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The usual Su-Schrieffer-Heeger model with an even number of lattice sites possesses two degenerate zero-
energy modes. The degeneracy of the zero-energy modes leads to the mixing between the topological left- and
right-edge states, which makes it difficult to implement the state transfer via topological edge channel. Here,
enlightened by the Rice-Male topological pumping, we find that the staggered periodic next-nearest-neighbor
hoppings can also separate the initial mixed edge states, which ensures the state transfer between topological
left- and right-edge states. Significantly, we construct a unique topological state transfer channel by introducing
the staggered periodic onsite potentials and the periodic next-nearest-neighbor hoppings added only on the odd
sites simultaneously, and we find that the state initially prepared at the last site can be transferred to the first two
sites with the same probability distribution. This special topological state transfer channel is expected to realize
a topological beam splitter, whose function is to make the initial photon at one position appear at two different
positions with the same probability. Further, we demonstrate the feasibility of implementing the topological
beam splitter based on the circuit quantum electrodynamic lattice. Our scheme opens up a new way for the
realization of topological quantum information processing and provides a path toward the engineering of new
type of quantum optical device.
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I. INTRODUCTION

Topological insulator [1–4], as a new kind of novel state
of the matters, has attracted increasing interest and attention
since its identification. The significant difference between
the traditional insulator and the topological insulator is the
topologically inequivalent energy band structures in the mo-
mentum space [4,5]. The topological nonequivalence leads
that the topological insulator holds the conducting edge states
and the insulating bulk states at the same time [1–4]. The
special conducting edge states are protected by the energy
gap of the topological system, leading the edge states to be
immune to the local disorder and perturbation [1,2,6–10].
These novel properties support that the topological insulator
has numerous latent applications in quantum information
processing [11,12] and the quantum computing [13,14] since
these quantum issues both need to resist the deleterious effects
of the local decoherence. The robust quantum state transfer
assisted via the topological edge channel can be achieved
based on the dipolar arrays [15]. Similarly, the global fault-
tolerant topological quantum computation can be constructed
based on the nonlocal Majorana fermions [13,16,17].

As one of the simplest topological insulator model, the
Su-Schrieffer-Heeger (SSH) model [18,19] has also attracted
more and more attention in recent years since it possesses
the structural simplicity and the abundant physical insights
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concurrently [20–22]. The structural simplicity ensures that
the SSH model can be mapped by dint of all kinds of different
systems, such as the cold atoms trapped into the optical
lattice [23–26], the waveguide arrays [27–29], the graphene
nanoribbons [30–33], the superconducting resonators and
qubits [34–36], the optomechanical array composed by mul-
tiple single optomechanical system [37–40], etc. Based on
these platforms, various topological contexts in SSH model
have been explored, including the edge state and the topolog-
ical phase transition [25,41–43], quantum walk [44–46], the
non-Hermitian effect [42,47–49], topological charge pumping
[50–53], the observation and detection of the topological
features [23,54–56], etc. Especially, in the context of the SSH
model, the state transfer between the topological left- and
right-edge states based on a superconducting qubit chains
has been reported [57]. Note that the superconducting-qubit-
based SSH chain in Ref. [57] was conceived to have an odd
number of the lattice sites since the state transfer between the
left- and right-edge states needs to occupy the same type of
sites. Another reason is that the two edge modes of the SSH
model with an even number of lattice sites were shown to
be degenerate in the topologically nontrivial regions, which
leads the left- and right-edge states are mixed. Thus, the
state transfer between the left- and right-edge states cannot
be achieved easily based on the even-size SSH model.

In this paper, to surmount the obstacle mentioned above,
we investigate several different topological state transfer
processes based on a periodically modulated SSH model
with an even number of the lattice sites. We first recall the
Rice-Male (RM) topological pumping, in which, by adding
the staggered periodic onsite potentials into the system, the
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FIG. 1. The diagrammatic sketch of the even-size SSH model.
The SSH model is composed by N unit cells (the black dashed
rectangle), in which each unit cell contains an a-type site and a b-type
site simultaneously. The size of the SSH model is 2N .

initial degenerate zero-energy modes in even-size SSH com-
pletely split and the topological state transfer between the
left- and right-edge states can be realized. Enlightened by RM
topological pumping, we find that the initial degenerate zero-
energy modes can also be split via introducing the staggered
periodic next-nearest-neighbor (NNN) hoppings since the
NNN hoppings have the identical interaction forms as onsite
energy in momentum space. In this way, the initial mixed
left- and right-edge states are separated, which can be acted
as the topologically protected edge channel to implement the
state transfer between different sites. Specially, we find that,
via introducing the staggered periodic onsite potentials and
the periodic NNN hoppings added only on the odd sites si-
multaneously, a special topological state transfer channel can
be opened. By dint of this topological edge channel, we find
that the photon initially prepared at the rightmost site can be
transferred to the first two sites with the same probability dis-
tribution, which implies the potential possibility of realizing a
photon split-flow device, such as topological beam splitter. We
demonstrate the feasibility of implementing the topological
beam splitter assisted by the topological channel in detail,
and find that the topological beam splitter is immune to the
mild random disorders added into the system. Meanwhile,
we propose to construct the topological beam splitter based
on circuit quantum electrodynamic (circuit-QED) lattice, and
show that it can be realized under the current experimental
conditions. Our scheme greatly enriches the potential applica-
tion of topological matter in quantum information processing
and provides a path toward the engineering of new type of
quantum optical device.

The paper is organized as follows: In Sec. II, we mainly
demonstrate the state transfer between the left- and right-edge
states based on the even-size SSH model by introducing the
staggered periodic NNN hoppings. In Sec. III, we construct a
special topological edge channel by the onsite potentials and
the NNN hoppings added only on the odd sites. Meanwhile,
we discuss the potential possibility of implementing topolog-
ical beam splitter and show that it is immune to the mild
disorder. Further, we demonstrate that the topological beam
splitter can be experimentally realized based on circuit-QED
lattice. Finally, a conclusion is given in Sec. IV.

II. TOPOLOGICAL STATE TRANSFER INDUCED BY
DIFFERENT PARAMETER REGIMES

Consider a usual SSH model with N unit cells, as shown in
Fig. 1. The Hamiltonian of the system can be written as

H =
∑

n

[t1a†
nbn + t2a†

n+1bn] + H.c., (1)
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FIG. 2. The energy spectrum and the distribution of the zero-
energy mode. (a) The energy spectrum of the even-size SSH model.
The energy gap has two degenerate zero-energy modes. (b) The dis-
tribution of one zero-energy mode [(N/2 + 1)th zero-energy mode]
versus θ and lattice site. The insets show the same distributions of
the selected zero-energy state for different θ with θ = 0.15π for left
inset and θ = 1.85π for right inset. The size of the lattice is 2N with
N = 10.

where t1 = 1 − cos θ (t2 = 1 + cos θ ) is the periodic intracell
(inter-cell) nearest-neighbor (NN) coupling of the SSH model
with θ ∈ [0, 2π ] being the periodic parameter (Note that in
all of the text, we keep the hopping terms as t1 = 1 − cos θ

and t2 = 1 + cos θ ). Obviously, the SSH model possesses two
degenerate zero-energy modes in the gap when parameter θ

belongs to [0, 0.5π ] ∪ [1.5π, 2π ], as shown in Fig. 2(a). To
further evaluate the topological properties of the zero-energy
states, we plot the state distribution of one selected zero
mode, as shown in Fig. 2(b). The numerical results reveal
that the zero-energy mode occupies both the two ends with
maximal distributions in the most regions of θ ∈ [0, 0.5π ] ∪
[1.5π, 2π ]. The reason of the special distribution of the edge
mode is the existence of the degenerate zero-energy modes.
The degeneracy of the zero-energy modes leads the topolog-
ical left- and right-edge states to be mixed as one eigenstate,
which makes it difficult to realize the state transfer between
the topological left and the right states since the zero-energy
mode always holds the identical distribution with θ varying
from 0 to 2π , as revealed in Fig. 2(b).

A. Topological state transfer induced by the staggered periodic
onsite potentials

For the SSH model with the even number of the lat-
tice sites, the degenerate zero-energy modes make it impos-
sible to realize the state transfer between the topological
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FIG. 3. (a) The energy spectrum of the SSH model when the
periodic onsite potentials are added on a-type and b-type sites
alternatively. The energy gap has two separated gap states around
E = 0 line. The red line represents that the gap state is localized
at left edge while the blue dashed line represents that the gap state
is localized at right edge. (b) The corresponding distribution of the
upper gap state in (a). (c) The fidelity of the state transfer between
|1, 0, 0, ..., 0, 0〉 and |0, 0, 0, ..., 0, 1〉 versus the varying rate of θ .
(d) The state transfer process corresponding to � = 0.0005. Other
parameter takes N = 10.

left- and right-edge states. We thus need to introduce different
parameter regimes to break the degeneracy of the zero-energy
modes. An effective way is that we introduce the staggered
periodic onsite potentials into the a-type and the b-type
sites alternatively to split the degenerate zero-energy modes
[58], with

H =
∑

n

[Vaa†
nan + Vbb†

nbn + t1a†
nbn + t2a†

n+1bn] + H.c., (2)

where Va = V sin θ and Vb = −V sin θ are the periodic onsite
potentials added on the a-type and the b-type sites, with
V being the potential strength. The breaking of the chiral
symmetry induced by the staggered periodic onsite potentials
leads to that the initial degenerate zero-energy modes are split
into two nonzero gap modes with the energies of V sin θ and
−V sin θ (−V sin θ and V sin θ ) when θ ∈ [0, 0.5π ] and θ ∈
[1.5π, 2π ], as shown in Fig. 3(a). The splitting of the degen-
erate zero-energy modes ensures that the energies of the initial
left- and right-edge states decouple from each other. More
specifically, if we take the edge states ansatz |�〉E=Va,Vb =∑

n λn[αa†
n + βb†

n]|G〉, with λ being the localized indexes, α

and β being the probability amplitude of the gap state, then
the energy eigenvalue equation can be written as [57]

Vaλ
nαa†

n|G〉 + t2λ
n+1αb†

n|G〉 + t1λ
nαb†

n|G〉
= V sin θλnαa†

n|G〉,
Vbλ

nβb†
n|G〉 + t2λ

n−1βa†
n|G〉 + t1λ

nβa†
n|G〉

= −V sin θλnβb†
n|G〉. (3)

Then, the topological left-edge state (with E = V sin θ ) and
the right-edge state (with E = −V sin θ ) can be obtained, with

|�〉L =
∑

n

[(
− t1

t2

)n

αa†
n

]
|G〉,

|�〉R =
∑

n

[(
− t2

t1

)n

βb†
n

]
|G〉.

(4)

The analytical result indicates that the upper gap state in
Fig. 3(a) is localized near the leftmost a-type site when
θ ∈ [0, 0.5π ], and near the rightmost b-type site when θ ∈
[1.5π, 2π ] (since the energies of the upper gap state are
V sin θ and −V sin θ respectively), implying that the localiza-
tion of the upper gap state experiences the transfer from left
edge to right edge assisted via bulk with θ varying from 0 to
2π . To further verify the above results, we plot the distribution
of the upper gap state, as shown in Fig. 3(b). The numerical
results indicate that, if we vary the parameter θ from 0 to 2π

with time, then it is natural to construct a channel of the state
transfer between the topological left- and right-edge states.
Meanwhile, we stress that the state transfer channel mentioned
above is actually the RM pumping [58], namely, realizing the
topological pumping by the modulated onsite potentials.

To further verify the feasibility of the topological state
transfer, we rewrite the periodic parameter θ in Eq. (2) as
θt = �t , with � being the varying rate and t being the time. In
the usual processes of the state transfer, the parameter needs
to vary adiabatically to ensure the high enough probability
of success. Dramatically, in the present system, we find that
the tiny enough � does not always correspond to a maximal
successful probability, as shown in Fig. 3(c). However, we
always can find a finite � to maximize the fidelity of the
state transfer.

When the initial state is prepared in the perfect topo-
logical left-edge state |�〉L = |1〉a1 ⊗ |0〉b1 ⊗ |0〉a2 ⊗ ... ⊗
|0〉aN ⊗ |0〉bN = |1, 0, 0, ..., 0, 0〉, we use the time-dependent
Hamiltonian to evolve the initial state with i d

dt |�〉L =
H (θt )|�〉L. The corresponding process of the state transfer
between the topological left- and right-edge states is shown
in Fig. 3(d), when � = 0.0005. The numerical results re-
veal that the state transfer between |1, 0, 0, ..., 0, 0〉 and
|0, 0, 0, ..., 0, 1〉 can be realized with a high fidelity. Note
that our scheme actually realizes the topological state transfer
between the leftmost a-type and the rightmost b-type sites,
which is different from the previous schemes based on the
SSH model with an odd number of the lattice sites [40,57].

B. Topological state transfer induced by the periodic
next-nearest-neighbor hopping

The essence of separating the degenerate zero-energy
modes is that the energies of the leftmost a-type site and the
rightmost b-type site need to be shifted toward the opposite di-
rection in the energy gap. Besides the RM pumping mentioned
above, the energy shift of the two end sites can be achieved via
introducing the NNN hoppings, with

H =
∑

n

[t1a†
nbn + t2a†

n+1bn + T1a†
n+1an + T2b†

n+1bn]

+ H.c., (5)
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FIG. 4. The energy spectrum and the distribution of the gap state.
(a) The energy spectrum of the system, where T1 = −T2 = −0.5. The
energy gap has two separated gap states around E = 0 line. The red
line represents that the gap state is localized at left edge while the
blue dashed line represents that the gap state is localized at right
edge. (b) The distribution of the upper gap state in (a) versus θ and
lattice site. The insets show the same distributions for different θ with
θ = 0.15π for left inste and θ = 1.85π for right inset. The size of the
lattice is 2N with N = 10.

where T1 and T2 are the NNN hoppings strengths added on the
a-type and the b-type sites. In this way, the energies of the two
end sites can be shifted via the interactions of T1(a†

2a1 + a†
1a2)

and T2(b†
N bN−1 + b†

N−1bN ). We plot the energy spectrum of
the present SSH model with the fixed values of the NNN hop-
pings, T1 = −T2 = −0.5, as shown in Fig. 4(a). Obviously,
the initial degenerate zero-energy modes split in the most
regions of θ ∈ [0, 0.5π ] ∪ [1.5π, 2π ]. We stress that, at the
same time, the gap state still holds the same kind of the eigen-
state when θ ∈ [0, 0.5π ] ∪ [1.5π, 2π ]. More specifically, as
shown in Fig. 4(a), the upper gap state is localized near the
leftmost site both when θ ∈ [0, 0.5π ] and θ ∈ [1.5π, 2π ],
while the bottom gap state is both localized near the rightmost
site. To further clarify it, we simulate the distribution of the
upper gap state in Fig. 4(a) versus the parameter θ and the
lattice site numerically, as shown in Fig. 4(b). The results
show that the upper gap state is indeed localized near the
leftmost a-type site when θ ∈ [0, 0.5π ] ∪ [1.5π, 2π ] except
for the points of θ = 0.5π and θ = 1.5π , at which the gap
state integrates into the bulk.

The above results reveal that the fixed NNN hoppings
cannot make the gap state own different distributions when
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FIG. 5. (a) The energy spectrum of the SSH model when the
periodic NNN hoppings T1 = − sin θ and T2 = sin θ are added into
the system. The energy gap has two separated gap states around
E = 0 line. The red line represents that the gap state is localized
at left edge while the blue dashed line represents that the gap state
is localized at right edge. (b) The corresponding distribution of the
upper gap state in (a). (c) The fidelity of the state transfer between
|1, 0, 0, ..., 0, 0〉 and |0, 0, 0, ..., 0, 1〉 versus the varying rate of θ .
(d) The state transfer process corresponding to � = 0.00001. Other
parameter takes N = 10.

θ ∈ [0, 0.5π ] and θ ∈ [1.5π, 2π ], which determines that the
state transfer between the left- and right-edge states cannot
be achieved via varying the periodic parameter adiabatically.
Actually, the NNN hoppings play the analogous role as
the onsite energy added on the a-type and the b-type sites,
since the NNN hoppings are equivalent to the onsite energy
in the momentum space with T1a†

kak and T2b†
kbk . Thus, uti-

lizing the conclusions obtained in Sec. II A directly, we also
assume that the NNN hoppings added on the a-type and the
b-type sites varies with the parameter θ alternatively, with
T1 = −T2 = −V sin θ .

To verify the rationality of the assumption, we plot the
energy spectrum and the distribution of the upper gap state,
as shown in Figs. 5(a) and 5(b). The numerical results reveal
that, as a matter of fact, the periodic NNN hoppings ensure
that the gap state has the opposite distributions when θ ∈
[0, 0.5π ] and θ ∈ [1.5π, 2π ], which provides the theoretical
foundation to implement the state transfer between the topo-
logical left- and right-edge states. To evaluate the availability
of the state transfer channel induced by the modulated NNN
hoppings, we prepare the initial state in |1, 0, 0, ..., 0, 0〉 and
plot the fidelity between the target state |0, 0, 0, ..., 0, 1〉 and
the evolved final state, as shown in Fig. 5(c). We find that,
different from the case in Sec. II A, the fidelity decays rapidly
with the increase of the varying rate �. It means that we
should take a small enough � to ensure the high enough
probability of success for the state transfer. For example,
when we take � = 0.00001 and prepare the initial state in
|1, 0, 0, ..., 0, 0〉, the evolved final state is shown in Fig. 5(d).
The numerical results show that the state transfer between
the left-edge state and the right-edge state can be achieved,

022404-4



ENGINEERING THE TOPOLOGICAL STATE TRANSFER … PHYSICAL REVIEW A 102, 022404 (2020)

meaning that the modulated NNN hoppings can indeed induce
the topological state transfer channel.

III. TOPOLOGICAL BEAM SPLITTER INDUCED BY THE
MODULATED ONSITE POTENTIALS AND THE

MODULATED PARTIAL NNN HOPPINGS

In Sec. II, we have shown the implementation of the state
transfer between the left-edge state and the right-edge state
by dint of the channels induced by the modulated onsite
potentials and the modulated NNN hoppings, respectively. A
question arises: can we realize other state transfer via design-
ing the modulated onsite potentials and NNN hoppings? In the
following, we show a special state transfer channel induced by
the joint effects of the modulated onsite potentials and NNN
hoppings. At the same time, we find that this special state
transfer can be expected to achieve a topological beam split-
ter [59–61], which provides the potential application toward
topological quantum information processing.

A. Topological beam splitter

Taking the modulated onsite potentials and NNN hoppings
into account simultaneously, the Hamiltonian of the system is
given by

H =
∑

n

[Vaa†
nan + Vbb†

nbn + t1a†
nbn + t2a†

n+1bn

+ T1a†
n+1an + T2b†

n+1bn] + H.c., (6)

where Va = −Vb = − sin θ is the modulated onsite energy,
t1 = 1 − cos θ and t2 = 1 + cos θ are the modulated NN hop-
ping terms, and T1 = t2 = 1 + cos θ and T2 = 0 represent the
NNN hoppings added only on the odd sites. In this way,
we find that the energy spectrum of the system becomes
irregular but still has two gap sates, as shown in Fig. 6(a). The
corresponding distribution of the upper gap state in Fig. 6(a) is
shown in Fig. 6(b). The numerical results reveal that the upper
gap state exhibits a peculiar distribution, in which the gap state
is mainly localized near the last site in θ ∈ [0, 0.5π ] while it is
mainly localized at the first two sites with the approximately
same probability in θ ∈ [1.5π, 2π ]. It illuminates us that, by
dint of the gap state induced by Va, Vb, and T1, we can achieve
the special state transfer between the state |0, 0, 0, ..., 0, 1〉
and the state |0.5, 0.5, 0, ..., 0, 0〉. To further verify the above
supposition, we rewrite the parameter θ as θt = �t and use
the time-dependent Hamiltonian to evolve the initial state
prepared in |0, 0, 0, ..., 0, 1〉. The corresponding fidelity be-
tween the ideal state |0.5, 0.5, 0, ..., 0, 0〉 and the evolved
final state versus the parameter � is shown in Fig. 6(c).
The numerical results reveal that we always can find an
appropriate � to ensure the achievement of the state trans-
fer between |0, 0, 0, ..., 0, 1〉 and |0.5, 0.5, 0, ..., 0, 0〉. For
example, when � = 0.00001, we find that the photon initially
in the last site can be transferred to the first two sites with the
same distributions, as shown in Fig. 6(d).

The above results imply that, if we first inject a photon
into the last site, after a certain time evolution, the photon
will finally appear in the first two sites with the approximately
same probability of 50%. In this way, from the perspective of
regarding the last site and the first two sites as three ports, the
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FIG. 6. (a) The energy spectrum of the SSH model when the
periodic onsite potentials Va = − sin θ (Vb = sin θ ) and the NNN
hoppings T1 = 1 + cos θ are added into system. The energy gap has
two separated gap states. The blue dashed line represents that the
gap state is localized at right edge while the green line represents
that the gap state is mainly localized at first two sites with the same
distributions. (b) The corresponding distribution of the upper gap
state in (a). The insets show the distributions of the gap state for
the different θ with θ = 0.15π for left inset and θ = 1.85π for right
inset. (c) The fidelity of the state transfer between |0, 0, 0, ..., 0, 1〉
and |0.5, 0.5, 0, ..., 0, 0〉 versus the varying rate of θ . (d) The state
transfer process corresponding to � = 0.00001. Other parameter
takes N = 10.

022404-5



QI, WANG, LIU, ZHANG, AND WANG PHYSICAL REVIEW A 102, 022404 (2020)

Input a single photon

Output 50%

Output 50% port
 1

port
 2

port
 3

Topological Beam Splitter

Beam Splitter

analogous to

FIG. 7. The sketch of the topological beam splitter. The topolog-
ical beam splitter has three ports, in which the photons coming from
the port 1 finally gather into port 2 and port 3 with the same half of
probability. From this perspective the present system is equivalent to
a beam splitter [the bottom panel].

probability of photon from port 1 appearing in port 2 and port
3 is approximately the same, that is, 50%, as shown in Fig. 7.
Obviously, this phenomenon is analogous with the conven-
tional beam splitter [62–65] in quantum optics, showing that
the present system can be expected to achieve an analogous
beam splitter. Besides, we stress that the implementation of
the above state transfer is assisted by the gap state, leading the
process of the state transfer to be protected by the energy gap.
Thus, the above state transfer between |0, 0, 0, ..., 0, 1〉 and
|0.5, 0.5, 0, ..., 0, 0〉 can be used to map a topological beam
splitter. The present topological beam splitter is naturally
immune to the mild disorder and perturbation due to the
protection of the gap. To clarify it, we consider a random
disorder W δ is added into the system, with W being the dis-
order strength and δ being the random number in the range of
[−0.5, 0.5]. The success probability of the topological beam
splitter, when the random disorder is added into the modulated
onsite energy Va and Vb, the modulated NN hopping strengths
t1 and t2, and the modulated NNN hoppings strength T1, is
depicted in Fig. 8. The numerical results reveal that, for a
certain range of the disorder strength with log10W < −1, the
mild disorder has no effects on the topological beam splitter.
The robustness of the topological beam splitter to the disorder
and perturbation provides much more convenience for the
experimental realization and the practical application of the
topological beam splitter.

B. Theoretical analysis of the physical mechanisms for
topological beam splitter

In the previous section, we have demonstrated that the
topological beam splitter can be constructed via the topo-
logical gap state induced by the modulated onsite energy
and NNN hoppings. Here we further reveal the internal
physical mechanisms of the topological beam splitter. When
the parameters in Eq. (6) satisfy Va = Vb = T2 = 0, t1 = 1 −
cos θ , t2 = 1 + cos θ , and T1 = t2 = 1 + cos θ , the modulated
NNN hoppings added only on the odd sites make the energy

-1 0 1

0.5

1

F
id

el
it

y

on-site disorder
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NNN disorder

FIG. 8. The fidelity of the topological beam splitter when the
random disorder is added into the system. The black circle line
represents that the random disorder is added into the modulated
onsite energy Va and Vb. The red square line represents that the
random disorder is added into the modulated NN hopping t1 and t2.
The blue diamond line represents that the random disorder is added
into the modulated NNN hoppings strength T1. Note that the disorder
is randomly sampled 100 times and then taking the mean value.

spectrum deformed, as shown in Fig. 9(a). The corresponding
distributions of two gap states are shown in Figs. 9(b) and
9(c). The results indicate that the upper gap state in Fig. 9(a) is
always localized near the rightmost site when θ ∈ [0, 0.5π ] ∪
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FIG. 9. The energy spectrum and distribution of states. (a) The
energy spectrum of the SSH model with Va = Vb = T2 = 0, t1 = 1 −
cos θ , t2 = 1 + cos θ , and T1 = t2 = 1 + cos θ . The energy gap has
two separated gap states. The blue dashed line represents that the
gap state is localized at right edge while the green line represents that
the gap state is localized at first two sites with the same distributions.
(b) The corresponding distribution of the upper gap state in panel (a).
(c) The corresponding distribution of the lower gap state in panel (a).
(d) The schematic diagram of the two different kinds of distributions
of gap states. The black dashed circle represents the right-edge state,
and the black dashed rectangular box represent the super-site induced
by the equal T1 = t2. Other parameter takes N = 10.
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[1.5π, 2π ], while the lower gap state in Fig. 9(a) is always
localized at the first two sites with the approximately same
distribution when θ ∈ [0, 2π ]. The reason for the distribution
of the upper gap state can be interpreted as following. When
the parameter θ satisfies θ ∈ [0, 0.5π ] ∪ [1.5π, 2π ], the NN
hopping terms always satisfy t1 < t2. The weaker t1 makes
the last site bN decoupled from the lattice chain, leading to
the existence of the topological right-edge state, as shown in
Fig. 9(d).

On the contrary, the distribution of the lower green gap
state is induced by the NNN hoppings added only on the
odd sites. More specifically, when the NNN hoppings strength
T1 = t2 is added into the system, the identical NN hopping
strength t2 and the NNN hoppings strength T1 make the first
site a1 and the second site b1 have the same hopping probabil-
ity toward the third site a2, as shown in Fig. 9(d). The same
hopping probability toward the site a2 leads the first two sites
a1 and b1 to be equivalent to a super-site [black dashed rect-
angular box in Fig. 9(d)] [66]. At the same time, the rightmost
site bN is not affected by the NNN hoppings strength T1 = t2
since the NNN hoppings are only added on the odd sites.
Therefore, the distribution of the upper gap state is always
localized near the last site when θ ∈ [0, 0.5π ] ∪ [1.5π, 2π ].
The right-edge state with the maximal distribution at the last
site and the left-edge state with the equal distribution at the
first two sites provide the physical basis for constructing the
topological beam splitter.

Although the two gap states in Fig. 9(a) provide the pos-
sibility for the implementation of topological beam splitter,
both the two gap states have the same distribution at different
regions of θ , implying that the state transfer between different
states cannot be achieved [the same as the case in Fig. 2(b)].
Therefore, as demonstrated in Sec. II A, we need to introduce
the staggered modulated onsite energy to transform the dis-
tributions of the two kinds of states. In this way, the joint
effect between the staggered modulated onsite energy with
Va = −Vb = − sin θ and the modulated NNN hoppings added
only on the odd sites with T1 = t2 = 1 + cos θ induces the
topological channel for the realization of the state transfer be-
tween |0, 0, 0, ..., 0, 1〉 and |0.5, 0.5, 0, ..., 0, 0〉. Namely,
the construction of topological beam splitter.

C. Experimental realization of topological beam splitter

The beam splitter has many significant applications in the
field of quantum optics. Benefiting from the rapid devel-
opment in circuit-QED community, the circuit-QED system
provides us an excellent experimental platform to realize the
topological beam splitter proposed in our work. Here, we
construct a circuit-QED lattice via arranging the transmission
line resonator and the superconducting qubits in the space,
as shown in Fig. 10, in which each resonator an (bn) couples
a superconducting qubits Qa (Qb) with the coupling strength
ga (gb), the two adjacent resonators an (an+1) and bn couple
with each other via qubit Q1 (Q2) with the coupling strength
g1 (g2), and the two resonators an and an+1 couples with
each other via qubit Q3 with the coupling strength g3. Under
the dissipative regime [57,67], if all the qubits are initially
prepared in their ground states, the effective Hamiltonian of
the circuit-QED lattice system (after resetting the energy zero

qC

inC
outC

tuoni

qubit

resonator

FB
L

FIG. 10. The realization of the topological beam splitter based
on circuit-QED lattice. The up panel depicts the structure of the
circuit-QED lattice with the NNN hoppings. Each resonator couples
a superconducting qubit and the two resonators couple with each
other via other superconducting qubits. The bottom panel shows the
circuit structure of the coupling between the resonator and the qubit.
The energy level space of the qubit can be tuned by the flux-bias line
(FBL).

point with respect to the resonator detuning) is given by

H =
∑

n

−
(
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a


a
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1


1
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2


2
+ 2g2

3


3

)
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−
(

g2
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b
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1


1
+ g2

2


2

)
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−
[

g2
1


1
a†

nbn + g2
2


2
a†

n+1bn + g2
3


3
a†

n+1an + H.c.

]
, (7)

where 
i = ωi − ωd (i = a, b, 1, 2, 3) represents the qubit
detuning between qubit level ωi and driving frequency ωd .
Note that the energy levels of the superconducting qubits in
Fig. 10 are tunable via magnetic flux provided by a flux-bias
line (FBL) [68], making that the detuning of the qubits are tun-
able, which provides the basis for the periodically modulated
terms. Generally, the typical qubit level can be modulated in
the range of 100 MHz to 15 GHz [69,70], providing a consid-
erable adjustability in experiment. For simplicity, we take the
coupling strength gi (i = a, b, 1, 2, 3) between the resonator
and the qubit as −gi = 1 as the energy unit. Then, the period-
ically modulated onsite energy, NN hopping terms, and NNN
hoppings can be easily realized by modulating the qubit detun-
ing 
i originating from the qubit level via FBL. To construct
the proposed topological beam splitter, a typical choice of the
qubit detuning is that 1


1
= 1 − cos θ , 1


2
= 1


3
= 1 + cos θ ,

1

a

= −(4 + 2 cos θ + sin θ ), and 1

b

= −2 + sin θ . Under
this set of parameter regime, the Hamiltonian in Eq. (7)
becomes

H =
∑

n

− sin θa†
nan + sin θb†

nbn + [(1 − cos θ )a†
nbn

+ (1 + cos θ )a†
n+1bn + (1 + cos θ )a†

n+1an] + H.c. (8)
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FIG. 11. The output detection spectrum. (a) The external driving
excites the last resonator with �bN = 1. The photons mainly gather
into the rightmost resonator with the resonant excitation. (b) The ex-
ternal driving excites the first resonator �a1 = 1. The photons mainly
gather into the first two resonators with the resonant excitation. Other
parameters take θ = 0.15 and N = 10.

Obviously, the above Hamiltonian is the basis for realizing the
topological beam splitter, and we can construct the topological
beam splitter by controlling the external field adiabatically.

Another advantage of the construction of topological beam
splitter based on circuit-QED lattice is that, the output pho-
tons can be detected by the resonator-based input-output
formalism [57,67]. If we use the external driving Hd =∑

n[�a,naneiωd t + �b,nbneiωd t + H.c.] [�a,n (�b,n) is the driv-
ing amplitude and ωd is the driving frequency] to excite the
circuit-QED lattice, then we find that, under the steady-state
assumption, the input and the output photons can be detected.
For example, when θ = 0.15π , we use the external driving to
excite the rightmost resonator with a certain range of driving
frequency. The corresponding output detection spectrum is

shown in Fig. 11(a), in which the numerical results show
that, when the driving frequency reaches resonant with the
red gap state in Fig. 6, the photons mainly gather into the last
resonator, which is consistent with the input state. Similarly,
when we use the external driving to excite the first resonator or
the second resonator with a certain range of driving frequency,
we find that the photons mainly gather into the first two
resonators with the same magnitude, as shown in Fig. 11(b).
The results reveal that we also can realize the detection of
the output photons. Therefore, our scheme provides the pos-
sibility toward the realization of the topological beam splitter
based on circuit-QED lattice system, which greatly expands
the potential applications of topological matter in quantum
information processing.

IV. CONCLUSIONS

In conclusion, we have shown that the state transfer be-
tween the left and right-edge states in the even-size SSH
chain can be realized via the topological channels induced
by the staggered periodic onsite potentials or the staggered
periodic NNN hoppings. We find that the staggered periodic
onsite potentials or the NNN hoppings lead to the complete
splitting of the initial degenerate zero-energy modes, which
further facilitates the separation of the topological left- and
right-edge states. In this way, the state transfers between the
first a-type and the last b-type site can be achieved under
the adiabatic evolution condition. Moreover, we introduce the
staggered periodic onsite potentials and the periodic NNN
hoppings added only on the odd sites simultaneously to induce
a special edge channel, in which the right-edge state can be
transferred to the first two sites with the equal distribution.
This property makes that the present topological channel has
many potential applications in topological beam splitter de-
vice. Furthermore, we demonstrate that, based on circuit-QED
lattice, the topological beam splitter can be achieved under the
current experimental conditions. Our work opens up a new
way for the realization of topological quantum information
processing and provides a path toward the engineering of new
type of quantum optical device.
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