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Quantum algorithms for estimating physical quantities using block encodings
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We present quantum algorithms for the estimation of n-time correlation functions, the local and nonlocal
density of states, and dynamical linear response functions. These algorithms are all based on block encodings—a
versatile technique for the manipulation of arbitrary nonunitary matrices on a quantum computer. We describe
how to “sketch” these quantities via the kernel polynomial method which is a standard strategy in numerical
condensed-matter physics. These algorithms use amplitude estimation to obtain a quadratic speedup in the
accuracy over previous results, can capture any observables and Hamiltonians presented as linear combinations
of Pauli matrices, and are modular enough to leverage future advances in Hamiltonian simulation and state
preparation.
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I. INTRODUCTION

A central goal of quantum algorithms is to aid in the
study of large quantum systems. It is well established, for
example, that quantum computers can simulate the dynamics
of most Hamiltonians of interest [1]. Hamiltonian simulation
algorithms, sometimes combined with the quantum Fourier
transform, have led to quantum algorithms for some physical
quantities, including correlation functions [2] and dynamical
linear response functions [3]. Both of these examples are
crucial for the understanding of phenomena in condensed-
matter physics like electron and neutron scattering [4,5],
conductivity, and magnetization [6].

Recent work in Hamiltonian simulation has yielded algo-
rithms with exponential improvements in accuracy [7] over
Trotterization and guaranteed linear scaling with the simu-
lation time [1]. The strategies employed by these works can
be neatly encompassed in terms of “block encodings”—a
tool that allows quantum computers to represent nonunitary
matrices. These block encodings can be built using linear
combinations of unitaries (LCUs) [7,8] and manipulated using
quantum singular value transformation [9]. In addition to
providing new and better algorithms, block encodings provide
an intuitive and powerful framework for performing linear
algebra on a quantum computer.

In this work we use block encodings along with amplitude
amplification [10–12] to construct quantum algorithms for
some physical quantities: n-time correlation functions, the
local and nonlocal density of states, and dynamical linear
response functions. These algorithms are more versatile than
previous works [2,3] in that they can compute more general
versions of the functions with greater accuracy.

The local and nonlocal density of states and linear response
functions are all functions of the energy f (E ). We are usually
interested in obtaining the general shape of f (E ) over a
range of energies, i.e., in obtaining a “sketch” of f (E ). We
show how to perform two sketching strategies from modern

classical numerical condensed-matter physics [13–15]. First,
we show how to compute integrals of f (E ) over a range of
energies:

∫ EB

EA
f (E )dE . Second, we show how to compute the

moments of a Chebyshev expansion of f (E ): briefly assuming
|E | � 1 for ease of explanation, if Tn(E ) is the nth Chebyshev
polynomial of the first kind, then we show how to compute
constants cn such that

f (E ) ≈ 1

π
√

1 − E2

N∑
n=0

cnTn(E ). (1)

This procedure is known as the kernel polynomial method
[14] and is intuitively similar to sketching a function by
computing the first few coefficients in its Fourier series. Very
recent work [16] shows how similar methods can also perform
point estimates of the density of states by approximating a
delta function with a polynomial close to a narrow Gaussian.

Algorithms that compute physical quantities often face bar-
riers from complexity theory, since computing expectations
of observables on ground states of Hamiltonians is QMA
complete [17]. This remains true even when severe restric-
tions are placed on Hamiltonians [18]. For this reason we
employ strategies that sidestep these barriers. For correlation
functions, we do not provide algorithms for preparing ground
states or other states of interest, since the best algorithms
for their preparation must use properties of the particular
Hamiltonian in question. Evaluating the density of states at
particular energies is no. P complete [19], but sketching the
density of states via integrals and Chebyshev expansions is in
BQP.

The structure of our paper is as follows. In Sec. II, we
review block-encoding techniques. In Sec. III, we employ
these techniques to study n-time correlation functions. If we
have a set of observables Oi and times {ti} we compute
expectations of the form

〈O1(t1)O2(t2) . . .〉 (2)
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employing the Heisenberg picture. In Sec. IV, we outline
quantum singular value transformation and tools for comput-
ing Chebyshev moments and integrals over energy intervals.
In Sec. V, we employ these techniques to compute the density
of states and the local density of states. If H has eigenvalues
{Ei} and dimension D then the density of states is

ρ(E ) = 1

D

∑
i

δ(Ei − E ). (3)

Furthermore, say H is a Hamiltonian describing a particle
with some set of positions {�r} and position eigenstates {|�r〉}.
If the eigenvectors of H are {|ψi〉}, then the local density of
states is

ρ�r (E ) =
∑

i

δ(Ei − E )| 〈ψi|�r〉 |2. (4)

Finally, in Sec. VI, we show how to sketch linear response
functions of the form

A(E ) = 〈Bδ(E − H + E0)C〉, (5)

where E0 is the ground-state energy of H and B,C are some
observables. In the Appendix we show how to construct
optimal polynomial approximations to the window function,
which we require to compute integrals of ρ(E ), ρ�r (E ), and
A(E ).

II. BLOCK-ENCODING TECHNIQUES

Block encodings allow quantum computers to perform
manipulations with nonunitary matrices. If A is any matrix
with |A| � 1, where |A| is the largest singular value, then a
block encoding is a unitary UA such that A occupies the top
left corner of UA:

UA =
[

A ·
· ·

]
. (6)

Below we give a more formal definition involving an explicit
Hilbert space H for A and an ancillary Hilbert space Ck for
postselection.1 We also give a notion of accuracy and a notion
of scaling to allow for |A| > 1. The number of qubits needed
to realize these spaces is bounded by the circuit complexity of
UA. We denote the computational basis for ancillary Hilbert
spaces Ck by {|0〉k , |1〉k , . . .}.

Definition 1. Say A is a matrix on H with |A| � α. A
unitary UA on Ck ⊗ H is an ε-accurate α-scaled Q-block
encoding of A if UA is implementable using Q elementary
gates and for some k we have

|A/α − (〈0|k ⊗ I )UA(|0〉k ⊗ I )| � ε. (7)

If “ε accurate” is omitted, then 0 accurate (exact) is implied,
and if “α scaled” is omitted then 1 scaled is implied.

In our work we will only be interested in block encodings
of products of observables, so A will be square and often

1In the general case when A is a rectangular matrix that maps H →
H′ then the input ancilla space Ck and output ancilla space Cl must
be chosen so that H ⊗ Ck and H′ ⊗ Cl have the same dimension.
For this paper we assume that A is square so we can pick l = k.

Hermitian. The Pauli matrices are a basis for Hermitian matri-
ces, but since they are also unitary they have trivial (UP = P)
block encodings. A key property of block encodings is that
a quantum computer can easily prepare products and linear
combinations of them.

Lemma 2. Say the matrices {Ai} each have αi-scaled Qi-
block encodings. Then (1) the product

∏
i Ai has a (

∏
i αi )-

scaled O(
∑

i Qi )-block encoding and (2) for any βi ∈ C
the linear combination

∑
i βiAi has a (

∑
i αi|βi|)-scaled

O(
∑

i Qi )-block encoding.
Proof. A complete construction and analysis of these

circuits is given in [9], although the core techniques were
put forth earlier [7,8]. The construction of block encodings
of products is rather trivial, and we give a brief sketch of
the proof that a linear combination of Pauli matrices O =∑k

i=1 βiPi has a O(
∑

i βi )-scaled O(k)-block encoding UO:

Vβ |0〉k := 1√∑
i |βi|

k∑
i=1

√
|βi| |i〉k , (8)

VP :=
k∑

i=1

|i〉k 〈i|k ⊗ βi

|βi|Pi, (9)

UO := (V †
β ⊗ I )VP(Vβ ⊗ I ). (10)

The gate complexity is dominated by VP with complexity
O(k). Generalizing to nontrivial block encodings involves
swapping Pi with UAi and dealing with the control registers.

Lemma 2 has the crucial consequence that the vast ma-
jority of Hamiltonians in physics have efficient block en-
codings, since they can be written as linear combinations of
not too many Pauli matrices. In these cases we have k, α ∈
O(poly(n)), where n is the number of qubits required to
encode H.

The algorithms in this work construct block encodings of a
desired A and estimate Tr(Aρ) for some given ρ. To do so we
assume that there is a unitary that prepares a purification of ρ,
which is any pure state such that ρ can be obtained by tracing
out some ancillary space Cl .

Definition 3. Let ρ be a density operator on H and let |0〉
be some easy-to-prepare state in H. A unitary Uρ on H ⊗ Cl

for some l is an R-preparation unitary of ρ if we have

ρ = TrCl (|ρ〉 〈ρ|), (11)

where |ρ〉 = Uρ (|0〉 |0〉l ) and Uρ is implementable using R
elementary gates.

Often we are interested in correlation functions and linear
response with respect to ground states or thermal states of
some Hamiltonian. Depending on the situation performing
state preparation can be an extremely difficult computational
task, and the identification of specific practical situations
where state preparation is easy is an area of active research
[20]. We consider the problem of state preparation itself out
of the scope for this work, but aim to present our algorithms
in an abstract manner to maximize their versatility and permit
the leveraging of future results. We do point out the existence
of the following generic tool for constructing thermal states.

Lemma 4. Let H be a Hamiltonian on a D-dimensional
Hilbert space with an α-scaled Q-block encoding. Then for
any β � 0 there exists an R-preparation unitary for a state
ε close in trace distance to the thermal state e−βH/Z , where
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Z = Tr(e−βH ) and

R ∈ O

(
Qα

√
Dβ

Z
log

(√
D

Z

1

ε

))
. (12)

Proof. This is the main result of [21], combined with the
newer Hamiltonian simulation results of [22,23] with correc-
tions from [9]. Briefly, the strategy is to construct a block
encoding of e−βH/2 from eiHt using the Hubbard-Stratonovich
transformation, and multiply it onto a purification of the
maximally mixed state using a strategy called robust oblivious
amplitude amplification. �

We now show how to use amplitude estimation to estimate
the expectation of block-encoded observables.

Lemma 5. If A is Hermitian and has an α-scaled Q-block
encoding and ρ has an R-preparation unitary, then for every
ε, δ > 0 there exists an algorithm that produces an estimate ξ

of Tr(ρA) such that

|ξ − Tr(ρA)| � ε (13)

with probability at least (1 − δ). The algorithm has circuit
complexity O((R + Q) α

ε
log 1

δ
).

Proof. The algorithm is as follows.

Algorithm: Observable estimation

Let Ā = (I + A/α)/2, and let UĀ be its 1-scaled O(Q)-
block encoding which exists by Lemma 2. Let UĀ have
control register dimension k as in Definition 1, and let l
and |0〉 be as in Definition 3. Let

|ρ〉 := Uρ |0〉 |0〉l , (14)

|
〉 := (UĀ ⊗ I ) |0〉k |ρ〉 , (15)

� := |0〉k 〈0|k ⊗ |ρ〉 〈ρ| . (16)

Perform amplitude estimation to obtain an estimate ξ0 of
|� |
〉 | to precision ε/(2α) with probability at least
(1 − δ). Return ξ := (2ξ0 + 1)α.

For details on how to perform amplitude estimation we
refer to recent results [10,11] that avoid using the quantum
Fourier transform, which was required by the traditional
method [12] from 2002. These results establish that |� |
〉 |
can be estimated to additive error ε and probability at least
(1 − δ) using O( 1

ε
log 1

δ
) applications of a Grover operator:

G := −(I − 2�)(I − 2 |
〉 〈
|). (17)

This operator requires four uses of Uρ and two uses of UĀ, so it
has circuit complexity O(R + Q). This completes the runtime
analysis.

Amplitude estimation estimates are

|�|
〉| = |〈0|k 〈ρ| (UĀ ⊗ I )|0〉k|ρ〉| (18)

= |〈ρ|(Ā ⊗ I )|ρ〉| (19)

= |Tr[|ρ〉〈ρ|(Ā ⊗ I )]| (20)

= ∣∣Tr
[
TrCl (|ρ〉〈ρ|)Ā]∣∣ = |Tr(ρĀ)|. (21)

Since Ā has |Ā| � 1 its eigenvalues lie in the range [−1, 1],
so Ā is positive semidefinite. Therefore, ξ0 approximates

|Tr(ρĀ)| = Tr(ρĀ) = [1 + Tr(ρA)/α]/2 to error ε/(2α), so ξ

approximates Tr(ρA) to error ε as desired. �
In addition to providing a simple framework for manip-

ulating observables on a quantum computer, block encodings
are often the starting point for modern Hamiltonian simulation
algorithms [1,8]. Once a block encoding of a Hamiltonian
H is constructed, we can apply functions to its eigenvalues
using quantum singular value transformation discussed in
Sec. IV.

III. CORRELATION FUNCTIONS

In this section we show how to estimate n-time correla-
tion functions, improving on an algorithm presented in [2].
This algorithm does not require any new technical tools. We
include it primarily to illustrate how simple it is to construct
algorithms for complex quantities via block encodings. We
also show how to estimate non-Hermitian block-encoded ob-
servables, a tool we will require later in Sec. VI. Consider
a system evolving under a time-independent Hamiltonian H .
If Oi is some Hermitian operator, then in the Heisenberg
picture

Oi(ti) := eiHti Oie
−iHti . (22)

To prepare block encodings of observables in the Heisen-
berg picture we leverage a modern result in Hamiltonian
simulation for time-independent Hamiltonians. For simplicity
we focus on time-independent Hamiltonians but there also ex-
ist block encodings for time evolution under time-dependent
Hamiltonians [1,24,25].

Lemma 6. Let H be a Hamiltonian on a D-dimensional
Hilbert space with an α-scaled Q-block encoding. Then for
any t, ε > 0 there exists an ε-accurate T (t, ε)-block encoding
of eiHt where

T (t, ε) ∈ O

(
Qα|t | + Q log(1/ε)

log[e + log(1/ε)/(α|t |)]
)

. (23)

Proof. This result originated in [22,23], but it is cleanly
restated with minor corrections as Corollary 60 of [9]. �

Using this result we can state and analyze the estimation
algorithm.

Theorem 7. Let H be a Hamiltonian with an α-scaled Q-
block encoding, O1, . . . , On be some observables with βi-
scaled Ri-block encodings, t1, . . . , tn be some times, and ρ be
a state with an S-preparation unitary.

Then for every ε, δ > 0 there exists an algorithm that
produces an estimate ξ ∈ C of Tr[ρ

∏
i Oi(ti )] to additive

precision ε in the real and imaginary parts with probability
at least (1 − δ). It has circuit complexity O((S + W ) γ

ε
log 1

δ
),

where γ = ∏
i βi and

W ∈ O

⎛
⎝ n∑

j=1

Rj +
n∑

j=0

T

(
τ j,

ε

2(n + 1)2

)⎞
⎠, (24)

⊂ O

⎛
⎝ n∑

j=1

Rj + Qα

n∑
j=0

|τ j | + Qn2 log
(n

ε

)⎞
⎠, (25)

where T (t, ε) is defined in Lemma 6 and τ j = t j+1 − t j ,
padding the list of times with t0 = tn+1 = 0.

Proof. The algorithm is as follows.
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Algorithm: n-time correlation functions

Making use of e−iHt j eiHt j+1 = eiH (t j+1−t j ) = eiHτ j , we
rewrite the product of observables as follows:

n∏
j=1

Oj (t j ) = eiHt1 O1eiH (t2−t1 ) . . . One−iHtn (26)

= eiHτ0

n∏
j=1

Oje
iHτ j . (27)

Invoking Lemma 6 we obtain ε
2(n+1)2 -accurate block

encodings of eiHτ j , and we multiply them together with the
block encodings of Oi using Lemma 2. We obtain a
W -block encoding U� of an operator � that approximates∏

i Oi(ti ).
Observe that U †

� is a block encoding of �†. This allows us
to use Lemma 2 to construct γ -scaled W -block encodings
of the Hermitian and anti-Hermitian parts of �, as below.
Then we invoke Lemma 5 with target accuracy ε/2 for
each of the below to obtain ε-accurate estimates of the real
and imaginary parts of Tr[ρ

∏
i Oi(ti )]:

Re(ξ ) := estimate of Tr

(
ρ

� + �†

2

)
, (28)

Im(ξ ) := estimate of Tr

(
ρ

� − �†

2i

)
. (29)

Since the block encodings of eiHδt j are 1 scaled, the only
contribution to γ are the scalings of the Oi, so γ = ∏

i βi.
The runtime is dominated by the complexity W of the block
encoding for �, which by Lemma 2 is clearly given by (24). To
obtain (25) we loosely bound 1/ log2[e + log2(1/ε)/(α|t |)] �
1 in (23). This looseness overestimates the runtime in situa-
tions where n is very large but the τ j are very small.

It remains to be shown that � is ε/2 close in the spectral
norm to

∏
i Oi(ti ), given that the block encodings of eiHτ j

are ε
2(n+1)2 accurate. From there the ε/2 closeness of the

Hermitian and anti-Hermitian parts and the ε accuracy of the
final estimates follow. In general, Lemma 54 of [9] gives an
argument that if |A − U | � ε0 and |B − V | � ε1, then

|AB − UV | � ε0 + ε1 + 2
√

ε0ε1. (30)

Iterating this bound for a product of
∏n

i=0 Ui where |Ui −
Ai| � ε0 we obtain by solving a recurrence relation∣∣∣∣∣

n∏
i=0

Ui −
n∏

i=0

Ai

∣∣∣∣∣ � (n + 1)2ε0. (31)

Plugging in ε0 := ε
2(n+1)2 gives the desired upper bound of

ε/2. �
This algorithm improves over [2] in several ways. First,

Ref. [2] restricts to Pauli observables since they are unitary.
Here Oi do not have to be unitary. Secondly, since we are
using amplitude estimation to obtain ξ we obtain a quadratic
speedup in the accuracy dependence. Finally, Ref. [2] restricts
to Hamiltonians where exact Hamiltonian simulation can be
achieved using circuit identities. Of course, for situations
where these restrictions apply and the accuracy speedup can

be sacrificed, their construction yields significantly smaller
circuits which may be more amenable to near-term quantum
computers.

IV. INTEGRALS AND CHEBYSHEV MOMENTS
OF FUNCTIONS OF THE ENERGY

In this section we introduce some tools we will require for
our quantum algorithms for computing the density of states
and linear response functions.

Say a Hermitian matrix A has an eigenvalue-eigenvector
decomposition A = ∑

i λi |φi〉 〈φi|. Given a block encoding
of A, quantum singular value transformation allows us to
construct block encodings of p(A) = ∑

i p(λi ) |φi〉 〈φi|, for
polynomials p(x). This requires p(x) to be appropriately
bounded, and the complexity of the encoding scales linearly
in the degree of the polynomial. This method can also be
generalized to non-Hermitian A with some caveats. Singular
value transformation is an extremely powerful result, and is a
culmination of a long line of research in quantum algorithms,
presented in its full generality in [9].

Lemma 8. Let A have a Q-block encoding, and let p(x) be
a degree-d polynomial satisfying |p(x)| � 1 for x ∈ [−1, 1].
Then for every δ > 0 there exists a 1

2 -scaled δ-accurate
O(Qd )-block encoding of p(A). A description of the circuit
can be computed in time O(poly(d, log(1/δ))).

Proof. This strategy originated in [22,23] and is developed
in [9] where it is formalized as Theorem 56. Calculating the
circuit demands careful consideration of numerical precision.
Recent work [26] describes an elegant strategy for dealing
with this issue. �

The expressions for density of states (3),(4) and linear
response (60) are both functions of the energy f (E ) roughly
of the form

f (E ) :=
∑

i

δ(E − Ei ) 〈ψi| A |ψi〉 , (32)

where {Ei} and {|ψi〉} are the eigenvalues and eigenvectors
of the Hamiltonian and A is some Hermitian matrix. Rather
than computing point estimates of f (E ) we will be interested
in computing integrals of f (E ) over a range [a, b] as well as
the moments of a Chebyshev expansion of f (E ). To obtain
the scaling requirements of Lemma 8 we observe that an
α-scaled block encoding of a Hamiltonian H guarantees that
|H/α|� 1. Rescaling ā = a/α and b̄ = b/α, we construct a
polynomial w(x) that allows us to approximate integrals over
the range [ā, b̄].

Theorem 9. For every η > 0 and any ā, b̄ with −1 < ā <

b̄ < 1 there exists a polynomial w(x) such that for all f (αx)
bounded by fmax [defined below in (34)]∣∣∣∣∣

∫ 1

−1
f (αx)w(x)dx −

∫ b̄

ā
f (αx)dx

∣∣∣∣∣ � η. (33)

The polynomial has degree d ∈ O( fmax

η
ln fmax

η
) and satisfies the

requirement |w(x)| � 1 of Lemma 8.
Proof. There exist several strategies for constructing ap-

proximating polynomials for window and step functions,
which we could adapt for our purposes via shifting and scaling
[27–31]. We adapt an elegant approach that relies on standard
strategies in approximation theory discussed in [32] lever-
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aging amplifying polynomials and Jackson’s theorem [33],
which constructs a polynomial that accomplishes our require-
ments directly. We postpone the argument to the Appendix.�

Our accuracy analysis requires a bound on f (αx), which
is a bit subtle to define since f (αx) is a sum of many delta
functions. However, we only ever perform integrals of f (αx).
Therefore, when we say “ f (αx) is bounded by fmax” we mean
that for all c̄ < d̄∫ d̄

c̄
f (αx)dx � fmax · (d̄ − c̄). (34)

The polynomial w(x) immediately yields a strategy for
computing integrals since the value can be expressed as a trace
inner product:∫ b

a
f (E )dE =

∫ b̄

ā
f (αx) · α dx (35)

≈ α

∫ 1

−1
f (αx)w(x)dx (36)

= α

∫ 1

−1

∑
i

δ(αx − Ei ) 〈ψi| A |ψi〉 w(x)dx (37)

= Tr

(
A

∑
i

∫ 1

−1
δ(x − Ei/α)w(x)dx |ψi〉 〈ψi|

)

(38)

= Tr

(
A

∑
i

w(Ei/α) |ψi〉 〈ψi|
)

(39)

= Tr[Aw(H/α)]. (40)

In step (38) we used the identity δ(αx) = δ(x)/α. This final
expression can then be estimated using Lemma 5.

Next we briefly outline our strategy for sketching f (E )
using the kernel polynomial method [14]. A sketch f KPM(E )
is a linear combination of Chebyshev polynomials of the
first kind Tn(x) weighted by coefficients μ

f
n gn. The μ

f
n are

the Chebychev moments of f (E ) and the gn are f (E )-
independent smoothing coefficients (see, for example, the
proof of Jackson’s theorem in [33]). Since Chebyshev ex-
pansions are performed on the domain [−1, 1] we calculate
moments of f (αx) for x ∈ [−1, 1]:

μ f
n :=

∫ 1

−1
Tn(x) f (αx)dx, (41)

f KPM(αx) := 1

π
√

1 − x2

(
g0μ

f
0 + 2

N∑
n=0

μ f
n gnTn(x)

)
. (42)

For this work we concern ourselves only with estimation of μ
f
n

and defer to [14,15] for details on how to construct f KPM(E ).
A similar derivation to (35)–(40) yields the identity

μ f
n :=

∫ 1

−1
Tn(x) f (αx)dx = Tr[ATn(H/α)]. (43)

Conveniently, quantum singular value transformation is par-
ticularly simple for Chebyshev polynomials.

Lemma 10. Let A have a Q-block encoding. Then for every
n there exists an O(nQ)-block encoding of Tn(A).

Proof. This is Lemma 9 of [9]. �
Now we have all the technical tools to state the main

algorithms.

V. DENSITY OF STATES

In this section we show how to sketch the density of states
(DOS):

ρ(E ) = 1

D

∑
i

δ(Ei − E ). (44)

This is easily rewritten in the form in (32) by choosing A =
I/D. Following (35)–(40) and (43) we obtain∫ b

a
ρ(E )dE ≈ Tr

(
I

D
w(H/α)

)
, (45)

μρ
n = Tr

(
I

D
Tn(H/α)

)
. (46)

This argument makes use of of Theorem 9, which requires a
bound on ρ(E ). Observe that, in the sense of (34), ρ(αx) is
bounded by any upper bound on the dimension of the largest
eigenspace of H which we call ρmax.

These quantities can be estimated by leveraging the fact
that I/D has an O(log(D))-preparation unitary.

Theorem 11. Let H have an α-scaled Q-block encoding
and take any ε, δ > 0. Then as follows.

(1) For any a, b such that −α < a < b < α, there exists a
quantum algorithm that produces an estimate ξ of

∫ b
a ρ(E )dE

with circuit complexity

O

((
Q

ρmax

ε
log

ρmax

ε
+ log D

)
1

ε
log

1

δ

)
(47)

and O(poly(ρmax/ε)) classical preprocessing, where ρmax is
some upper bound on the dimension of the largest eigenspace
of H .

(2) For any n there exists a quantum algorithm that pro-
duces an estimate ζ of μρ

n with circuit complexity

O

(
(Qn + log D)

1

ε
log

1

δ

)
. (48)

The estimates ξ and ζ have error ε with probability at least
(1 − δ).

Proof. Observe that a preparation unitary for I/D simply
prepares a Bell state on H ⊗ H; call it |Bell(H)〉. If H is
encoded as some subspace of an n-qubit system where n =
�log2(D), then |Bell(H)〉 can be obtained from |Bell(C2n

)〉
via amplitude amplification. This procedure can be made
exact via the following standard trick involving an ancilla
qubit. Observe that

β := 〈Bell(C2n
)|Bell(H)〉 =

√
D/2n (49)

is known exactly. If U satisfies

U |02n〉 = |Bell(C2n
)〉 (50)

= β |Bell(H)〉 +
√

1 − β2 |φ⊥〉 (51)

for some |φ⊥〉 ⊥ |Bell(C2n
)〉, then define U ′ such that

U ′ |02n+1〉 = γU |02n〉 |0〉 +
√

1 − γ 2 |02n〉 |1〉 (52)

= γ β |Bell(H)〉 |0〉 +
√

1 − (γ β )2 |ψ⊥〉 (53)
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for some |φ⊥〉 ⊥ |Bell(C2n
)〉 |0〉, where γ is the largest num-

ber � 1 such that

sin[(2k + 1) arcsin(γ β )] = 1 (54)

has a solution where k is a positive integer. Then, if θ =
arcsin(γ β ) and �H is a projection onto the H ⊗ span(|0〉 〈0|)
subspace of C2n+1, then we can define a Grover operator G
that exactly prepares |Bell(H)〉:

G = U ′(I − 2 |02n+1〉 〈02n+1|)
× (U ′)†(I − 2�H), (55)

Gk |Bell(C2n
)〉 = sin[(2k + 1)θ ] |Bell(H)〉 |0〉

+ cos[(2k + 1)θ ] |ψ⊥〉 (56)

= |Bell(H)〉 |0〉 . (57)

Since 2n < 2D we have β ∈ �(1) so k ∈ O(1), so the cir-
cuit complexity is dominated by U , which can be constructed
using n Hadamard gates and n CNOT (controlled-NOT) gates.
Thus the state I/D on a Hilbert space H encoded in Cn has an
O(log(D))-preparation unitary.

The algorithm for estimating integrals is as follows.

Algorithm: Integral of the density of states

(1) Use Theorem 9 to construct the polynomial w(x) with
η := ε

3 .
(2) Use Lemma 8 to construct an ε

3 -accurate 1
2 -scaled block

encoding of w(H/α). Say that this is an exact 1
2 -scaled

block encoding of w̃(H/α).
(3) Use Lemma 5 to produce an ε

3 -accurate estimate ξ of
Tr[ I

D w̃(H/α)] with probability at least (1 − δ).

By the triangle inequality the total error is at most ε. The
polynomial w(x) has degree

d ∈ O
(ρmax

ε
log

ρmax

ε

)
. (58)

The approximate block encoding of w̃(H/α) has circuit com-
plexity O(dQ) and the preparation unitary for I/D has circuit
complexity O(log(D)). Combining these with the number of
samples required by Lemma 5 gives the overall complexity
(47).

The algorithm for Chebyshev moments is significantly
simpler.

Algorithm: Chebyshev moments of density of states

(1) Use Lemma 10 to construct a block encoding of
Tn(H/α).
(2) Use Lemma 5 to produce an ε-accurate estimate ζ of
Tr[ I

D · Tn(H/α)] with probability at least (1 − δ).

Since the block encoding and state preparation are exact,
the error stems entirely from the estimation procedure in
Lemma 5. The circuit complexity from Lemma 10 is O(nQ),
so the overall complexity (48) also follows from Lemma 5.

�

Estimation of integrals of ρ(E ) benefit from knowledge of
an upper bound ρmax. Indeed even in pathological cases where
H ∝ I we have ρmax = 1, so the circuit complexity can never
suffer from high densities of state. We argue that in practical
situations prior information on H can be used to bound ρmax,
thereby improving the complexity. For example, the DOS
of quantum many-body systems with local interactions is
often close to a Gaussian due to the central limit theorem. In
particular, Ref. [34] discusses the DOS of a nearest-neighbor
Hamiltonian acting on a spin chain. From their work on the
transverse-field Ising model with n sites we can derive

ρmax = C

D

(
n

n/2

)
≈ Cπ

√
2

n

for some constant C (see the discussion surrounding Eq. (30)
in [34]). Here ρmax decreases with the number of sites.

Furthermore, exact degeneracy in a Hamiltonian is con-
nected to the Hamiltonian’s symmetries [35]. If there exists
a degenerate subspace of dimension Dρmax, then any unitary
transformations on that subspace must preserve the Hamilto-
nian. Thus prior knowledge of the symmetries could be used
to obtain a bound on ρmax. However, if only a subset of the
symmetries is known, then this only leads to a lower bound
on the dimension of the largest eigenspace, which is not useful
here.

Of course, the efficiency of the algorithm relies on the
1/D factor in our definition of ρ(E ). If we were interested
in the actual number of states within an interval, the circuit
complexity would scale with D (for fixed ε). This is to be
expected since the number of states in the ground space of
a Hamiltonian is no. P hard to compute exactly and NP hard
to estimate to within relative error [19].

Next we consider the local density of states. Say we are
working with a Hamiltonian describing a single particle in real
space or some space with a notion of locality so that for every
position �r there is a state |ψ (�r)〉 denoting the state with the
particle at �r. Then the local density of states (LDOS) at �r is
given by [6,14,15]

ρ�r (E ) =
∑

i

δ(Ei − E )|〈ψi|�r〉|2. (59)

The algorithms for sketching the LDOS are a simple
modification of the algorithms for DOS: instead of preparing
a maximally mixed state we simply prepare |ψ (�r)〉. Indeed
if |ψ (�r)〉 has an O(R)-preparation unitary, the new circuit
complexities are the same as those in Theorem 11 but with
O(log(D)) replaced with R.

If H is a lattice Hamiltonian, e.g., a Fermi-Hubbard model,
then the states |ψ (�r)〉 are trivial to prepare since the Jordan-
Wigner transformation that maps H to qubits preserves local-
ity. For Hamiltonians describing a particle in real space, the
cost of preparing |ψ (�r)〉 depends on the particular choice of
basis functions, e.g., Hartree-Fock, used to encode H on the
quantum computer.

Similar to the DOS, estimation of LDOS can benefit from
bounds on ρmax and it remains true that even for pathological
Hamiltonians like H ∝ I we have ρmax � 1. However, it no
longer makes sense to bound ρmax via a central limit theorem
since there is only one particle involved.
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VI. LINEAR RESPONSE

In this section we show how to sketch correlation functions
of the form

A(E − E0) = 〈Bδ(E − H )C〉. (60)

We shift the function by the ground-state energy E0 since
we consider estimation of the ground-state energy out of
scope. This work improves on an quantum algorithm by [3]
and is useful to compare to a classical algorithm based on
matrix product states [13] that also uses the kernel polynomial
method.

Following a similar argument to (35)–(40) and (43), we
connect the desired quantities to expectations of observables
that can be represented by block encodings:∫ b

a
A(E − E0)dE ≈ 〈Bw(H/α)C〉, (61)

μA
n = 〈BTn(H/α)C〉. (62)

This naturally yields quantum algorithms quite similar to
those presented in Theorem 11, just with some constants
changed.

Theorem 12. Let H have an α-scaled Q-block encoding, ρ

have an R-preparation unitary, and B have β-scaled SB-block
encoding and C have γ -scaled SC-block encoding.

Then, for any ε, δ > 0, (1) for any a, b such that −α <

a < b < α, there exists a quantum algorithm that produces an
estimate ξ of

∫ b
a A(E )dE with circuit complexity

O

(
(Qd + SB + SC + R)

βγ

ε
log

1

δ

)
(63)

and O(poly(d )) classical preprocessing, where ρmax is a bound
on the dimension of the largest eigenspace and

d = O

(
ρmaxβγ

ε
log

ρmaxβγ

ε

)
. (64)

(2) For any n there exists a quantum algorithm that produces
an estimate ζ of μA

n with circuit complexity

O

(
(Qn + SB + SC + R)

βγ

ε

)
. (65)

The estimates ξ and ζ have error ε with probability at least
(1 − δ) in their real and imaginary parts.

Proof. The algorithm for computing integrals is as follows:

Algorithm: Integrals of linear response functions

(1) Use Theorem 9 to construct the polynomial w(x) with
η := ε

3 .
(2) Use Lemma 8 to construct an ε

3 -accurate 1
2 -scaled block

encoding of w(H/α), and say it is an exact 1
2 -scaled block

encoding of w̃(H/α).
(3) Use Lemma 2 to construct a 1

2βγ -scaled block
encoding of � := Bw̃(H/α)C.
(4) Use Lemma 5 to produce ε

3 -accurate estimates of the
real and imaginary parts of ξ with probability at least
(1 − δ), corresponding to the Hermitian and
anti-Hermitian parts of � as in (28) and (29).

The accuracy and complexity analysis is almost identical to
that in Theorem 11, except for the fact that since |B| � β and
|C| � γ we observe that A(αx) is bounded by ρmaxβγ when
invoking Theorem 9. The algorithm for Chebyshev moments
is as follows:

Algorithm: Chebyshev moments of linear response
functions

(1) Use Lemma 10 to construct a block encoding of
Tn(H/α).
(2) Use Lemma 2 to construct a βγ -scaled block encoding
of Z := BTn(H/α)C.
(3) Use Lemma 5 to produce ε-accurate estimates of the
real and imaginary parts of ζ with probability at least
(1 − δ), corresponding to the Hermitian and
anti-Hermitian parts of Z as in (28) and (29).

�
This technique is significantly more versatile than that of

[3], which only treats the case when B = C and when ρ =
|ψ0〉 〈ψ0|. Their algorithm runs Hamiltonian simulation under
B for a short amount of time to approximately prepare the state
B |ψ0〉, which is an additional source of error. Furthermore,
their work also does not capitalize on accuracy improvements
from amplitude estimation.

The classical strategy [13] relies on matrix product state
(MPS) representations of states |tn〉 = Tn(H/α)C |ψ0〉. When
accurate and efficient MPS representations of |tn〉 exist (and
|ψ0〉 can be efficiently obtained—an assumption we also
make), then quantum strategies are not needed. Indeed for
many physical systems ground states obey area laws (see, e.g.,
Ref. [36]), which lends MPS strategies their power. Quantum
strategies will still be useful for ground states with large
amounts of entanglement where efficient classical represen-
tations do not exist.

VII. CONCLUSION

We have demonstrated that block encodings provide a
powerful framework for the matrix arithmetic on a quantum
computer. This modern and versatile toolkit for quantum algo-
rithms encompasses fundamental strategies such as amplitude
amplification and estimation, and results in active areas like
Hamiltonian simulation can be immediately leveraged due to
its modularity. Furthermore, once all the necessary tools are
assembled, algorithms based on block encodings are trivial to
analyze. We believe that block encodings are the state-of-the-
art technique for estimating physical quantities on a quantum
computer. This claim should be further tested by attempting
to quantize other numerical strategies in condensed-matter
physics.
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(a) (b) (c) (d)

FIG. 1. Functions involved in the proof of Theorem 9. (a) The function g(x) which is fed as input to Jackson’s theorem. (b) The polynomial
J (x) returned by Jackson’s theorem that is within 1/4 of g(x). (c) The amplifying polynomial Ak (x) is guaranteed to amplify 3/5 to η := e−k/6.
(d) The window function polynomial w(x) is guaranteed to be inside the shaded region.

APPENDIX: CONSTRUCTING A POLYNOMIAL
APPROXIMATION OF THE WINDOW FUNCTION

In this section we prove Theorem 9 by following a con-
struction in [32]. We make use of an important theorem in
approximation theory.

Theorem (Jackson’s theorem [33].) For any continuous
function g(x) on the interval [−1, 1] there exists a polynomial
J (x) of degree at most n so that for all x ∈ [−1, 1]

|J (x) − g(x)| � 6ωg(1/n), (A1)

where ωg(δ) is the modulus of continuity of g(x):

ωg(δ) := sup{ |g(x) − g(y)|
for x, y ∈ [−1, 1] with |x − y| � δ}. (A2)

Below we prove Theorem 9 with η rescaled to η fmax. If
Jackson’s theorem were to be used to construct the desired
polynomial approximation directly then the degree would
scale with O(η−2). By introducing an amplifying polynomial
we improve this to O( 1

η
ln 1

η
).

Theorem (Theorem 9 restated.) For every η > 0 and any
ā, b̄ with −1 < ā < b̄ < 1, there exists a polynomial w(x)
such that for all f (x) bounded by fmax

∣∣∣∣
∫ 1

−1
f (x)w(x)dx −

∫ b̄

ā
f (x)dx

∣∣∣∣ � η fmax. (A3)

The polynomial has degree d ∈ O( 1
η

ln 1
η

) and w(x)/2 satisfies
the requirements of Lemma 8.

Proof. Let κ := η/4. We begin by applying Jackson’s
theorem to a function g(x) sketched in Fig. 1(a). g(x) = 1
in the region [ā, b̄] and g(x) = −1 outside of [ā − κ, b̄ + κ]
and interpolates linearly between the gaps. We have ωg(δ) =

2δ/κ , so if we choose n := 48/κ we obtain

|J (x) − g(x)| � 6ωg(1/n) = 6

κn
= 1

4
. (A4)

J (x) is sketched in Fig. 1(b), and is guaranteed to stay inside
the shaded region. Next we define the amplifying polynomial
Ak (x):

Ak (x) :=
∑
j�k/2

(
k

j

)(
1 + x

2

) j(1 − x

2

)k− j

. (A5)

Let X be a random variable distributed as the sum of k
i.i.d. Bernoulli random variables, each with expectation 1+x

2 ,
and observe that Ak (x) = Pr[X � k/2]. Then it follows from
the Chernoff bound that Ak (x) stays inside the shaded region
of Fig. 1(c), where τ := e−k/6. Pick k := �6 ln 4

η
 so that

τ � η/4.
Finally, we use Ak (x) to amplify the error of J (x):

w(x) := Ak
(

4
5 J (x)

)
. (A6)

This polynomial w(x) is inside the shaded region of Fig. 1(d)
and has degree

d := n · k ∈ O

(
1

η
ln

1

η

)
. (A7)

Now we bound the error, which is intuitive from Fig. 1(d).
In the region inside [ā, b̄] and outside [ā − κ, b̄ + κ] we have
an error at most τ and inside the interpolation regions we
have error at most 1. The regions have length 2 − 2κ and 2κ ,
respectively, so∣∣∣∣

∫ 1

−1
f (x)w(x)dx −

∫ b̄

ā
f (x)dx

∣∣∣∣ 1

fmax

� τ (2 − 2κ ) + 2κ � 2τ + 2κ � η

2
+ η

2
= η. (A8)

Here we implicitly use (34). Note that a more careful choice
of the division of error between regions may improve d by a
constant factor. �
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