |pg — pelle =
%ZiMil, where A;’s are the eigenvalues of pg — pg.
Since pg — pe is traceless, i.e., ZiA[:O, we  know
that YA =300, where AP and A7) are,
respectively, the positive and negative eigenvalues of
per — pe. Hence, llog = pelle = XM = 2071 >
maxuy (¥V|(per — pe)|W), so that we have

|Fer(Y) — Fe(W)l < dllper — pe -

Applying this inequality to the two terms in the last line of
Eq. (A1), we find

|Fr:11n — Foinl < 2d|lpg — pellers

yielding the inequality of Eq. (15).

The factor of d on the right-hand side is unavoidable: Let
D(-) =tr(-)1/d denote the d-dimensional erasure channel,
and let D'(-) = D(-) — nZ{0|(-)|0), for Z = |0)(0] — |1)(1],
and |0) and |1) are orthonormal states. Let Z denote the
identity map. Then, for any p € [0,1], £ = (1 — p)Z + pD
and & = (1 — p)Z + pD’ saturate the inequality Eq. (A4), up

(A3)

(A4)

to a constant factor of 2: |F, — Fnin| = d|lper — pellw, for
these two maps. Small p values give channels that describe
weak noise, the case of interest in this work.

APPENDIX B: ESTIMATION OF CLASSICAL
COMPUTATIONAL RESOURCE COST

In each iteration of the GFM scheme, the classical com-
putational resource is spent on computing fidelity values with
the DTFE scheme, followed by the proposal of the next set of
states with the CMA-ES algorithm. To estimate a single value
of fidelity using the DTFE scheme, one would compute the
average of X over d? bases [see Eq. (3)]. For each basis, to
estimate the value of X from experimental data, one would
take an average over the number of different outcomes, which
is bounded by d. Therefore, the computational complexity
of the DTFE scheme is O(d?). According to Ref. [22], the
computational complexity of each iteration of the CMA-ES
algorithm is O(d?). Since the required number of function
evaluations is observed empirically to be O(d) to O(d?) [21],
the classical computational resource cost of the GFM scheme
is estimated to be O(d).

The QPT fidelity estimation scheme is composed of three
computational tasks, i.e., linear inversion, projection of the
solution from linear inversion to the nearest CPTP map, and
numerical minimization of fidelity of the reconstructed chan-
nel. In linear inversion, one tries to invert a system of linear
equations, Ax = f. Here, x is a d* x 1 column vector of the
parameters of the channel. A is a m x d* matrix determined
by the input states and measurements, where m denotes the
total number of outcomes. For the product tetrahedron input
states and measurements used in our scheme, m = d*. f is
a m x 1 column vector of the relative frequencies of the m
outcomes. Due to the use of product input states and product
measurements in our scheme, the matrix A can be written
as a tensor product of matrices, i.e., A=A QA Q- ®
Ay,. As a result, the computational cost is greatly reduced.
Inverting the 2n matrices, {A;}?", costs O(n). The computa-
tion of A7 f =AT' A ® - ® A} f costs O(nd*) (see
Appendix E of Ref. [36]).

The projection algorithm in Ref. [30] works by projecting
the channel onto CP space and TP space alternatively and iter-
atively. In each iteration, the most computationally expensive
operation is the eigendecomposition of the Choi state, which
has the computational complexity of O(d®). It is, however, not
clear how the number of iterations in the projection algorithm
scales with the dimension. The computational complexity of
the projection algorithm is thus estimated to be at least O(d®).

The numerical minimization of the fidelity of the recon-
structed channel is performed using the conjugate-gradient
algorithm. The calculation of the gradient in each iteration
of the conjugate-gradient algorithm involves a matrix-vector
multiplication which cost O(d*). The observed scaling of
the number of iterations required for the conjugate-gradient
algorithm implemented here is, at most, O(d). Thus, the
computational complexity of the numerical minimization is
O(d). Since the projection algorithm is the most expensive
task among the three computational tasks, the classical com-
putational resource cost of the QPT fidelity estimation scheme
is estimated to be at least O(d®).

022410-10



DIRECT ESTIMATION OF MINIMUM GATE FIDELITY

PHYSICAL REVIEW A 102, 022410 (2020)

[1] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, (London) 574, 505
(2019).

[2] K. Wright et al., Benchmarking an 11-qubit quantum computer,
Nat. Commun. 10, 5464 (2019).

[3] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan,
M. P. da Silva, and R. S. Smith, A quantum-classical cloud
platform optimized for variational hybrid algorithms, Quantum
Sci. Technol. 5, 024003 (2020).

[4] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J.
Baugh, D. G. Cory, and R. Laflamme, Symmetrized char-
acterization of noisy quantum processes, Science 317, 1893
(2007).

[5] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland,
Randomized benchmarking of quantum gates, Phys. Rev. A 77,
012307 (2008).

[6] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Ro-
bust Randomized Benchmarking of Quantum Processes, Phys.
Rev. Lett. 106, 180504 (2011).

[7] R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix
recovery from rank one measurements, Appl. Comput. Harmon.
Anal. 42, 88 (2017).

[8] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, Sample-optimal
tomography of quantum states, IEEE Trans. Inf. Theory 63,
5628 (2017).

[9] S. T. Flammia and Y. K. Liu, Direct Fidelity Estimation
from Few Pauli Measurements, Phys. Rev. Lett. 106, 230501
(2011).

[10] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Practical
Characterization of Quantum Devices without Tomography,
Phys. Rev. Lett. 107, 210404 (2011).

[11] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. (2020), doi: 10.1038/s41567-020-0932-7.

[12] J. A. Nelder and R. Mead, A simplex method for function
minimization, Comput. J. 7, 308 (1965).

[13] S. Singer and S. Singer, Complexity analysis of Nelder-Mead
search iterations, in Proceedings of the First Conference on
Applied Mathematics and Computation, edited by M. Rogina, V.
Hari, N. Limié, and Z. Tutek (PMF Matematicki odjel, Zagreb,
1999).

[14] C. Audet and J. E. Dennis, Analysis of generalized pattern
searches, SIAM J. Optim. 13, 889 (2003).

[15] A. L. Custédio and L. N. Vicente, Using sampling and simplex
derivatives in pattern search methods, SIAM J. Optim. 18, 537
(2007).

[16] A. L. Custédio, H. Rocha, and L. N. Vicente, Incorporating
minimum Frobenius norm models in direct search, Comput.
Optim. Appl. 46, 265 (2010).

[17] Y. Nesterov and V. G. Spokoiny, Random gradient-free mini-
mization of convex functions, Found. Comput. Math. 17, 527
(2017).

[18] S. Ghadimi and G. Lan, Stochastic first- and zeroth-order meth-
ods for nonconvex stochastic programming, SIAM J. Optim. 23,
2341 (2013).

Nature

[19] Z. Li and Q. Zhang, A simple yet efficient evolution strategy for
large-scale black-box optimization, IEEE Trans. Evol. Comput.
22,637 (2018).

[20] I. Loshchilov, A computationally efficient limited memory
CMA-ES for large scale optimization, in Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Com-
putation, edited by C. Igel (ACM, New York, 2014).

[21] N. Hansen and A. Ostermeier, Completely derandomized
self-adaptation in evolution strategies, Evol. Comput. 9, 159
(2001).

[22] R. Ros and N. Hansen, A simple modification in CMA-ES
achieving linear time and space complexity, in Proceedings of
the 10th International Conference on Parallel Problem Solving
from Nature, edited by G. Rudolph ez al. (Springer, Heidelberg,
2008).

[23] V. J. Torczon, Multi-directional search: A direct search al-
gorithm for parallel machines, Ph.D. thesis, Rice University,
Houston, 1989.

[24] N. Hansen, The CMA evolution strategy: A tutorial,
arXiv:1604.00772.

[25] D. V. Armnold, Noisy Optimization with Evolution Strategies
(Kluwer Academic, Boston, 2002).

[26] N. Hansen, A. Niederberger, L. Guzzella, and P. Koumoutsakos,
A method for handling uncertainty in evolutionary optimization
with an application to feedback control of combustion, IEEE
Trans. Evol. Comput. 13, 180 (2009).

[27] V. H. Meisner and C. Igel, Uncertainty handling in evolutionary
direct policy search, in Proceedings of the NIPS-08 Workshop
on Model Uncertainty and Risk in Reinforcement Learning,
Whistler, 2008 (unpublished).

[28] Quantum State Estimation, edited by M. Paris and J. Rehécek,
Lecture Notes in Physics, Vol. 649 (Springer, Heidelberg,
2004).

[29] J. Rehadek, B.-G. Englert, and D. Kaszlikowski, Minimal qubit
tomography, Phys. Rev. A 70, 052321 (2004).

[30] G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, Quan-
tum process tomography via completely positive and trace-
preserving projection, Phys. Rev. A 98, 062336 (2018).

[31] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Algebra Appl. 10, 285 (1975).

[32] A. Jamiotkowski, Linear transformations which preserve trace
and positive semidefiniteness of operators, Rep. Math. Phys. 3,
275 (1972).

[33] For the Class-HS example in Sec. IV B, we observe that the
number of repeats we need for one- to five-qubit systems is
4,7, 3, 1, and 1, respectively. For the Class-PA example in
Sec. IV B, we observe that the number of repeats we need is
1 for one- to five-qubit systems.

[34] W. Bruzda, V. Cappellini, H.-J. Sommers, and K. Zyczkowski,
Random quantum operations, Phys. Lett. A 373, 320 (2009).

[35] J. Y. Sim, J. Suzuki, B.-G. Englert, and H. K. Ng, User-specified
random sampling of quantum channels and its applications,
Phys. Rev. A 101, 022307 (2020).

[36] J. Shang, Z. Zhang, and H. K. Ng, Superfast maximum likeli-
hood reconstruction for quantum tomography, Phys. Rev. A 95,
062336 (2017).

022410-11


https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.1126/science.1145699
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1016/j.acha.2015.07.007
https://doi.org/10.1109/TIT.2017.2719044
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevLett.107.210404
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1137/S1052623400378742
https://doi.org/10.1137/050646706
https://doi.org/10.1007/s10589-009-9283-0
https://doi.org/10.1007/s10208-015-9296-2
https://doi.org/10.1137/120880811
https://doi.org/10.1109/TEVC.2017.2765682
https://doi.org/10.1162/106365601750190398
http://arxiv.org/abs/arXiv:1604.00772
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1103/PhysRevA.70.052321
https://doi.org/10.1103/PhysRevA.98.062336
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/j.physleta.2008.11.043
https://doi.org/10.1103/PhysRevA.101.022307
https://doi.org/10.1103/PhysRevA.95.062336

