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The spectral-density operator ρ̂(ω) = δ(ω − Ĥ ) plays a central role in linear response theory as its expectation
value, the dynamical response function, can be used to compute scattering cross sections. In this work, we
describe a near optimal quantum algorithm providing an approximation to the spectral density with energy
resolution � and error ε using O(

√
log2 (1/ε)[log2 (1/�) + log2 (1/ε)]/�) operations. This is achieved without

using expensive approximations to the time-evolution operator, but instead exploiting qubitization to implement
an approximate Gaussian integral transform of the spectral density. We also describe appropriate error metrics
to assess the quality of the spectral function approximations more generally.
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I. INTRODUCTION

Since the first seminal works of Feynman [1] and Lloyd
[2], quantum computing has been recognized as a possible
avenue to explore quantum dynamics of strongly correlated
many-body systems beyond what is possible with classical
computational tools. Recent progress in Hamiltonian simula-
tion algorithms [3–6] has allowed a dramatic reduction of the
computational cost for applications as diverse as computing
out-of-equilibrium dynamics [7], exclusive scattering cross
sections [8,9], and ground-state energy estimation [10]. Most
of the proposed algorithms still require a number of gates
too large for possible applications on noisy intermediate-scale
quantum (NISQ) devices [11] and more work is required to
bring these costs down (see, e.g., [9] for a recent analysis of
the requirements for neutrino-nucleus scattering).

In the same spirit of the recent work by Somma [12], we
propose in this work a quantum algorithm with near optimal
computational cost (in terms of oracle calls) to study the
problem of spectral-density estimation. In particular, given
a Hermitian operator Ô, the goal of this work is to obtain
an efficient algorithm to approximate the spectral density
operator, ρ̂(ω) = δ(ω − Ô), with δ the Dirac delta function.
Using the eigenstates |k〉 of the operator Ô, we have the
following spectral representation:

ρ̂(ω) =
�∑
k

δ(ω − Ok )|k〉〈k|, (1)

with Ok the eigenvalue for |k〉, and � the total number of
eigenvalues. Without loss of generality, we will consider
normalized operators Ô with ‖Ô‖ � 1 so that the spectrum
is contained in the interval [−1, 1].

One of the most popular applications of the spectral-
density operator is in the theory of linear response, where it
is directly connected with the dynamical response function
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S(ω). More precisely, given a state vector |�〉, we can define
the following response function:

S(ω) = 〈�|ρ̂(ω)|�〉 =
�∑
k

|〈�|k〉|2δ(ω − Ok ). (2)

The response function can be used to compute, among other
things, the energy-resolved inclusive cross section for a scat-
tering process that maps an initial state |	0〉 to the final state
|�〉 = Q̂|	0〉 through the action of the (possibly nonunitary)
vertex operator Q̂. In this case, the relevant operator Ô co-
incides with the Hamiltonian of the physical system, and for
this reason we will often call its eigenvalues “frequencies.”
The technique we describe here is, however, applicable to any
Hermitian operator.

The approach we follow in this work is to consider approx-
imations to the response function obtained through an integral
transform of the type

	K (ν) =
∫

dωK (ν, ω)S(ω) =
�∑
k

|〈�|k〉|2K (ν, Ok ). (3)

The integral kernel K (ν, ω) that defines the transform can also
be used directly as an approximation to the spectral-density
operator: ρ̂K (ν) = K (ν, Ô) ≈ ρ̂(ω = ν). For this to be a good
approximation, the kernel function should be chosen as a
finite-width representation of the Dirac delta function.

We note that the approach of computing response functions
by a direct inversion of integral transforms such as Eq. (3) is
a common strategy in many-body physics. In quantum Monte
Carlo calculations, for instance, it is common to consider the
Laplace kernel K (ω, ν) = exp(−νω) due to its connection
with Euclidean path integrals (see, e.g., [13,14]), but other
alternatives such as the Sumudu [15] and Lorentz [16–18]
transforms have also been considered in the past. The main
difficulty encountered by these methods is the problem that
for any compact kernel function, the inversion of the integral
transform is a numerically ill-posed problem: any errors in
the estimate of 	K will get exponentially amplified by the
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inversion procedure (see, e.g., [19,20]). In this work, we avoid
the problem by directly using the integral transform 	K (ω)
as the approximate reconstruction of the original signal S(ω).
We note at this point that the idea of directly using the
integral transform to extract physical information has been
explored in the past with great success. For example, in [21],
the dipole polarizability αD of 22O was computed using the
coupled cluster method and using a direct mapping between
αD and a Lorentz integral transform of the response function,
and, in [22], the contribution of impurity scattering in the
thermal conductivity in the outer crust of neutron stars was
successfully extracted by mapping it into features of the
Laplace transform of the response.

A possible future extension of our work would be to con-
sider approximate inversion schemes such as the maximum
entropy method [23] to try to reduce the computational cost of
the quantum algorithm at the possible expense of introducing
an uncontrollable error.

The paper is organized as follows. In Sec. II, we first
provide a detailed description of the error metrics that we
use to judge the quality of the approximation in Eq. (3), and
then we summarize the main results of the paper and compare
them to the recent work of Ref. [12], which can be understood
as a particular instance of the method that we propose. We
also provide an argument for the near optimality of both
techniques. We then present two integral kernels: the Fejer
kernel naturally generated using quantum phase estimation
[8,9] (Sec. III) and the Gaussian kernel which allows one
to achieve near optimal scaling of the computational cost
(Sec. IV). We conclude in Sec. V, providing a summary
of our findings and proposing possible avenues for future
improvements. We also provide a pseudocode implementation
in Appendix B.

II. DEFINITIONS AND COMPARISON
TO PREVIOUS WORK

In order to precisely quantify the accuracy of the approx-
imation procedure presented in Sec. I and connect with re-
cent work on quantum algorithms exploring similar problems
[12,24], we now introduce the following definitions.

(a) We will call an integral kernel �-accurate with resolu-
tion � if the following condition holds:

inf
ω0∈[−1,1]

∑∫ ω0+�

ω0−�

dνK (ν, ω0) � 1 − �, (4)

where the symbol
∑∫

indicates an integral when the trans-
formed variable ν is defined over a continuous interval or a
sum if ν is defined on a discrete set.

(b) We will call a distribution 	̃(ω) a β-approximation to
the true distribution 	(ω) with confidence 1 − ηβ if the total
variation is bounded as

δV (	, 	̃) := sup
ω∈[−1,1]

|	(ω) − 	̃(ω)| � β, (5)

with probability P > 1 − ηβ .
(c) If the estimator 	̃K is obtained as a β-approximation

with confidence 1 − ηβ of a �-accurate integral transform 	K

of the response function S(ω) with resolution �, we will call
it a (�,�, β, ηβ )-approximation to the response S.

These definitions are similar to those introduced in the
recent work [24]. In particular, the first definition is similar in
spirit to, but more stringent than, the condition of having res-
olution � and confidence η = (1 − �) (Def. 1 of [24]), while
the second condition is equivalent to the β-approximation
(Def. 3 of [24]).

The reason for these definitions, and the mild departure
from those introduced in Ref. [24], is rooted in the fact
that for a physics application, we are ultimately interested in
frequency observables of the form

Q(S, f ) =
∫ 1

−1
dωS(ω) f (ω) (6)

for some bounded function f . If we estimate the observable
Q using a (�,�, β, ηβ )-approximation 	̃K , we have, in fact,
with confidence 1 − ηβ , the following bound:

|Q(S, f ) − Q(	̃K , f )| � f �
max + 2 fmax� + β fint, (7)

where we have defined the quantities

fmax = sup
ω∈[−1,1]

| f (ω)|, fint =
∫ 1

−1
dω| f (ω)| � 2 fmax, (8)

and the upper bound on the maximum variation,

f �
max = sup

ω∈[−1,1]
sup

x∈[−�,�]
| f (ω + x) − f (ω)|. (9)

A full derivation of this is provided in Appendix A.
At this point, it is important to point out another differ-

ence with Ref. [24]. In our work, the second error metric
β captures both the statistical error coming from estimating
the distribution 	̃K (ω) with a finite number of samples, and
the possible systematic error coming from using an approx-
imation of the quantum circuit needed to obtain the desired
integral transform 	K (ω). In this sense, �-accurate with
resolution � is a property of the kernel function K (ν, ω),
while β-approximation with confidence 1 − ηβ is a property
that characterizes the implementation of the algorithm that
generates the desired integral transform.

Comparison to previous work

The approximation problem that we are trying to solve is
very similar to the quantum eigenvalue estimation problem
(QEEP) considered in Ref. [12]. In this section, we will antic-
ipate the main results of our work and provide a comparison
with the time-series analysis (TSA) algorithm proposed in
Ref. [12]. In particular, we will compare the computational
cost in terms of the number M of oracle calls to a base unitary
WQ, and the total number NS of samples needed to generate
a (�,�, β, ηβ )-approximation to the spectral function S(ω).
In order to simplify the comparison, we will consider here
the limit � = β = ε, which is sensible given the definition
in Eq. (7). Detailed results for the more general case will be
provided in the sections below.

The TSA approach from Ref. [12] starts by decomposing
the frequency domain into N disjoint intervals of size 2�

and then obtaining the response in each of these bins using
the Fourier expansion of the bump function. In light of the
definitions provided above, this can be understood as using
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an integral transform with the kernel function given by the
approximate frequency comb,

K (ν j, ω) =
N∑

j=1

fb(ν j, ω), (10)

where ν j is the central value of the jth frequency bin, and
the function fb is obtained from bump functions and has
support on [ν j − �, ν j + �] only. Due to this property, it is
straightforward to see that this kernel allows one to achieve
accuracies � = 0 in Eq. (4). Note, however, that using � � β

will not help reduce the final error in Eq. (7) (unless fmax �
fint), and in fact here we only require them to both be equal
to ε.

The TSA algorithm requires one to apply the (controlled)
time-evolution operator UO(t ) = exp(−it Ô) for a maximum
time tmax scaling as (see Appendix A of [12])

tmax = O

[
1

�
log2

(
1

ε

)2
]
, (11)

together with a total number of samples scaling as

NS = O

[
1

�3ε2
log2

(
1

ε

)6

log2

(
1

ηβ

)]
, (12)

in order to achieve a (� = 0,�, ε, ηβ )-approximation. Note
that if we require the final approximation over N frequency
to have total error less than ε (as done in [12]), the ε-
dependent logarithmic terms above will include an additional
1/� like the Gaussian integral transform (GIT) (see, also,
Appendix B).

In order to compare these asymptotic scalings with the
bounds provided in our work, while at the same time account
for the unavailable bound on the time-evolution error for
the TSA method, we consider here the situation where we
use the optimal time-evolution scheme of Ref. [4] (which
is based on qubitization [5]) and neglect the mild overhead
needed to improve the precision to the desired level. Using this
implementation, the number of applications of the qubiterate
unitary WQ (see Sec. III for more details) is simply M =
O(tmax).

In this work, we consider two different integral transforms.
The first is associated with the Fejer kernel that is naturally
produced by using the quantum phase estimation (QPE) al-
gorithm [25] to approximate the response as described in
Refs. [8,9]. The second is a Gaussian integral transform (GIT)
obtained using the connection between quantum walks and
Chebyshev polynomials [26]. We will analyze these integral
transforms in detail in the following sections and anticipate
here the main results.

Due to the choice β = � = ε, both the standard Fejer
method of Ref. [8] and the qubitization-based variant from
Ref. [9] have the same asymptotic scaling. We will anticipate
here results for the latter, which can produce a (ε,�, ε, ηβ )-
approximation using

M = O

(
1

�ε

)
and NS = O

[
1

ε2
log2

(
1

ηβ

)]
. (13)

Even though the sample complexity is greatly reduced, for
small target errors ε the gate count of this scheme will be

larger than the estimate obtained from Eq. (11). Despite this,
as described in detail in Sec. III, this scheme could still be
beneficial as it avoids performing an approximation to the
time-evolution operator.

As we will show in more detail in Sec. IV, using the GIT
provides a considerable reduction of the quantum computa-
tional cost (i.e., the gate count) compared to both methods
described above. This comes at the cost of requiring a larger
number of measurements NS than the Fejer-based methods,
but still less or comparable to Eq. (12). In particular, we
will find that a (ε,�, ε, ηβ )-approximation to the response
function requires only

M = O

[
1

�

√
log2

(
1

ε

)
log2

(
1

�ε

)]
(14)

calls to the qubiterate unitary WQ, together with

NS = O

{
1

�3ε2

[
log2

(
1

ε

)
log2

(
1

�ε

)]3/2

log2

(
1

ηβ

)}
(15)

samples. We summarize these estimates in Table I and provide
a pseudocode implementation in Appendix B.

That the quantum query complexity given by Eq. (14)
is almost optimal can be seen by looking at our approach
as a technique to estimate the ground-state energy of some
Hamiltonian as in Ref. [27]. In particular, optimality can be
shown by considering a Hamiltonian with spectral gap (ω1 −
ω0) > 2�, an initial state |�〉 with an overlap on the ground-
state state |〈�|0〉| � ε, and asking for an approximation of
the ground-state energy with probability P > 1 − ε and confi-
dence 1 − ηβ . Using the results from Ref. [27] (Lemmas 3 and
5 and Theorems 8 and 9), we know that this requires at least
M = O[1/� log2(1/ε)] oracle calls to WQ. We can also solve
this problem by considering a (ε,�, ε, ηβ )-approximation 	̃K

to the response S2(ω) = 〈�|ρ̂(ω)|�〉. Our result is then only a
factor O[

√
log2(1/ε) log2(1/�)] away from the optimal result

and provides a quadratic speedup in the logarithmic factors
compared to the TSA scheme of Ref. [12].

III. FEJER KERNEL

The standard quantum phase estimation (QPE) algorithm
[25,28] uses n applications of the (controlled) time-evolution
unitary UO(t ) = exp (−it Ô) and N = 2n ancilla qubits to ap-
proximately diagonalize the “Hamiltonian” operator Ô [29].
As we proposed in Ref. [8], this technique can be used to
perform an integral transform generated by a rescaled Fejer
kernel,

KF (σq, ω, N ) = 1

N2

sin2[Nπ (σq − ω)/2]

sin2[π (σq − ω)/2]
, (16)

where the discrete frequencies σq are defined on a grid with N
points: σk = (2k/N ) − 1 for k = {0, . . . , N − 1}. The integer
parameter N > 1 controls the maximum propagation time tmax

used in QPE as tmax = πN . In this case, ensuring the resulting
integral transform 	F (ω) is �-accurate with resolution � is
equivalent to requiring the probability of measuring a phase
σk with error more than � to be less than �. This probability
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TABLE I. Comparison of the computational cost required to obtain a (ε,�, ε, ηβ )-approximation to the response function using the
time-series analysis (TSA) method of Ref. [12], the Fejer-based methods from Refs. [8,9], and the GIT-based method proposed in this work.
See, also, Appendix B for the asymptotic scaling in a different limit.

Method No. calls to WQ Total no. samples

TSA O
[

1
�

log2

(
1
ε

)2]
O
[

1
�3ε2 log2

(
1
ε

)6
log2

(
1
ηβ

)]
Fejer O

(
1

�ε

)
O
[

1
ε2 log2

(
1
ηβ

)]
GIT O

[
1
�

√
log2

(
1
ε

)
log2

(
1

�ε

)]
O
{

1
�3ε2

[
log2

(
1
ε

)
log2

(
1

�ε

)]3/2
log2

(
1
ηβ

)}

can be bounded using standard techniques (see, e.g., 5.2.1 of
[30]) as

P

(∣∣∣∣k − N

2
(ω + 1)

∣∣∣∣ >
N�

2

)
� 1

N� − 2
, (17)

which then implies we can take the closest power of 2 of

N � 1

�

(
1

�
+ 2

)
, (18)

in order to satisfy Eq. (4). The dependence on the resolu-
tion � is already optimal and the constant factors could be
improved using optimized preparations of the ancilla register
[28]. The scaling with the error � instead could be improved
to N = O[log2(1/�)1/�] in the special situation where the
signal S(ω) is composed of a single-frequency mode by using
schemes such as Kitaev’s original algorithm [31] or the more
efficient Iterative Phase Estimation Algorithm [32]. In the
general case where the number of modes in the response of
Eq. (2) satisfies � � 1, this is not, in general, possible (see,
e.g., [33]). We can now use NS = O(1/β2) samples to produce
the β-approximate estimator 	̃F by collecting a histogram of
the measured frequencies. More precisely, using Hoeffding’s
inequality [34], we find it sufficient to take

NS = 1

2β2
log2

(
2

ηβ

)
, (19)

with ηβ the confidence of the β-approximation.
In general, the time-evolution operator UO(t ) needs to be

approximated with additive error δt , using available quantum
operations, and a proper consideration of this approximation
error is critical for a fair assessment of the overall compu-
tational cost. As discussed in Sec. II, we will consider these
errors as contributions to the total variation given by Eq. (5),
which define the β-approximation. In particular, if we denote
by 	e

F (ω) the transform obtained by using the approximate
time-evolution unitary and 	̃e

F (ω) its finite population esti-
mator, we have

δV
(
	F , 	̃e

F

)
� δV

(
	F ,	e

F

)+ δV
(
	e

F , 	̃e
F

)
. (20)

The second term measures statistical fluctuations and can be
dealt with using, again, the Hoeffding bound, for the first term
instead in Appendix C, we show that

δV
(
	F ,	e

F

)
� log2(N )δt , (21)

with δt an upper bound to the approximation error of the
time-evolution operator for times up to tmax = πN . The finite-
population estimator of the approximate Fejer transform is

then β-accurate with confidence ηβ if

NS = 2

β2
log2

(
2

ηβ

)
, δt �

β

2 log2(N )
. (22)

Using optimal scaling algorithms for time evolution such as
quantum signal processing [4], the total gate count is

M = O

[
1

��
+ log2

(
1

β

)]
, (23)

in terms of oracle queries to the basic quantum subroutine: the
qubiterate WQ. This unitary is defined as

WQ = exp[iỸ arccos(Ô)], (24)

where Ỹ is an isometry defined over a two-dimensional space
for each energy eigenvalue (see [4,5] and the Appendix of
Ref. [10] for a complete derivation). The most important
property of WQ for our purposes is that it can be implemented
exactly and efficiently. It is important to point out that short-
time approximation methods based on the Trotter-Suzuki [35]
expansion are not able to achieve the optimal scaling in
Eq. (23).

A slight modification to this scheme, with the same scaling
but possibly greatly reduced prefactors, can be obtained by
applying the QPE algorithm directly on the qubiterate WQ (see
Ref. [9]). One can easily show that this leads to a modified
Fejer kernel given by

KFQ(σq, ω, N ) = KF (σq, θω, N ) + KF (σq,−θω, N )

2
, (25)

where we have defined cos(θω ) = ω. In order to distinguish
the two peaks at ±θω, we can shift and rescale the excitation
operator Ô so that its spectrum lies in [0,1] only. The needed
resolution in this transformed space (apart from the trivial
factor of 1/2 coming from the rescaling) will need to satisfy

|cos (θω ± �θ ) − cos (θω )| � �

2
, (26)

which amounts to require �θ �
√

1 + � − 1. We then find
that in order to obtain a (�,�, β, ηβ )-approximation to the
response function, the qubitization-based Fejer transform of
Ref. [9] requires the closest power of 2,

M � 2

�θ

(
1

�
+ 2

)
� 4

�

(
1

�
+ 2

)
, (27)

black box invocations of the qubiterate WQ [36], together with
the same number of samples reported in Eq. (19). Despite the
possible slight increase in oracle calls with respect to the time-
evolution-based Fejer scheme presented before, by avoiding

022409-4



SPECTRAL-DENSITY ESTIMATION WITH THE GAUSSIAN … PHYSICAL REVIEW A 102, 022409 (2020)

the overhead in approximating the time-evolution operator
UO(t ), we expect this strategy to require shorter circuit depths
and, at the same time, less cumbersome controlled operations.

In the next section, we consider algorithms with exponen-
tially better dependence on �.

IV. GAUSSIAN KERNEL

We now consider a Gaussian integral transform (GIT)
defined through the following kernel function:

KG(σ, ω,�) = 1√
2π�

exp

[
− (σ − ω)2

2�2

]
, (28)

where � > 0 controls the resolution, and the transformed
frequency σ is defined over the whole real line [37]. The
first step is to determine the conditions for which the approx-
imate response obtained using the GIT is �-accurate with
resolution �. Using the translational invariance of the kernel
KG(σ, ω,�) for σ ∈ R, we can rewrite the condition given by
Eq. (4) in terms of the error function as

1√
2π�

∫ �

−�

dσ exp

(
− σ 2

2�2

)
= erf

(
�√
2�

)
� 1 − �.

(29)
A sufficient condition for this to hold is to choose the kernel

resolution � according to

� � �√
2 log2(1/�)

. (30)

We now move on to find the condition for the GIT to be
β-approximate with confidence ηβ according to Eq. (5). As
we mentioned in Sec. I, this property is directly connected
with the specific implementation of the GIT and the way we
estimate it. Here we consider an approximate implementation
of the Gaussian kernel KG(σ, ω,�) using an expansion in a
set of orthogonal polynomials. Due to its direct connection
with quantum walks [26,38] and the qubitization method
[5], we consider here the basis spanned by the Chebyshev
polynomials Tk . In particular, one can show that if we indicate
with |G〉 the flag state in the ancilla register used for the
block encoding of the excitation operator 〈G|WQ|G〉 = Ô and
entering in the definition of the qubiterate WQ, we have (see
the proof of Lemma 16 of Ref. [26] and Appendix D of
Ref. [38])

W k
Q |G〉 ⊗ |�〉 = |G〉 ⊗ Tk (Ô)|�〉 + |	⊥〉, (31)

with |�〉 the initial state that defines the response function
S(ω) in Eq. (2) and |	⊥〉 not normalized and orthogonal to
the flag state |G〉. The expectation value of the kth Chebyshev
polynomial can then be obtained as

〈�|Tk (Ô)|�〉 = 〈�G|W k
Q |�G〉, (32)

where, for convenience, we have defined |�G〉 := |G〉 ⊗ |�〉.
Note that this procedure is deterministic since we are comput-
ing a single polynomial at a time. An exact representation for
the GIT can be obtained considering first the series expansion
of the Gaussian function,

exp

(
− ω2

2�2

)
=

∞∑
k=0

ak (�)Tk (ω), (33)

and then expanding the integral kernel as

KG(σ, ω,�) = 1√
2π�

∞∑
k=0

ak

(
�

2

)
Tk

(
σ − ω

2

)

=
∞∑

k=0

ck (�, σ )Tk (ω). (34)

The step leading to the second line is necessary to be able to
implement the GIT using qubitization, and the new expansion
coefficients ck can be obtained from the bare ak and polyno-
mials in σ . Explicit expressions for these coefficients can be
found in Eq. (D7) of Appendix D.

In order for this to be useful, we need to truncate the series
given by Eq. (34) at some finite order L. This leads to an
approximate kernel function,

KGL(σ, ω,�) = KG(σ, ω,�) − RL(σ, ω,�), (35)

where we have defined RL to be the approximation error. We
note in passing that such truncated expansions of the kernel
function are routinely used to perform reasonable inversions
of the Lorentzian kernel by neglecting the error term RL as a
way of performing a regularization to the ill-posed problem
[39]. The final approximate integral transform 	GL(ω) is then
obtained as

	GL(ω) =
L∑

k=0

ck (�, σ )〈�G|W k
Q |�G〉. (36)

As described in Sec. II, the approximation error contributes to
the total variation given by Eq. (5) similarly to the approxima-
tion error of the time-evolution operator for the simpler Fejer
transform. As we did in Sec. III, we can decompose the total
variation as

δV (	G, 	̃GL ) � δV (	G,	GL ) + δV (	GL, 	̃GL )

� RL(σ, ω,�) + δV (	GL, 	̃GL ), (37)

where 	G is the exact GIT, 	GL is the approximate integral
transform obtained by truncating the series in Eq. (34) at order
L, and 	̃GL is its finite-population estimator. As we did for the
Fejer kernel above, we will now require that both error terms
be less than β/2 with confidence ηβ . In order to bound the
total statistical error of the finite-population estimator 	̃GL of
the GIT in Eq. (36), and assuming for simplicity the same
number of measurements for each one of the L expectation
values in the expansion, we can take a number of samples
given by

NS = 2L log2

(
2

ηβ

)
max

k={0,...,L}

(
L

|ck|
β

)2

� 2L3

(
1 + 2.2

β

)2

log2

(
2

ηβ

)
, (38)

where we used the upper bound on Eq. (D13) on ck obtained
in Appendix D. Note that for technical reasons explained in
Appendix D, this is valid only after rescaling the operator Ô
by a factor of 2. Since it is possible to also find an appropriate
bound in the general case, we do not correspondingly rescale
the resolution � here.
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The rest of this section will be dedicated to determine an
appropriate value for L to ensure RL � β/2.

In order to find optimal truncation schemes, it is now
convenient to distinguish between two different situations
depending on the desired value β as a function of � and the
resolution �. More precisely, if we define two critical values
βU and βL as follows:

βL = 1

�
exp

(
− 1

�2

)
, βU = 1

�

√
log2(1/�)

2
, (39)

we will try to optimally truncate the polynomial expansion
in Eq. (34) in two regimes, i.e., the asymptotic regime β � βL

and the intermediate regime where the target accuracy satisfies
βL � β � βU . Note that the convention we chose in Sec. II is
compatible with the latter.

As we show in detail in Appendix D [see Eqs. (D21)
and (D30)], we can ensure a truncation error RL � β/2 by
choosing the maximum order L according to the following:

(i) In the asymptotic regime β � βL, we need

Lasy =
⌈

2e

�2
log2

(
1

�

)
+ga

(
�2

e

log2 (6.8/β )

log2 (1/�)

)⌉
−2,

(40)
where, for convenience, we have introduced the function
ga(x) = x/W (x), with W the Lambert W function [40] (see,
also, Appendix D for details).

(ii) In the intermediate regime βL � β � βU , we need

Lint =
⌈

α1

�

√
log2

(
1

�

)
gi

[
α2

�β
log2

(
1

�

)] ⌉
−1, (41)

with α1 � 2.93, α2 � 4.14, while the function gi is

gi(x) = log2 (x) − 1
4 log2[log2(x2)]. (42)

As is apparent from the definition of the truncated GIT
	GL in Eq. (36), this is the maximum required number of
invocations to the qubiterate WQ in a single run since the L
expectation values can be computed in parallel. In order to
have a better understanding of these results and connect to the
discussion in Sec. II, we can write these estimates in terms of
asymptotic scaling as

Lasy = O

{
1

�2
log2

(
1

�

)
+ log2 (1/β )

log2[log2(1/β )]

}
, (43)

for the regime with β � βL; in the second regime case with
βL � β � βU , we instead find

Lint = O

{
1

�

√
log2

(
1

�

)
log2

[
1

�β
log2

(
1

�

)]}
. (44)

Note that in applications of the GIT scheme, the concrete
values for the truncation order L provided above can be much
more useful than the looser bounds given by Eq. (44). Finally
note that as mentioned in Sec. II, the asymptotic regime β �
βL is possibly not directly relevant for the approximate estima-
tion of observables of the form given by Eq. (6), but could still
be helpful in different scenarios. The same argument holds for
the ability of the TSA method of Ref. [12] to achieve � = 0
directly.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied a family of quantum algo-
rithms for the approximate estimation of the spectral-density
operator using ideas from integral transform methods and
applied it to the problem of estimating, with bounded errors,
the dynamical response function S(ω) from linear response
theory. In particular, we find it useful to consider an integral
transform defined by a Gaussian kernel, i.e., the Gaussian in-
tegral transform (GIT). This is in line with the success enjoyed
by another integral transform whose kernel is a representation
of the delta function, i.e., the Lorentz integral transform
(LIT) [16].

Recently, Somma introduced an algorithm to evaluate mul-
tiple eigenvalues based on a time-series analysis [12]. We
show that this technique can be understood in the general
framework of integral transform methods introduced here.
By comparing it with our GIT, we found a quadratic im-
provement in the regime of interest for the response function
approximation problem that we are interested in. Notably, our
scheme also uses potentially much simpler unitary operations
as it completely avoids the need to simulate time evolution
under a Hamiltonian. This will be important in applications
of the GIT-based algorithm on NISQ devices. To help with
implementation of the method, together with pseudocode
implementation of these algorithms in Appendix B, we also
provide concrete values for the constant factors of all the
quantities needed in the practical design of the algorithm.

A possible extension of our algorithm for applications in
future fault-tolerant devices is to reduce the sample com-
plexity by employment of techniques, such as the method of
Ref. [41] (which uses QPE and amplitude amplification), to
estimate the expectation values in Eq. (32) at the expense
of longer circuit depths. Another interesting possibility is
to use either Quantum signal processing [5] or the Linear
Combination of Unitaries method [26] to directly implement
the approximate spectral density,

ρ̂K (ω) = K (ω, Ô) =
�∑
k

K (ω, Ok )|k〉〈k|. (45)

This would allow one, together with amplitude amplification,
to selectively prepare the final states of scattering processes
within a predetermined energy window allowing the appli-
cation of the algorithm proposed in Ref. [8] to study rare
processes. In such applications, the algorithm ceases to be
deterministic and a detailed analysis of the failure probability
would be needed.

The same strategy can of course be used as a near optimal
state preparation scheme similar in many ways to the one
recently proposed in Ref. [27]. Finally, the general framework
introduced in this work, and the accuracy metrics defined in
Sec. II, could prove useful to devise alternative approximation
schemes based on integral transforms. The interesting ques-
tion of whether the Gaussian provides the optimal integral
kernel for these approximation is left for future work.

Note added. Recently, we became aware of a similar work
by Rall [42] where an interesting construction for a polyno-
mial representation of a window function was proposed. As
we show in Appendix E, one can use this result to obtain an
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algorithm for approximating the spectral density with a query
complexity, O[ 1

�
log2 ( 1

��
)]. This is an improvement over the

scaling of the TSA method by Somma [12], but not quite as
efficient as the GIT-based method proposed here.
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APPENDIX A: ERROR BOUND FOR FREQUENCY
OBSERVABLES

As in the main text, we start with a response function

S(ω) =
�∑
k

αkδ(ω − ωk ),
�∑
k

αk = 1, (A1)

where we also have αk > 0. This decomposition follows
directly from the spectral representation reported in Eq. (2)
of the main text. We also define an observable Q which
generalizes sum rules as the integral,

Q(S, f ) =
∫ 1

−1
dωS(ω) f (ω). (A2)

If we use a (�,�, β, ηβ )-approximation 	̃(ω) to the response
S(ω) obtained using a β-approximate estimator for the inte-
gral transform 	(ω), we want to find an upper bound for the
total error,

δQ(	̃) = |Q(S, f ) − Q(	̃, f )|, (A3)

where the approximate observables are expressed as

Q(	̃, f ) =
∑∫

dν	̃(ν). (A4)

Using the triangle inequality, we find

δQ(	̃) =
∣∣∣∣∫ 1

−1
dωS(ω) f (ω) −

∑∫
dν	̃(ν) f (ν)

∣∣∣∣
�
∣∣∣∣∫ 1

−1
dωS(ω) f (ω) −

∑∫
dν	(ν) f (ν)

∣∣∣∣
+
∣∣∣∣∑∫ dν[	(ν) − 	̃(ν)] f (ν)

∣∣∣∣
= δQ(	) +

∣∣∣∣∑∫ dν[	(ν) − 	̃(ν)] f (ν)

∣∣∣∣. (A5)

In order to find a bound for the first term, note that thanks
to the spectral representation given by Eq. (A1), we can
decompose the total integral transform in the sequence

	(ω) =
�∑
k

αk	k (ω), (A6)

with 	K the transform of a single peaked response, Sk (ω) =
δ(ω − ωk ). We can therefore write

Q(S, f ) =
�∑
k

αk

∫ 1

−1
dωSk (ω) f (ω) =

�∑
k

αk f (ωk ), (A7)

while, for the integral transform approximator,

Q(	, f ) =
�∑
k

αk

∑∫
dν	k (ν) f (ν)

=
�∑
k

αk

∑∫
dν

∫
dωK (ν, ω)S(ω) f (ν)

=
�∑
k

αk

∑∫
dνK (ν, ωk ) f (ν), (A8)

where, in the last line, we performed the frequency integral
using the decomposition given by Eq. (A1). Using the defini-
tion (4) of a �-accurate kernel with resolution �, we can find
a bound for the first term in Eq. (A5) as follows:

δQ(	) =
∣∣∣∣∣

�∑
k

αk

[
f (ωk ) −

∑∫
dνK (ν, ωk ) f (ν)

]∣∣∣∣∣
�
∣∣∣∣∣

�∑
k

αk

[
f (ωk ) −

∑∫ ωk+�

ωk−�

dνK (ν, ωk ) f (ν)

]∣∣∣∣∣
+
∣∣∣∣∣

�∑
k

αk

[∑∫
ωk+�

dνK (ν, ωk ) f (ν)

−
∑∫ ωk−�

dνK (ν, ωk ) f (ν)

]∣∣∣∣
�
∣∣∣∣∣

�∑
k

αk

[
f (ωk ) −

∑∫ ωk+�

ωk−�

dνK (ν, ωk ) f (ν)

]∣∣∣∣∣
+ fmax�

�
∣∣∣∣∣

�∑
k

αk f (ωk )

[
1 −

∑∫ ωk+�

ωk−�

dνK (ν, ωk )

]∣∣∣∣∣
+
∣∣∣∣∣

�∑
k

αk

∑∫ ωk+�

ωk−�

dνK (ν, ωk )[ f (ν) − f (ωk )]

∣∣∣∣∣
+ fmax�

�
∣∣∣∣∣

�∑
k

αk

∑∫ ωk+�

ωk−�

dνK (ν, ωk )[ f (ν) − f (ωk )]

∣∣∣∣∣
+ 2 fmax�

� f �
max

[
sup

ω∈[−1,1]

∣∣∣∣∑∫ ω+�

ω−�

dνK (ν, ω)

∣∣∣∣]+ 2 fmax�,

with fmax � | f (ω)| for all ω ∈ [−1, 1] and

f �
max = sup

ω∈[−1,1]
sup

x∈[−�,�]
| f (ω + x) − f (ω)|. (A9)
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Algorithm 1. Fejer-based approximator.

1: Given integers M = 2m and NS ,
2: for i = 1 to NS , do:
3: prepare target state |�〉,
4: apply QPE with unitary V and maximum order V M/2,
5: measure m qubits in ancilla register in frequency νi,
6: add result to frequency histogram
7: Return frequency histogram

Finally, the second term in Eq. (A5) is bounded as∣∣∣∣∑∫ dν[	(ν) − 	̃(ν)] f (ν)

∣∣∣∣ � β

∫ 1

−1
dω| f (ω)|. (A10)

Bringing it all together, we can finally prove the upper bound,

δQ � f �
max + 2 fmax� + β

∫ 1

−1
dω| f (ω)|. (A11)

APPENDIX B: PSEUDOCODE IMPLEMENTATION

We present here a pseudocode implementation for the
spectral-density estimation algorithms that we discuss in
the main text. The goal of our algorithm is to return a
(�,�, β, ηβ )-approximation 	̃k (ν) to the response function
S(ω) = 〈�|ρ̂(ω)|�〉 at a single frequency point ν. This is
reasonable since we might not want to estimate 	̃k (ν) on
a whole grid composed of the maximal number O(1/�) of
frequency points (as done instead in [12]).

This is, however, not possible with the Fejer-based method
of Sec. III since the transformed frequencies η are sampled
from the distribution 	̃k (ν) instead. For this reason, we pro-
vide two independent implementations.

For the Fejer-based strategies, we use Algorithm 1 with

M = O

(
1

��

)
, NS = O

[
1

β2
log2

(
1

ηβ

)]
, (B1)

while V ≡ exp(−i2πÔ) for the time-dependent method and
V = WQ for the qubitization-based method.

In the case of either the TSA algorithm or the GIT-based
method, we can use Algorithm 2 instead, with a maximum
order M given by

MTSA = O

[
1

�
log2

(
1

β

)2
]
, (B2)

Algorithm 2. Orthogonal polynomial-based approximator.

1: Given integers M and NS = M × N ,
2: for k = 1 to M, do
3: for i = 1 to N , do
4: prepare target state |�〉,
5: measure expectation value vk = 〈�|V k |�〉,
6: store estimator of vk with error O(1/

√
N )

7: Compute expansion coefficients �c(ν ) corresponding to the
integral transform being evaluated at target frequency ν

8: Return 	̃k (ν ) = �c(ν ) · �v

for the TSA algorithm of [12], while for the GIT,

MGIT = O

{
1

�

√
log2

(
1

�

)
log2

[
1

�β
log2

(
1

�

)]}
, (B3)

together with a number of samples per order scaling as

N = O

[
M2

β2
log2

(
1

ηβ

)]
. (B4)

Finally, if we want the transform 	̃k (ν) at all the O(1/�)
frequency points while keeping the total error β (as consid-
ered in [12]), we will need instead

MTSA = O

[
1

�
log2

(
1

�β

)2
]
, (B5)

and

MGIT = O

{
1

�

√
log2

(
1

�

)
log2

[
1

�2β
log2

(
1

�

)]}
, (B6)

respectively. In this case, we see that the logarithmic term for
TSA also contains the resolution scale �.

APPENDIX C: ERROR ANALYSIS FOR FAULTY
IMPLEMENTATION OF FEJER

Assume we have an approximation to the phase kickback
(PKB) part of the QPE algorithm (the application of the
controlled-U operations), which satisfies

‖ṼPKB − VPKB‖ � δ. (C1)

Define |	A〉=VPKB|�〉; without loss of generality, we have

|	B〉 = ṼPKB|�〉 = cos(α)|	A〉 + sin(α)|ξ 〉, (C2)

with 〈	A|ξ 〉 = 0. If we introduce the density matrices ρ =
|	A〉〈	A| and σ = |	B〉〈	B|, we can now write√

2[1 − cos(α)]‖|	A〉 − |	B〉‖2 � ‖ṼPKB − VPKB‖ � δ.

Then, cos(α) � 1 − δ2/2, but also

D(ρ, σ ) = 1

2
Tr[|ρ − σ |] = | sin(α)| � δ

√
1 − δ2

4
. (C3)

We can write the transform at location σq = 2q/N − 1 as

	F (σq,�, N ) = 	F (σq) = Tr[�qU †
QFTρUQFT], (C4)

where �q = |q〉〈q| and UQFT is the unitary implementing the
quantum Fourier transform on the ancilla register. A similar
expression holds for the faulty density matrix σ . We now have,
for any 0 � q < N , that

δV (	F , 	̃F ) � sup
‖ṼPKB−VPKB‖�δ

∣∣	F (σq) − 	̃F (σq)
∣∣

= |Tr[�qU †
QFT(ρ − σ )UQFT]|

� 1

2
Tr[|ρ − σ |] � δ

√
1 − δ2

4
� δ. (C5)
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Furthermore, since VPKB is a product of n = log2(N ) con-
trolled time-evolution unitaries,

VPKB =
n−1∏
k=0

U (t = 2π2k ), (C6)

we have, by the union bound, that

‖ṼPKB − VPKB‖ �
n−1∑
k=0

‖U (2π2k ) − Ũ (2π2k )‖

� n max
0�<k<n

δt (2π2k ). (C7)

In the last equation, δt (τ ) is the approximation error of the
time-evolution unitary for total time t = τ . If we choose all
approximation errors to be the same, δt (τ ) = δt , then we find

δV (	F , 	̃F ) � log2(N )δt . (C8)

APPENDIX D: CHEBYSHEV EXPANSION OF THE
GAUSSIAN KERNEL

Using an expansion in Chebyshev polynomials, we can
express the Gaussian function as

exp

(
− x2

2�2

)
=

L∑
n=0

an(�)Tn(x) + rL(x,�), (D1)

where rL(�) indicates the truncation error and the coefficients
are given by (see Eq. (4) of Ref. [43])

an =
{ γn√

2π�
i

n
2 exp

(− 1
4�2

)
Jn/2

(
i

4�2

)
for even n

0 for odd n,
(D2)

with γ0 = 1 and γn>0 = 2, and Jn the Bessel function of order
n. Before discussing bounds on the magnitude of the trunca-
tion error, we want to first discuss how the kernel function
KG(σ, ω,�) can be generated using the expansion above.
First note that we can write the truncated kernel function as
in Eq. (34) of the main text,

KGL(σ, ω,�) = 1√
2π�

L∑
k=0

ak

(
�

2

)
Tk

(
ω − σ

2

)
. (D3)

Since Tk ( ω−σ
2 ) is a polynomial of degree k � L, we have

Tk

(
ω − σ

2

)
=

L∑
j=0

b jk (σ )Tj (ω), (D4)

where the expansion coefficients are given by

b jk (σ ) = γ j

π

∫ 1

−1

dx√
1 − x2

Tk

(
x − σ

2

)
Tj (x)

= γ j

L

L−1∑
m=0

Tk

(
xm − σ

2

)
Tj (xm). (D5)

In the second line, we used the Gauss-Chebyshev quadrature
and xm = cos (π 2m−1

2L ), the Chebyshev nodes (this is similar
to the strategy used in Ref. [43]). Using this representation,

we can rewrite the kernel function as

KGL(σ, ω,�) =
L∑

j=0

c j (�, σ )Tj (ω), (D6)

where the new expansion coefficients are given by

c j = γ j√
2π�L

L−1∑
m=0

L∑
k=0

ak

(
�

2

)
Tk

(
xm − σ

2

)
Tj (xm). (D7)

1. Bound of expansion coefficients

We can bound the magnitude of c j as follows:

|c j |=
∣∣∣∣∣ γ j√

2π�L

L−1∑
m=0

[
e− (xm−σ )2

2�2 − rL

(
xm,

�

2

)]
Tj (xm)

∣∣∣∣∣
� γ j√

2π�
rL

(
�

2

)
+ γ j√

2π�L

L−1∑
m=0

e− (xm−σ )2

2�2

:= γ jRL(�) + � j, (D8)

with RL(�) the truncation error of the kernel function [cf.
Eq. (35)]. For the second term, we can use

� j �
γ j√

2π�L

∫ L

0
dx exp

{
−
[

cos
(
π 2x−1

2L

)− σ
]2

2�2

}

= γ j√
2π3�

∫ π

0
dy exp

{
−
[

cos
(
y − π

2L

)− σ
]2

2�2

}
. (D9)

The integral approximately measures the number of of Cheby-
shev nodes within the envelope of the Gaussian kernel cen-
tered at σ . Since these nodes cluster near the edges of the
interval [−1, 1], we can obtain coefficients with a smaller
maximum magnitude by rescaling the energy spectrum into
a smaller interval and considering transformed variables σ in
the same restricted interval. As we mention in the main text,
we work here with the assumption that ω ∈ [−1/2, 1/2] and
the same for σ .

Now we use the following bound for the cosine term:[
cos

(
y − π

2L

)
− σ

]2
� [cos (y) − σ ]2 −

(π

L

)2
, (D10)

to simplify the integrand above and obtain

� j �
γ j√

2π3�
e

π2

2L2�2

∫ π

0
dy exp

{
− [cos (y) − σ ]2

2�2

}
= γ j√

2π3�
e

π2

2L2�2

∫ 1

−1

dx√
1 − x2

exp

[
− (x − σ )2

2�2

]
. (D11)

Finally, using the fact that we rescaled the energies so that
σ ∈ [−1/2, 1/2], we can bound the integral by

� j �
γ j√

2π3�
e

π2

2L2�2

∫ 1

−1

dx√
1 − x2

exp

[
− (x − 1/2)2

2�2

]
� γ j√

2π3�
exp

(
π2

2L2�2

)
(2.5�), (D12)
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where the constant factor in the second line was obtained
numerically. In summary, we found the following bound:

|c j (�, σ )| � γ j

[
RL(�) + 0.32 exp

(
π2

2L2�2

)]
� 2[RL(�) + 1.1], (D13)

where we anticipated the result L� > 2 that will be proven in
the next two sections.

2. Bound on truncation error

We turn now to providing upper bounds for the error terms
rL(�) and RL(�). Using the result from Tausch and Weck-
iewicz [43], we can bound the magnitude of the expansion
coefficients as

|an(�)| � 2�
√

π exp{−(n + 1)κ[(n + 1)2�2]}, (D14)

where the auxiliary function κ (x) is given by

κ (x) = log2(x + √
1 + x2)

2
− 1

4x

(x − 1 + √
1 + x2)2

x + √
1 + x2

.

(D15)

The total error rL(�) can then be bounded, summing a
geometric series [44], and the result is

|rL(�)| =
∣∣∣∣∣

∞∑
n=L+1

an(�)Tn(x)

∣∣∣∣∣ �
∞∑

n=L+1

|an(�)|

� 2�
√

π
exp[−L′κ (2L′�2)]

1 − exp[−κ (2L′�2)]
, (D16)

with L′ = L + 2 for L even, and L′ = L + 3 for L odd. We
can obtain a simpler upper bound by first using the fact that
for x > 1, we can bound κ (x) with

κ (x) � 1
2 [log2(2x) − 1], (D17)

and then using the monotonicity of the denominator in
Eq. (D16) to find, for 2L′�2 � 1, the bound

|rL(�)| � 2�
√

π

1 − exp [−κ (1)]

( e

4L′�2

) L′
2
. (D18)

Using this result, we find the total error RN (σ,�) in the
Gaussian transform given by Eq. (35) to be bounded as

|RL(σ,�)| = 1√
2π�

∣∣∣∣rL

(
�

2

)∣∣∣∣
� 1√

2

1

1 − exp [−κ (1)]

( e

L′�2

) L′
2

� 3.4
( e

L′�2

) L′
2
, (D19)

valid in the asymptotic regime L′ � 2/�2. In order to guaran-
tee a truncation error of, at most, εR, we now need

εR � 3.4

[
e

(L + 2)�2

] (L+2)
2

(D20)

for the number of repetitions L. Note that in this last ex-
pression, we used the conservative value L′ = L + 2. The

inequality in Eq. (D20) can be solved as

L � e

�2
− 2 + 2�2

e

log2 (3.4/εR)

W
[

2�2

e log2(3.4/εR)
] , (D21)

where W is the Lambert W function [40]. In order to under-
stand the scaling of this expression, we can use the less tight
bound,

L � e

�2
+ log2 (3.4/εR)

log2[log2 (3.4/εR)]
− 2, (D22)

which is usually employed in the literature (see, e.g., [4]).

3. Intermediate regime

We will now provide bounds in the second regime consid-
ered in the main text, where the upper bound on the order
L is the lower limit of validity for Eq. (D19), namely, 0 <

L′ � 2
�2 . In this case, there is a minimum error which we

can guarantee, the value of which we will determine in this
section [see Eq. (D34)]. We can start by first noticing that for
0 < x � 1, we have

xκ (1) � κ (x) � x

4
, (D23)

so that we can bound the total error rN using
∞∑

n=L+1

|an(�)| � 2�
√

π

∞∑
n=L+1

e−(n+1)κ[(n+1)2�2]

� 2�
√

π

∞∑
n=L+1

e−(x+1)22κ (1)�2

� 2�
√

π

∫ ∞

L
dxe−(x+1)22κ (1)�2

= π√
2κ (1)

erfc[(L + 1)�
√

2κ (1)]. (D24)

This, in turn, implies the following upper bound for the error
in the transform,

|RL(σ,�)| � 1

2�

√
π

κ (1)
erfc

[
(L + 1)�

√
κ (1)

2

]
. (D25)

This error con be bounded from above using

|RL(σ,�)| � 1√
2�2

κ

1

L + 1
exp

[
−(L + 1)2 �2

κ

2

]
, (D26)

where we defined �κ = �
√

κ (1), and is valid for

L �
√

2

π

1

�k
− 1. (D27)

As we did in the general case above, if we want a truncation
error of, at most, εR, we need

εR � 1√
2�2

κ

1

L + 1
exp

[
−(L + 1)2 �2

κ

2

]
. (D28)

The solution can again be conveniently expressed in terms of
the Lambert W function as

L + 1 � 1

�k

√
1

2
W

(
1

2�2
κε

2
R

)
. (D29)

022409-10



SPECTRAL-DENSITY ESTIMATION WITH THE GAUSSIAN … PHYSICAL REVIEW A 102, 022409 (2020)

We can now use another result from [45], Theorem 2.1, to find
the sufficient condition,

L =
⌈

1

�

√
1

κ (1)
g

(
1√

2κ (1)�εR

) ⌉
− 1, (D30)

where, for convenience, we defined the auxiliary function

g(x) = log2 (x) − 1
4 log2[log2(x2)]. (D31)

These estimates hold for sufficiently small target errors,

�εR � 1√
2κ (1)e

≈ 0.54, (D32)

a condition that ensures that Eq. (D27) is also satisfied. We
finally note that it is also possible to find a bound on L valid
for any value of the target error,

L =
⌈

1

�

√
2

κ (1)
log2

(√
π

κ (1)

1

2�εR

)⌉
. (D33)

We now need to find the minimum error that can be
guaranteed in this intermediate regime. Using the upper bound
from Eq. (D26), we find

εmin
R � 1√

2κ (1)

1

2 + �2
exp

[
−κ (1)

2

(2 + �)2

�2

]
� e−2κ (1)

√
8κ (1)

exp

[
−2κ (1)

�2

]
� exp

(
− 1

2�2

)
, (D34)

and this is valid for any reasonable value � [to satisfy
Eq. (D27), the condition is � � 5].

APPENDIX E: KERNEL BASED ON JACKSON’S
THEOREM

The recent work by Rall [42] introduced an integral trans-
form kernel based on Jackson’s theorem from approximation
theory. In this Appendix, we use the relevant results from
Ref. [42] to construct an approximate integral transform and
compare it with the GIT- and TSA-based methods described in
the main text. The approximate window function introduced
in Ref. [42] can be used to construct a (normalized) integral
kernel as

KJ (σ, ω, k, N ) = NkNωkN

(
σ − ω

2

)
, (E1)

with NkN a normalization factor and

ωkN (x) = Ak

[
4

5
JN (x)

]
. (E2)

In the expression above, Ak is the amplifying polynomial
from Eq. (A5) of Ref. [42], while JN (x) is the Jackson’s
approximation to the function g(x) defined as

g(x) =

⎧⎪⎪⎨⎪⎪⎩
−1, x < −δ

−1 + 2
δ
(x + δ), −δ < x � 0

1 − 2
δ
x, 0 > x > δ

−1, x > δ,

(E3)

for some fixed resolution δ. Note that in this construction,
we let the approximation interval [ā, b̄] defined in Ref. [42]

shrink to zero. As shown in Ref. [42], in order to ensure
JN approximates g(x) with error less than 1/4, one can take
N = 24/δ. The order k of Ak controls the final approximation
error by ensuring that for x > δ, the final function satisfies

Ak

[
4

5
JN (x)

]
� τ ≡ exp(−k/6). (E4)

The condition for the integral transform to be �-accurate
with resolution � can be written as

sup
ω0∈[−1,1]

[∫ ω−�

−1
dσKJ (σ, ω0, k, N )

+
∫ 1

ω+�

dσKJ (σ, ω0, k, N )

]
� �, (E5)

or, in the more convenient form,

2NkN

∫ 1

�/2
dxAk

[
4

5
JN (x)

]
� �. (E6)

By choosing the resolution in the g function in Eq. (E3) to
be δ = �/2, we find that Eq. (E5) is satisfied for

τ � �

2 − �

1

NkN
. (E7)

The normalization constant can be bounded using

1 =
∫ 1

−1
dxKJ (x, ω, k, N ) � NkN [2δ + τ (2 − 2δ)], (E8)

and this gives the following necessary condition on τ :

τ � �
� + τ (2 − �)

2 − �
⇒ τ � �

1 − �

�

2 − �
. (E9)

If we require the approximation to be �-accurate with reso-
lution �, the order d of the polynomial representation of the
kernel KJ needs to be larger than

dmin = 288

�
log2

(
1 − �

�

2 − �

�

)
. (E10)

The asymptotic cost of using the Jackson kernel for the
spectral-density approximation is therefore worse than the
GIT-based method presented in the main text. Comparing this
result with the TSA method of Ref. [12] will, however, require
one to find an upper bound on the normalization constant
first. We can obtain this by noticing that in the intervals
[0, δ/2] and [−δ/2, 0], the kernel function can be bounded
from below using a linear function, while outside of this
region the lower bound is zero. We can therefore write, for
τ < 5/8, the following:

NkN � 1

δ

4

5 − 8τ
, (E11)

which recovers the intuition that in general, NkN should
scale linearly with the resolution. This shows that the method
presented in this Appendix also has a better complexity than
the TSA algorithm.
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